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Abstract

Background: Stable evolutionary signal has been observed in a yeast protein-protein interaction (PPI) network.
These finding suggests more connected regions of a PPI network to be potential mediators of evolutionary
information. Because more connected regions of PPI networks contain functional complexes, we are motivated to
exploit the orthology relation for identifying complexes that can be clearly attributed to such evolutionary signal.

Results: We proposed a computational methodology for detecting the orthology signal present in a PPI network
at a functional complex level. Specifically, we examined highly functionally coherent putative protein complexes as
detected by a clustering technique in the complete yeast PPI network, in the yeast sub-network which spans only
ortholog proteins as determined by a given second organism, and in yeast sub-networks induced by a set of
proteins randomly selected. We proposed a filtering technique for extracting orthology-driven clusters with unique
functionalities, that is, neither enriched by clusters identified using the complete yeast PPI network nor identified
using random sampling. Moreover, we extracted functional categories that can be clearly attributed to the
presence of evolutionary signal as described by these clusters.

Conclusions: Application of the proposed methodology to the yeast PPI network indicated that evolutionary
information at a functional complex level can be retrieved from the structure of the network. In particular, we
detected protein complexes whose functionality could be uniquely attributed to the evolutionary signal. Moreover,
we identified functions that are over-represented in these complexes due the evolutionary signal.

Background
Analysing and mining protein-protein interaction (PPI)
networks data using evolutionary information is a central
research area in bioinformatics (see e.g. [1-10]). In this
context, evolutionary information is usually described by
means of the orthology relation between proteins. In gen-
eral, two proteins are orthologous if they originated from a
common ancestor, having been separated in evolutionary
time only by a speciation event. Orthologous proteins
have high amino acid sequence similarity and usually
retain the same or very similar function, which allows one
to infer biological information between the proteins.
Obviously, orthology as such is very important in studying

evolution. Therefore, the problem of establishing proper
orthology relations has been widely studied in comparative
genomics (see for instance [11]) and many databases and
public resources of orthologs have been made available,
such as Inparanoid [12,13] and OrthoMCL-DB [14].
A recent study performed by Wutchy et al [3] used such

available orthology information for detecting stable evolu-
tionary signal in a yeast PPI network. This signal was
extracted at a protein-protein interaction level, using pair-
wise orthologs with respect to various different species.
The authors observed that a high local clustering around
protein-protein interactions correlates with evolutionary
conservation of the participating proteins. This means that
highly connected proteins and protein pairs embedded in
a well clustered neighbourhood tend to be evolutionary
conserved and therefore retain their evolutionary signal.
These findings suggest also that more connected regions
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of a PPI network are potential mediators of evolutionary
information.
Motivated by the above observations, in this paper we

focus on the explicit use of orthology for detecting evolu-
tionary signal at a functional complex level, that is, func-
tional complexes that can be clearly attributed to this
evolutionary signal. To this aim, we try to characterize
functions of those complexes predicted by clustering the
sub-graph of a PPI network induced by all proteins having
orthologs in another given species, but not predicted (or
predicted for a smaller fraction of proteins) neither when
clustering the entire network, nor when clustering sub-
graphs of the network induced by random sampling of
proteins. We consider the resulting functions as a strong
characterization of the underlying evolutionary signal of
orthologs at functional complex level, since they are sup-
pressed or not observed when clustering using the entire
network and are not outcomes of a stochastic process.
Specifically, given the yeast PPI network and proteins

from another species, we apply a state-of-the-art clustering
algorithm to (1) the yeast PPI network, (2) the sub-
network of the yeast PPI network induced by selecting
only proteins with ortholog in the considered other organ-
ism, and (3) the sub-networks of the yeast PPI network
induced by sampling a given number of proteins at ran-
dom. In this way we generate three classes of clusters
called GC (global clusters), OC (ortholog clusters) and RC
(random clusters). Note that the latter class of clusters is
the collection of cluster sets produced by the application
of clustering to the PPI network induced by a random
selection of a set of proteins (of size equal to that of the
set of proteins used to generate the OC class) repeated for
dozens times. For all clusters in each class we infer puta-
tive functions by measuring their gene ontology (GO)
functional enrichment [15] using only experimentally vali-
dated annotations, and consider as putative protein com-
plexes only those clusters with a putative function that is
significantly coherent within the corresponding cluster.
The putative complexes of the GC class represent results

globally observable in the whole interaction data without
any additional information and hence play also a suppres-
sor of any potential external biological signal present in
the data. The putative complexes of the RC class simulate
a random signal of the given protein sample size in the
protein interaction data. Thus, the OC class complexes
may be attributed to the orthology signal only when their
functionality clearly differentiates from those of GC and
RC class.
To this end, for a set of complexes and a certain func-

tion, we compute the functional retrieval index as the frac-
tion of proteins contained in the complexes and having
the function experimentally validated with respect to the
set of candidate proteins having the function also experi-
mentally validated and from which complexes were

derived. This fraction quantifies the presence of that func-
tion in a given protein complex set. This allows us to iden-
tify functions whose proteins’ fraction is higher in
complexes from the OC class than in complexes from the
other two classes. Consequently, we consider the corre-
sponding complexes in OC class as describing the orthol-
ogy signal (with respect to the considered species).
Furthermore, we analyse those complexes in the OC class
having a predicted function for its proteins that is not
inferred when using complexes of GC class. Finally we dis-
cuss the new meaningful functions for well-defined as well
as for unknown proteins that are present in the compila-
tion of putative complexes.
In previous works on phylogenetic analysis of protein

