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Abstract

Background: Proteins that interact in vivo tend to reside within the same or “adjacent” subcellular compartments.
This observation provides opportunities to reveal protein subcellular localization in the context of the protein-
protein interaction (PPI) network. However, so far, only a few efforts based on heuristic rules have been made in
this regard.

Results: We systematically and quantitatively validate the hypothesis that proteins physically interacting with each
other probably share at least one common subcellular localization. With the result, for the first time, four graph-
based semi-supervised learning algorithms, Majority, c2-score, GenMultiCut and FunFlow originally proposed for
protein function prediction, are introduced to assign “multiplex localization” to proteins. We analyze these
approaches by performing a large-scale cross validation on a Saccharomyces cerevisiae proteome compiled from
BioGRID and comparing their predictions for 22 protein subcellular localizations. Furthermore, we build an
ensemble classifier to associate 529 unlabeled and 137 ambiguously-annotated proteins with subcellular
localizations, most of which have been verified in the previous experimental studies.

Conclusions: Physical interaction of proteins has actually provided an essential clue for their co-localization.
Compared to the local approaches, the global algorithms consistently achieve a superior performance.

Background
Most of the eukaryotic biological processes are carried
out by the proteins in a specific compartment or orga-
nelle within the cell. Hence, the knowledge of subcellular
localizations for an uncharacterized protein provides an
insight into the understanding of its function, and thus a
guideline for further investigations. With the advent of
the high-throughput techniques, the number of newly
identified proteins has been increasing explosively. How-
ever, although some experimental technologies [1,2] have
been developed to identify the subcellular localizations of
the proteins, the laboratory techniques to annotate the
proteins still fall far behind the rapid accumulation of the

protein sequences. As a result, a variety of computational
methods have been ongoing proposed, most of which
rely on an individual protein’s characteristics, e.g. amino
acid composition [3-6], physio-chemical properties [5,6],
structures [6], and some other character signals [7-9].
Recent studies found that protein interactions in human

[10,11], fruitfly [12] and yeast [1,13], are closely related to
the localization of proteins. In other words, to interact
with each other, proteins necessarily share a common sub-
cellular localization, or an interface between two physically
adjacent compartments, at least transiently or condition-
ally. Specifically, 76% of interactions occurred between
proteins located in the same subcellular localizations in a
yeast PPI dataset [13], while 52% interactions involved in
co-localized proteins were found in human PPI networks
derived from public databases and literature curation [14].
Hence, the large amount of proteomic data found in
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previous research become another important resource for
protein subcellular localization prediction. To the best of
our knowledge, no systematic study has been implemented
towards this direction except for a few seminal investiga-
tions based on simple heuristic rules [13,15,16].
Another drawback of the previous approaches [3-5,7-9]

is that they focused on the “mono-localization” case in
which a given protein is assumed to reside in only one
subcellular localization and thus all the multiple-localiza-
tion proteins were ruled out from the studies. But the
truth is that proteins may often simultaneously exist in,
or migrate between two or more different subcellular
compartments. For example, in the Yeast GFP Fusion
Localization database [17], of the 3999 yeast proteins
with known localizations, 1247 (31.2%) bear the feature
of “multiplex localization”. Taken together, all the rea-
sons motive us to carry out a systematic study for asso-
ciating proteins with multiple localizations based on the
PPI network. From a machine learning point of view,
classifying nodes in a partially labeled network can be
viewed as a graph-based semi-supervised learning pro-
blem [18] in which the key idea is to exploit both labeled
and unlabeled data by leveraging the relationships pro-
vided by the edges. As a proof-of-concept, we introduce
four methods as well as their variants, which were origin-
ally proposed for inferring protein functions from the
PPI networks. Typically, these computational methods
basically utilize the “guilt-by-association” principle, which
transfers annotations among neighbor nodes in the PPI
network, assuming that nodes that are located close to
each other tend to share the same functional categories
[19]. Two of them, Majority [13] and c2-score [20],
belong to the neighborhood counting method that relied
on the local structure of the given PPI network. By con-
trast, GeneMultiCut (GMC) [21] took the full structure
into account by utilizing cut-based methodology so as to
minimize the number of times that different annotations
are associated with neighboring proteins. In addition,
another algorithm, called FunFlow [22], considered both
local and global e ects through simulating the spread
over time of “functional flow” through the network. See
Methods section for more details. Technically, these
methods can be applied to predicting subcellular localiza-
tion of proteins.
The underlying rationale of our study is that physical

interactions among proteins may act as an important
hint for co-localization. This hypothesis has not yet been
verified systematically and quantitatively except for sev-
eral preliminary intuitive validations, either experimental
[1,10-13] or computational [15,23]. To make our study
self-consistent, we compile a Saccharomyces cerevisiae
PPI network, consisting of 3179 proteins with 12413
interactions, from BioGRID database (version 3.1.73,
released 25-Jan-2011) [24] and use the reliability [22] as a