networks and complexes evolutionary information was
usually used as a mean for evaluating the preservation of
orthology information in functional modules [2,5-7]. Here,
however, we incorporate evolutionary information before-
hand and perform a comparative differential analysis for
detecting evolutionary signal at complex, functional level.
Our identification of protein complexes uses only the
topology of the network of the considered species and
orthology information from another species, without
requiring knowledge on the interactome of the other
species.
In general, our approach differs from comparative net-

work methods [10], as the latter aim to find evolutionary
conserved modules across species, thus exploiting both
orthology and network topology of the considered organ-
isms. The clusters we obtain are in one species and are
related to the orthology signal with respect to another spe-
cies, but are not required to be evolutionary conserved
through species (we do not enforce any type of similarity
at the graph-structure level). Furthermore, comparative
methods mostly do not use ‘known’ orthologs in available
databases but rather they rely on sequence similar pro-
teins, where the level of required similarity is determined
by a minimal similarity score threshold. Instead, our
method exploits the orthology information available in
existing databases. Moreover, the study we propose differs
from those aiming to find evolutionary conserved modules
across species because their output results in cluster mul-
tiplets derived from all PPI networks of multiple species
being compared, where clusters contained in one multiplet
are topologically and genomic similar to each other. In
particular, in [16] computational technique for dividing
PPI networks was proposed in order to perform modular
network alignment [17]. Results indicated that aligning
pairs of sub-networks from different species, where these
sub-networks are obtained by expanding articulation hubs,
may lead to the discovery of conserved protein modules
that are not detected when aligning the two whole net-
works. This is different from the research question tackled
in this paper, namely to detect the orthology signal at a
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functional complex level in a single PPI network given
another species. The methodology proposed in this paper
generates orthology-driven clusters that contain evolution-
ary functional signal but are not in general conserved
across species. Indeed, this could correspond to scenarios
where a functional module retains its evolutionary origin
while it changed its conformation in other species after
speciation, due to evolutionary (pressure) events, resulting
in a cluster with some links preserved, other being created
and some links being lost.

Results and discussion
We performed the proposed computational analysis on a
widely used and well-studied species, namely Saccharo-
myces cerevisiae (yeast), since its PPI network is one of the
best characterized and the functionality of its proteins has
been extensively studied. This makes yeast a good stan-
dard model species for protein network analysis.

Protein orthology relationships between the follow-
ing pairs of organisms were considered:
• Saccharomyces cerevisiae vs. Escherichia coli
• Saccharomyces cerevisiae vs. Caenorhabditis
elegans
• Saccharomyces cerevisiae vs. Drosophila melanogaster
• Saccharomyces cerevisiae vs. Homo sapiens

Escherichia coli (E.coli), Caenorhabditis elegans
(worm), Drosophila melanogaster (fly) and Homo sapiens
(human) are standard organisms used in protein network
and genome comparative studies (e.g [18,19]) and repre-
sent the diverse life-forms from a prokaryote (E.coli) to
the highly complex eukaryote (human). Yeast proteins
having an ortholog in another species are here called
yeast orthologs. Hence, each species comparison pro-
duces a different set of yeast orthologs to be investigated.

Generating the cluster classes
A state-of-the-art method for detecting communities in
biological networks known as MCL [20] was used for
clustering networks. MCL was applied to generate the
following classes of clusters:

• OYC-E - yeast clusters found using the sub-net-
work induced by the yeast-E.coli ortholog set.
• OYC-W - yeast clusters found using the sub-net-
work induced by the yeast-worm ortholog set.
• OYC-F - yeast clusters found using the sub-net-
work induced by the yeast-fly ortholog set.
• OYC-H - yeast clusters found using the sub-net-
work induced by the yeast-human ortholog set.

These groups are of the OC class mentioned above
and we generally refer to them by the common name

OYC (ortholog yeast clusters). The following classes of
clusters were generated using random sampling:

• RYC-E - yeast clusters found using the sub-net-
work induced by random sampled proteins of the
same number as the number of proteins in the
yeast-E.coli ortholog set.
• RYC-W - yeast clusters found using the sub-net-
work induced by random sampled proteins of the
same number as the number of proteins in the
yeast-worm ortholog set.
• RYC-F - yeast clusters found using the sub-net-
work induced by random sampled proteins of the
same number as the number of proteins in the
yeast-fly ortholog set.
• RYC-H - yeast clusters found using the sub-net-
work induced by random sampled proteins of the
same number as the number of proteins in the
yeast-human ortholog set.

These groups belong to the RC class and we generally
refer to them by the common name RYC (random yeast
clusters). For each of the four cases given above we per-
formed 1000 runs. Recall that every run produces one
particular RYC group. In order to compare these clus-
ters with the GYC or OYC one, we consider the average
values of RYC groups computed over all 1000 simula-
tions according to a given ortholog set.
Finally, when MCL was applied to the whole yeast

network, we get clusters of the above-mentioned GC
class, and we refer to them by the name GYC (global
yeast clusters).
Table 1 reports the number of GYC, OYC and RYC

clusters identified by MCL, the number of functional
complexes extracted from these clusters, the average
size of the clusters and of the complexes, and the per-
centage of the clusters that correspond to functional
complexes. The number of clusters, complexes and their
average size are similar for RYC and OYC, while, as
expected, more clusters (hence complexes) are generated
by using GYC, and their average size is slightly bigger
than that of those detected using RYC and OYC. It is
interesting to note that the sensitivity of the method
does not change significantly with respect to the (sub-)
network it is applied to, resulting in about 40% of the
detected clusters being functional complexes for GYC,
and in the range 37-44% for RYC and OYC. This indi-
cates the robustness of MCL with respect to the consid-
ered sampling strategies.

Identifying orthology signal at protein complex level
The detected putative complexes are used to identify
orthology-related functions. For each class of putative com-
plexes we compute the functional retrieval indexes with
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respect to the protein sample set from which the com-
plexes were derived by applying the formula (1) (see Meth-
ods). Then, for each function f associated with complexes
of the OYC class, we compare its retrieval index ϱ(f,O)
with the retrieval indexes ϱ(f,R95%) and ϱ(f,V) for both RYC
and GYC classes using the rule (2) (see Methods).
One may consider the comparison of ϱ(f,O) with ϱ(f,

R95%) as the random sample filter and ϱ(f,O) with ϱ(f,V) as
the global sample filter. Only if ϱ(f,O) is greater than both
ϱ(f,R95%) and ϱ(f,V), then the function f and with it asso-
ciated OYC complexes are considered to be orthology-
related. Application of the random sample filter differenti-
ates the functions of the OYC class complexes from those
which are likely to be observed within the complexes of
class RYC and thus by chance. In the case of global sample
filter it extracts functions which have greater retrieval rates
within the complexes of class OYC than within the com-
plexes of class GYC. Hence, these functions are sup-
pressed when considering complexes present in the global
topology of the PPI network and are unveiled when con-
sidering only the complexes formed by orthologs.
Table 2 reports the effect of these filters on the num-

ber of functions and associated complexes of the OYC
class, when they are applied separately and when they
are combined. We may observe that the global sample
filter has no reduction effect on the number of com-
plexes although from about one third to one quarter of

all functions are omitted. This substantiates that indeed
the complexes consisting of orthologs are well-differen-
tiated from the complexes observed in the global topol-
ogy of the PPI network.
In the case of the random sample filter the number of

functions drops considerably, whereas the number of
complexes still remains high. As a result, when both fil-
ters are combined, one may interpret the total reduction
on the number of complexes and functions as primarily
caused by the random sample filter, while there is almost
no effect on the reduction due to the global sample filer,
especially on the number of complexes.
This suggests that in the set of all annotations asso-

ciated with a given complex of the OYC class, it is very
likely to observe an orthology-related function despite
the sparse distribution of orthology-related functions in
the GO hierarchy. As a result, more than 80% of the
OYC complexes are always indeed orthology-related
complexes, which suggests they mostly do not corre-
spond to an outcome of a stochastic event.
We discuss in the sequel some interesting orthology-

related functions as well as novel protein function pre-
dictions derived using the proposed methodology.

On orthology-related functions
In the set of yeast orthologs with respect to E.coli we
identified 144 orthology-related functions. Table 3

Table 1 The number and average size of detected protein clusters and putative protein complexes.

Clust. Gr. #Clusters |C| #Complexes |C| Ratio (%)

GYC 365 8 147 11.1 40.3%

OYC-E
RYC-E

37
34.31 (±3.82)

5
4.17 (±0.40)

14
12.69 (±2.96)

5.5
5.06 (±0.68)

37.8%
37.0%

OYC-W
RYC-W

181
175.22 (±7.21)

7
6.08 (±0.28)

80
67.85 (±5.87)

8.7
8.07 (±0.52)

44.2%
38.7%

OYC-F
RYC-F

191
181.97 (±7.51)

7
6.15 (±0.36)

80
70.32 (±6.01)

9.33
8.19 (±0.53)

41.9%
38.6%

OYC-H
RYC-H

203
196.38 (±7.80)

7
6.29 (±0.45)

90
75.71 (±6.21)

9.33
8.41 (±0.54)

44.3%
38.6%

Clust. Gr. - the cluster group (class), #Clusters - the number of clusters, #Complexes - the number of complexes, |C| - the average cluster or complex size, Ratio
(%) - the percentage of clusters that are functional complexes

Table 2 The effect of filtering procedures

Clust. Gr. Total ϱ(f,R95%) ϱ(f,V) max{ϱ(f,V),ϱ(f,R95%)} Ratio (%)

OYC-E #Complexes
#Functions

14
251

14
150

14
184

14
144

100.00%
57.37%

OYC-W #Complexes
#Functions

80
767

65
124

80
526

65
123

81.25%
16.04%

OYC-F #Complexes
#Functions

80
775

68
109

80
487

68
109

85.00%
14.06%

OYC-H #Complexes
#Functions

90
735

89
79

90
444

89
78

98.89%
10.61%

Clust. Gr. - the cluster group (class), #Complexes - the number of complexes, #Functions - the number of functions, Total - the numbers in total, ϱ(f,R95%) - the
numbers after applying the random sample filter, ϱ(f,V) - the numbers after applying the global sample filter, max{ϱ(f,V), ϱ(f,R95%)} - the numbers after applying
the both filters, Ratio (%) - the percentage of complexes or functions which passes through the both filters
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reports only higher level functions in GO hierarchy as
determined by the GO slim functional terms (GO slim
version: 1.1.1543, date: 19/10/2010, [21]). Each GO slim
characterizes a certain type of biological functions which
have some features and tasks in common, and hence
they define the functional categories in a biological
system.
Considering cellular compartments of a cell, we identi-

fied ribosomal and chromosomal proteins as being orthol-
ogy-related. Indeed, it has been shown that the ribosomes
in the mitochondria of eukaryotic cells resemble those in
bacteria, reflecting the likely evolutionary origin of this
organelle [22]. Considering other reported functional cate-
gories, numerous phylogenetic data provide strong evi-
dences that there is a constant evolutionary pressure in
conserving critical functional domains on proteins that are

significant for cell survival. These proteins are usually
components of DNA/RNA replication, transcription and
translation apparatus or they are involved in ion transport
processes.
Because worm, fly and human all belong to eukar-

yotes, we looked at their common orthology-related
functions (reported in Table 4). Considering molecular
functions, we retained mostly kinases activity proteins
and DNA binding proteins. This is true in particular for
proteins of kinase activity, which have been found con-
served among eukaryotes: these kinase’ functional con-
servations were investigated for yeast, worm, fly and
human when studying their evolution [23]. Orthology-
related DNA binding proteins have been also known to
exhibit high sequence conservation among eukaryotes
(e.g [24,25]).

Table 3 Orthology-related functional categories for yeast-E.coli orthologs

Clust. Gr. GO ID Name GO Domain

OYC-E GO:0005840 ribosome CC

GO:0005694 chromosome CC

GO:0000228 nuclear chromosome CC

GO:0003677 DNA binding MF

GO:0005215 transporter activity MF

GO:0007049 cell cycle BP

GO:0006811 ion transport BP

GO:0006519 cellular amino acid metabolic process BP

Clust. Gr. - the cluster group (class), CC - cellular component, MF - molecular function, BP - biological process

Table 4 Orthology-related functions for yeast-worm, yeast-fly, and yeast-human orthologs

Clust. Gr. GO ID Name GO Domain

GO:0042555 MCM complex CC

GO:0004672 protein kinase activity MF

GO:0004674 protein serine/threonine kinase activity MF

GO:0003883 CTP synthase activity MF

GO:0043565 sequence-specific DNA binding MF

GO:0009987 cellular process BP

GO:0044257 cellular protein catabolic process BP

GO:0051603 proteolysis involved in cellular prot. catab. proc. BP

OYC-W GO:0019941 modification-dependent protein catabolic process BP

OYC-F GO:0006511 ubiquitin-dependent prot. catab. proc. BP

OYC-H GO:0006220 pyrimidine nucleotide metabolic process BP

GO:0009147 pyrimidine nucleoside triphosph. metab. proc. BP

GO:0006221 pyrimidine nucleotide biosynthetic proc. BP

GO:0009218 pyrimidine ribonucleotide metabolic proc. BP

GO:0009208 pyrimidine ribonucleoside triphosph. metab. proc. BP

GO:0009148 pyrimidine nucleoside triphosphate biosynth. proc. BP

GO:0009220 pyrimidine ribonucleotide biosynth. proc. BP

GO:0009209 pyrimidine ribonucleoside triphosph. biosyn. proc. BP

GO:0046036 CTP metabolic process BP

GO:0006241 CTP biosynthetic process BP

Clust. Gr. - the cluster group (class), CC - cellular component, MF - molecular function, BP - biological process
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Regarding the Mcm complex, it consists of six eukaryo-
tic Mcm proteins which also share significant sequence
similarity with one another. These proteins serve as the
eukaryotic replicative helicase, the molecular motor that
both unwinds duplex DNA and powers fork progression
during DNA replication [26] and therefore are expected to
be orthology-related.
CTP and pyrimidine processes are incorporated in the

growth of RNA and DNA during the process of tran-
scription or DNA replication. Short-term energy storage
is also one of the functions of pyrimidines. Hence, as
mentioned above, there is a pressure on evolutionary
conservation of these processes vital for a cell survival.
Last but not least, proteins involved in ubiqiunting-
dependent processes contain a highly conserved ubiqui-
tin-conjugating (UBC) domain; thus, the function is also
orthology-related.

On orthology-related complexes and novel predictions
Orthology-related complexes are those complexes of the
OYC class whose proteins perform at least one orthol-
ogy-related function. In addition, we call unique com-
plexes those complexes whose proteins have a predicted
function that is not inferred for those proteins by any
GYC complex. These are the complexes that are new
and derived using (the protein complex composition
present in) the orthology sub-network, that is, uniquely
linked to the orthology signal.
Given a unique cluster and its protein having a new

predicted function not inferred by any GYC complex
containing the protein. Then, if the function prediction
is experimentally or computationally annotated in SGD,
this prediction is verified. Analogously, if we find the
new predicted function has not been experimentally or
computationally annotated in SGD, then this prediction
is indeed a novel prediction. Observe that one cluster
can have verified as well as novel predictions at the
same time. The number of orthology-related complexes
as well as those which produce verified and/or novel
protein function predictions are reported in Table 5.
We may observe that, for each ortholog set, from all
complexes with a novel prediction, more than 80% are
orthology-related complexes. This is analogous to the
reduction effect on the whole set of complexes men-
tioned above.
Examples of novel orthology-related complexes are

given in Table 6: they demonstrate that by examining
different sets of orthologs we found specific putative
complexes, most of them crucial for a living cell.
For instance, proteins of Cluster 1 are predicted to be

involved in mitochondrial proton transporting ATP
synthase, catalytic core. While ATP1 and ATP2 are
indeed the part of the catalytic core, ATP3 is part of the
central stalk of mitochondrial proton-transporting ATP

synthase. Cluster 1, however, gives a proper suggestion
for the mechanism of the ATP3. Moreover, as ATP3
interacts with ATP2 it may be involved also in the cata-
lytic core.
Cluster 2 and 3 are ubiquintin complexes. In general, in

eukaryotes ubiquitin-dependent processes relate to pro-
tein degradation, because it is catalysed by a family of
ubiquitin-carrier enzymes (E2) which contain a highly
conserved ubiquitin-conjugating (UBC) domain. Previous
reports showed that numerous members of this family
are functionally overlapping [27,28]. Hence, as one could
expect, our complexes, Cluster 2 and Cluster 3, are found
for all eukaryotic yeast’s orthologs, consisting of ubiqui-
tin-conjugating enzymes that mediate protein degrada-
tion, indicating a highly conservation of UBCs during
evolution for eukaryotes. In Cluster 2 ERR3 is a protein
of unknown function, which has similarity to enolases.
This suggests that ERR3 is part of the ubiquitin conjugat-
ing enzyme complex. In case of Cluster 3 the VIP1 was
the only protein found with no UBC activity indicating
the involvement of kinases in the complex process of ubi-
quitination. However, experimental data demonstrated
the ubiquitin-proteasome machinery to control the levels
of kinases by proteolysis [29]. As the mechanism of ubi-
quitin-mediated protein degradation is poorly under-
stood it requires further investigation.
Next, we discuss proteins in the closely related com-

plexes Cluster 4 and Cluster 5. The protein families that
mediate vesicle trafficking are conserved through phylo-
geny from yeast to human, as well as throughout the
cell from the endoplasmic reticulum to the plasma
membrane [30]. Our analysis showed proteins of the
SEC family (SEC22, SEC23 and SEC24) and others as
SED5, BET3, SLY1, HIP1 and SFB2 conserved from
worm to human and involved in the coat protein com-
plex II (COPII) that selectively transport molecules and
vesicle fusion proteins from the endoplasmic reticulum
(ER) to the Golgi complex [31]. Other proteins included
in the complexes but not for all species as BUG1 and

Table 5 The numbers of putative protein complexes
containing unique, verified and novel protein function
predictions

Clust. Gr. Total Unique Verified Novel

OYC-E #All
#Ort.-related

14
14

13
13

1
1

13
13

OYC-W #All
#Ort.-related

80
65

69
57

12
11

63
52

OYC-F #All
#Ort.-related

80
68

62
52

12
11

59
50

OYC-H #All
#Ort.-related

90
89

72
72

10
10

68
68

Clust. Gr. - the cluster group (class), #All - the number of all complexes, #Ort.-
related - the number of orthology-related complexes
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Table 6 Novel orthology-related complexes

Cluster ID Proteins Prediction Cluster Group

Cluster 1 ATP1 OYC-E

ATP2 mitochondrial proton-transporting ATP synthase, catalytic core OYC-E

ATP3 OYC-E

Cluster 2 MMS2 OYC-W,OYC-F,OYC-H

UBC13 ubiquitin conjugating enzyme complex OYC-W,OYC-F,OYC-H

ERR3 OYC-W,OYC-F,OYC-H

Cluster 3 UBC7 OYC-W,OYC-F,OYC-H

UBC5 OYC-W,OYC-F,OYC-H

UBC6 OYC-W,OYC-F,OYC-H

UBC1 protein ubiquitination OYC-W,OYC-F,OYC-H

UBC8 OYC-W,OYC-F,OYC-H

UBC4 OYC-W,OYC-F,OYC-H

VIP1 OYC-W,OYC-F,OYC-H

Cluster 4 SEC22 OYC-W,OYC-F,OYC-H

SFT2 OYC-W,OYC-F,OYC-H

SED5 OYC-W,OYC-F,OYC-H

BET3 OYC-W,OYC-F,OYC-H

SLY1 OYC-W,OYC-F,OYC-H

SEC17 Golgi vesicle transport, Golgi apparatus OYC-W,OYC-F

SEC18 OYC-W,OYC-F

COS1 OYC-F,OYC-H

SYM2 OYC-F,OYC-H

GPA1 OYC-W

STE4 OYC-W

AKR1 OYC-W

YKT6 OYC-W

Cluster 5 SEC23 OYC-W,OYC-F,OYC-H

SEC24 OYC-W,OYC-F,OYC-H

SFB2 COPII vesicle coat OYC-W,OYC-F,OYC-H

HIP1 OYC-W,OYC-F,OYC-H

GRH1 OYC-W,OYC-F

BUG1 OYC-F

Cluster 6 SEC9 OYC-W,OYC-H

SNC1 OYC-W,OYC-H

SNC2 SNARE complex, plasma membrane OYC-W,OYC-H

SSO1 OYC-W,OYC-H

SSO2 OYC-W,OYC-H

Cluster 7 ATG5 OYC-F

ATG7 C-terminal protein lipidation OYC-F

SSO2 OYC-F

Cluster 8 HXT3 OYC-E,OYC-F

HXT2 OYC-E,OYC-F

HXT4 OYC-E,OYC-F

HXT1 hexose transmembrane transporter activity OYC-E,OYC-F

SNF3 OYC-E,OYC-F

RGT2 OYC-E,OYC-F

CYC8 OYC-E
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GRH1 have been observed co-localizing on the cis-Golgi
and they form a heterooligomeric complex binding
GRH1 at the well conserved C terminus of BUG1 [32].
The role of these two proteins in ER to Golgi transport
is mediated by the interaction between GRH1 with the
SEC23/24 complex, proteins that we could identify in
the same complex a that of GRH1 and BUG1. In these
clusters related with vesicle trafficking we could observe
other proteins like SFT2, COY1 and GOS1 not anno-
tated for the ER to Golgi vesicle-mediated transport
term but we could classify them in the correct cluster.
These proteins have been observed to be required for
vesicle fusion with the Golgi complex [33,34].
Further interesting outcomes are Cluster 6 and Cluster

7. Both clusters share the SSO2 protein but they pro-
duce different functional predictions. In the case of
Cluster 6 SSO2 interacts with proteins of the yeast
SNARE complex (SEC9, SNC1, SNC2, SSO1), the core
of the machinery required for membrane fusion, while
in Cluster 7 SSO2 is involved with the Cvt pathway pro-
teins (ATG5, ATG7), a biosynthetic transport route for
a distinct subset of resident yeast vacuolar hydrolases.
Reggiori et al [35] described that the biogenesis of Cvt
vesicles apparently requires a fusion step catalysed by
the VFT tethering factor and by the SNARE complex
but they failed to show the proteins that are related in
the interaction between the Cvt pathway and the
SNARE complex. Although to further elucidate the real
role of the SSO2 protein in the interaction between the
Cvt pathway and the SNARE complex an experimental
validation is necessary, these results show the capability
of the presented methodology not only to classify pro-
teins interacting within the same or related clusters but
also to predict unknown protein interactions between
different pathways and complexes that are currently
under investigation. Interestingly, Cluster 6 is found in
OYC-W and OYC-H cluster groups corresponding to
yeast-worm and yeast-human ortholog sets while Cluster
7 is found only in OYC-F corresponding to the yeast-fly
ortholog set suggesting the complexity and versatility of
protein complex evolution.
Finally, we discuss Cluster 8, which contains the novel

prediction for the SNF3 and RGT2 proteins. This com-
plex was observe for yeast-fly and yeast-E.coli ortholog
sets but not for the other ones. Previous studies in yeast
demonstrated that SNF3 and RGT2 are integral mem-
brane proteins with unusually long carboxy-terminal
tails involved in glucose transport. This is in compliance
with our results that showed both proteins to have a
glucose transport activity. However, according to recent
studies, although both proteins are very similar to glu-
cose transporters, they apparently do not transport glu-
cose but they interact as glucose sensors. Özgan et al
[36] demonstrated that glucose signalling is not the

result of glucose transport and that the C- termini of
both proteins are signalling domains of these glucose
sensors. Nonetheless, it remains unclear how glucose
transport is regulated and therefore our prediction can
be considered as valid. In addition, as the SNF3/FGT2
protein interaction was not found in yeast ortholog set
with respect to human and worm, it indicates that the
protein complex is not conserved among all species.
Aside the SNF3/RGT2 complex the predicted cluster
includes also the HXT-transporters which are responsi-
ble for glucose uptake. Moreover, in OYC-E this protein
complex was assembled with the contribution of CYC8,
a yeast protein that binds to the promotors of the HXT
genes blocking their transcription. This finding is very
interesting as E.coli contains no nucleus and therefore it
is likely that an equivalent protein complex exists.

Conclusions
We proposed a novel methodology for quantifying the
functionality of the orthology signal in a PPI network at
a functional complex level. The methodology performs a
differential analysis between the functions of those com-
plexes detected by clustering a PPI network using only
proteins with orthologs in another given species, and
the functions of complexes detected using the entire
network or sub-networks generated by random sampling
of proteins.
Results of our experimental analysis indicated the use-

fulness of the proposed methodology to identify func-
tional categories and complexes that can be clearly
attributed to the presence of an evolutionary (orthology)
signal, as supported by biological evidence from related
studies.
As a future work, we intend to investigate possible

extension of the methodology to increase its sensitivity.
In particular one can exploit the inheritance property
present within the GO hierarchy, namely each filial GO
term may inherit features of its parental terms. For
example, one could propagate the evolutionary signal
between the two closest orthology-related function in
the GO hierarchy such that all GO terms present on the
paths between these two terms are also orthology-
related.

Methods
Data
The analysis was performed on the budding yeast inter-
action data collected by Georgii et al [37]. The data
combines interaction data from DIP [38] and MPact
[39], and interactions from the core datasets of the TAP
mass spectrometry experiments [40,41]. This yeast inter-
action data are weighted by the method proposed by
Jansen et al [42] to measure the confidence of interac-
tome. As a result, the low confidence interactions are
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ignored and the final yeast PPI network consists of 3545
proteins and 14354 interactions.
For obtaining orthology information we used the

Inparanoid Database of Pairwise Ortholog [13,43]. This
database contains clusters of ortholog groups (COGs)
constructed by the Inparanoid program [44], which is a
fully automatic method for finding orthologs and in-
paralogs between two species. Ortholog clusters in the
Inparanoid are seeded with a two-way best pairwise
match (the seed ortholog pair), after which an algorithm
for adding in-paralogs is applied. Because in-paralogs
are homologs that arise when duplication occurs after
speciation, and the duplicated gene often still retains the
function of the ortholog [45], they should be likely
found in one protein complex. Therefore we consider all
proteins present in COGs for inducing an orthology PPI
sub-network and, for simplicity, we consider all proteins
in a COG as orthologs. Specifically, in this study we call
orthologous protein or ortholog a protein which is a
part of an orthologous cluster produced by the Inpara-
noid when comparing two species.
In our analysis, COGs were obtained for the following

pairs of organisms:

• Saccharomyces cerevisiae versus Escherichia coli
• Saccharomyces cerevisiae versus Caenorhabditis
elegans
• Saccharomyces cerevisiae versus Drosophila
melanogaster
• Saccharomyces cerevisiae versus Homo sapiens

Yeast proteins in the derived ortholog groups are
called yeast orthologs. We considered the following 4
sets of yeast orthologs (present in the yeast PPI data),
namely yeast-E.coli, yeast-worm, yeast-fly, yeast-human,
consisting of 451, 1664, 1724, and 1850 proteins,
respectively.

Quantifying orthology signal
We are interested in quantifying the orthology signal by
means of a set of functions of those putative protein
complexes detected by applying a clustering algorithm
to a PPI network. To this end, we directly exploit evolu-
tionary information of proteins as described by the pre-
sence of orthologs in another, given species. We call
these proteins ‘true orthologs’. The following terminol-
ogy is used in the sequel. A PPI network is represented
by means of a graph G(V, E), where V is the set of
nodes (proteins) and E is the set of edges (binary inter-
actions). Let X be a subset of nodes V (e.g. ortholog
set). The set X induces a sub-graph G[X] = (X, EX) of G,
with set X of nodes and set EX of those edges of E that
join two nodes in X. For a set S, we denote by |S| the
number of its elements.

Given a PPI network G = (V, E) and a given species s,
we propose a methodology for detecting the orthology
signal at a functional complex level, consisting of the
following steps.

1. Retrieve from a database the set O of ‘true ortho-
logs’ of V with respect to s, with |O| = n.
2. Generate the following three classes of clusters,
using a given clustering algorithm.

(a) Class 1 clusters (GC). Apply clustering to the
whole PPI network G.
(b) Class 2 clusters (OC). Apply clustering to the
sub-network induced by O.
(c) Class 3 clusters (RC). Apply clustering to the
sub-network induced by a randomly selected sub-
set of V of size n. Repeat the process a number N
of times. Consider all sets of clusters detected
across these runs (RC = {RC1, RC2,...,RCN}).

3. For each class of clusters,
(a) Infer putative complexes and identify their
functions.
(b) For each identified function, compute its
retrieval index as the fraction of those proteins in
the detected complexes which have been assigned
to that function and experimentally verified to
have that function.

4. Select the set of those functions derived using puta-
tive complexes from class OC and whose fractions are
higher than those of the same function derived using
putative complexes from class GC and from class RC.
5. Output the set of putative complexes from class
OC having at least one of the selected functions.

The set of putative complexes of class GC represent
results of no selection (global or suppressor) bias and
the collection of the sets of putative complexes present
in the class RC corresponds to the random selection
bias. Accordingly, the complexes of class OC represent
the orthology selection bias. Thus, the method considers
the complexes exhibiting orthology signal as those of
the OC class having a function which may not be attrib-
uted neither to the global bias nor to the random bias.
Next, we discuss the details of main steps of the pro-

posed methodology.
Generating the cluster classes
Each class of clusters is produced by applying a cluster-
ing technique to the corresponding PPI (sub-)network.
In this study we used the MCL clustering. MCL [20]
computes clusters based on simulation of stochastic
flow in graphs and it is widely used on many domains.
It is able to use information on weights of edges of a
given network if available. A first successful application
of this algorithm on biological networks was presented
in [46]; MCL was also modified for detecting
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orthologous groups [47]. A recently published compara-
tive study [48] indicated that MCL outperforms other
algorithms for clustering PPI networks. The inflation
parameter of the algorithm was set to 1.8 as suggested
in [48].
Inferring putative complexes and their functionalities
We want consider putative protein complexes contain-
ing more than a single protein-protein interaction.
Therefore, after applying the clustering method we
retain only clusters of size greater than or equal to 3. In
order to infer the putative functions of a cluster, we
measured the enrichment of functional annotations of
the corresponding protein set, as entailed by the GO
annotation [15], using one of the well-established tools,
the Ontologizer [49,50]. The Ontologizer offers various
algorithms for measuring GO enrichments. Here, we
apply the standard statistical analysis method based on
the one-sided Fisher’s exact test [49], which measures
the statistical significance of an enrichment and assigns
to the cluster a p-value for each enriched function. The
p-value is further corrected for multiple testing by
means of a Bonferroni correction procedure.
The GO is known to have a hierarchical structure

(directed acyclic graph) which can be used to define the
level of an annotation. Specifically, the level of an anno-
tation is equal to the length of the furthest path from
the root of GO hierarchy to that annotation. This strat-
egy always defines a filial annotation to have a higher
level (deeper in the hierarchy) than its all parental anno-
tations and hence no inconsistency on the description of
GO hierarchical level (a parent having the same or
higher level than its child) is introduced. The GO terms
closer to the root of GO give more general description
of biological functions while terms closer to the leaves
of GO have granular and very specific biological
definitions.
To measure functional annotation enrichments of pro-

teins present in a cluster we used only experimentally
verified annotations as reported in the yeast gene asso-
ciation file of Saccharomyces Genome Database (SGD)
(SGD version: 1.1523, date: 11/13/2010, [51]), available
at the GO database (GO version: 1.1.1602, date: 16/11/
2010, [21]). We excluded all computationally assigned
annotations to yeast proteins to avoid introducing a pos-
sible bias, because many of these techniques use protein
structure or sequence similarity which may often refer
to orthology.
Each detected cluster is a potential protein complex.

The quality of a protein cluster is given by the coher-
ence of biological functions of proteins contained in the
cluster. If a certain subset of proteins in a cluster has a
significantly coherent function, a prediction of that func-
tion for all proteins in the cluster can be made. Note
that one may obtain more than one protein function

prediction if more significantly coherent functions in the
cluster are found. We say that proteins of a cluster have
a significantly coherent function or functional GO anno-
tation if the following criteria are satisfied:

1. the GO annotation is significantly enriched by the
proteins in the cluster (p-value < 0.001).
2. more than half of the proteins in the cluster has
this significant annotation.
3. the annotation is at least at the GO level four
from the root of GO hierarchy.

In such a case the cluster can be used as protein func-
tion predictor and the significantly enriched GO annota-
tion of the cluster is used to predict protein function of
each of the proteins in that cluster. If a cluster does not
satisfy the above conditions, no prediction can be made.
Similar criteria were used by, e.g. [16,52]. The condition
on GO hierarchy guarantees that the prediction about
biological functions is sufficiently specific and informa-
tive [53]. Each cluster which is a predictor defines a
putative protein complex and the set of significantly
coherent functions defines the set of inferred functions.
In the last step, for each putative complex we do an

additional inference analogous to the protein function
annotation procedure as follows. The GO hierarchy
defines a parent-child relationship between GO func-
tional terms where each descendant inherits all features
of its ancestors. As a consequence, once a protein has a
GO term annotation assigned, the protein has implicitly
also annotations of all parental terms of the annotated
function. Hence, using the same ratio, given the set of
inferred functions of a putative protein complex, the
complex also inherits all parental GO terms of the
inferred functions. Thus, we may distinguish the follow-
ing two sets of annotations, the most granular, filial,
annotations, where no parent-child relationship between
corresponding GO terms may be observed, and the set
of all annotations which is the union of the filial annota-
tions and all its ancestral annotations in GO hierarchy.
Notice, by the definition, for a given complex all filial
annotations are significantly coherent functions of the
complex while the parental annotations need not to be
significantly enriched.
Estimating the retrieval index of GO functions
Having a set or class of putative protein complexes, one
can quantify, at a fine-grained, protein level, a so called
retrieval index of functions inferred by the protein com-
plexes and defined as follows.
Consider a PPI network G(V, E) and let X ⊆ V. Let G

[X] = (X, EX) be the corresponding induced sub-graph
of G and X0 ⊂ X be the set of singletons in G[X]; that
means there is no edge (interaction) in EX containing
any of the proteins in X0. We define the set of
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background proteins as B(X) = {X \ X0} and we denote S
(X) the set of all proteins contained in putative com-
plexes discovered in G[X]. Additionally, let C(f) ⊆ V be
the set of candidate proteins for function f, that is, the
set of all proteins having either experimentally anno-
tated function f or an experimentally annotated function
that is a descendant function of f in the GO hierarchy.
Then let P(f,U) = {U∩C(f)} be the set of those proteins
which have an experimental evidence for the function f
and are present in the set U ⊆ V . We can define the
retrieval index of a function f in X as the following frac-
tion:

�(f , X) =
|P(f , S(X))|
|P(f ,B(X))| . (1)

This fraction measures the retrieval of a given func-
tion f from a protein sample X by the set of putative
complexes identified in X. It can be viewed as an index
measuring how likely a given function is present in a
given set of putative complexes with respect to a given
set of proteins.
Note that ϱ(f,V) corresponds to the retrieval index of f

for the GC class, ϱ(f,O) corresponds to the retrieval
index of f for the OC class, and ϱ(f,Ri) corresponds to
the retrieval index of f for the RCi Î RC class, where Ri

is the random protein sample used at the run i when
building the RC class.
Identifying orthology-related functions and complexes
We consider a function f to be related to the orthology
signal if it satisfied two conditions: (a) it has a higher
retrieval (at the level of putative protein complexes) in
the set of orthologs than in the set of proteins of whole
network and (b) it is unlikely to be retrieved when using
random sampling. The second condition is formalized
by comparing ϱ(f,O) with the 95th percentile of the set
of retrieval indexes of f in the RC class. Specifically, for
each function f from the GO hierarchy such that f Î B
(O), we compute its functional retrieval indexes for GC,
OC and the RC classes. Then, the function f is orthology-
related iff

�(f , O) > max{�(f , V), �(f , R95%)}, (2)

where R95% is a random protein sample Ri such that ϱ
(f, Ri) is the up 95th percentile of the all ϱ(f,R1),...,ϱ(f,
RN).
Finally, if a putative complex of the OC class has at

least one orthology-related function, we consider that
complex to be orthology-related.
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