metric to quantitatively verify this hypothesis. Our results
indicate that a pair of proteins physically interacting with
each other is much more likely to share a common sub-
cellular localization than two “randomly chosen” pro-
teins. With these results, we systematically analyze the
four aforementioned algorithms by performing a large-
scale cross validation on this PPI network and comparing
their predictions for 22 protein subcellular localizations.
The global methods, GenMultiCut and FunFlow always
achieve a superior performance than the local counter-
parts except for two localizations involving protein trans-
port and secretion, i.e., “ER to Gogi” and “lipid particle”.
In addition, we find that none of methods assign proteins
to “bud”. Therefore, we design case studies for these loca-
lizations, and discover that such predictions are consis-
tent very well with the neighborhood topologies of the
proteins which were experimentally annotated with these
specific localizations. Furthermore, we build an ensemble
classifier based on these four approaches and annotate
529 unlabeled and 137 ambiguous annotated proteins
with multiplex subcellular localizations. Fortunately,
most of these assignments have been previously charac-
terized in UniProt (release 2011-03) [25] and SGD [26]
database.

Results and discussion
Yeast PPI network and protein subcellular localizations
The yeast PPI network contains 3179 vertices correspond-
ing to unique proteins, and 12413 edges corresponding to
the unique interactions (see Additional File 1 for the full
list). The Yeast GFP Fusion Localization database collected
6234 budding yeast proteins which are experimentally clas-
sified into 22 distinct subcellular localizations. After
filtering out those not in the previous PPI network, 529
proteins are of no subcellular localization annotation, and
137 proteins are annotated with ambiguous localizations
(see Additional File 2 for the statistics). We call these 666
proteins as “uncharacterized”, which we need to predict in
the subsequent sections. The subcellular localization infor-
mation of the 2513 annotated proteins are given in Table 1
where 1719 (68.79%) proteins were assigned to exactly one
subcellular localization, 739 (29.57%) to two, and 55 (2.2%)
to at least three.

Physical interaction implies co-localization
Our study is built upon the assumption that proteins
physically interacting with each other are likely to share a
common subcellular localization. To verify this hypoth-
esis systematically and quantitatively, we split the protein
interaction data set into 28 groups according to different
experiment systems and throughput levels (Methods).
For each group, we count the fraction of interaction pairs
that share at least one subcellular localization and more
than two localizations, respectively. The former is used to

Jiang and Wu BMC Bioinformatics 2012, 13(Suppl 10):S20
http://www.biomedcentral.com/1471-2105-13-S10-S20

Page 2 of 15



denote the reliability of such interactions (see Methods).
The results are summarized in Table 2. From Table 2, we
can clearly see that for each group of experiments, the
reliability is around 0.4 − 0.6. This discovery is consistent
well with the previous studies [13,15].By contrast, the
number of interaction pairs that share more than two
common localizations dramatically dropped to, say,
about 5% for all the experiments (Table 2). This phenom-
enon can be explained as follows: Proteins found in more
than two subcellular localizations often exist at or
migrate between these compartments involved in various
biological processes at different time points or under dis-
tinct environments; PPI network, however, can only cap-
ture the instantaneous interactions among proteins. We
also calculate the Pearson’s correlation coefficient (PCC)
between the overlap of the interacting protein pair and
the overlap of their functions. Results show that the over-
all correlation is weak (PCC = 0.09), but very significant
(p = 1.17 × 10−15 in Fisher’s exact test). As a result, we
can simply conclude that physical interaction is indeed
an important hint for co-localization of proteins.

Large-scale cross validation
We compare four graph-based semi-supervised learning
algorithms (1) Majority [13], (2) c2-score [20], (3) Gen-
MultiCut (GMC) [21] and (4) Functional flow (FunFlow)
[22] as well as their variants by performing 5-fold cross

validation on the obtained PPI network (see Method).
The overall evaluation mean average precision (MAP) of
the cross validation are shown in Table 3. From the
table, we have the following observations. The global
methods, GenMultiCut and FunFlow consistently, some-
times significantly, outperforms the local counterparts,
Majority and c2-score. In particular, MAP increased
about 30% in all the “PPI-only” and “PPI-weight” cases.
Consistent with previous work [22], MAP are improved
0.6%, 0.4% and 0.1% for Majority, GMC and FunFlow
approaches on the “PPI-weight” scenario. This indicates
that edge weights of the PPI network have a crucial
influence on the prediction results even if the improve-
ments in our study seem rather slightly. This is possibly
because that the interactions used here are required to
be supported by at least two publications. Hence, the
networks exploited in “PPI-only” and “PPI-weight”
experiments does not deviate so significantly from those
studies in [22].
We further check the average precision (AP) and F1

micro score for each subcellular localization on both
experiments. In the “PPI-only” case (Figure 1), all these
methods achieve a competitive performance for two sub-
cellular localizations “cytoplasm” and “Nucleus” with
which a large number of proteins are experimentally
annotated with. For another 11 localizations, i.e., “Bud
neck”, “cell periphery”, “Early Golgi”, “Late Golgi”,
“Microtubule”, “Mitochondrion”, “Nuclear periphery”,
“Punctate composite”, “Spindle pole”, “Vacuolar mem-
brane” and “Vacuole”, two global methods always, some-
times significantly, outperform two local approaches.
Specially, the performances obtained by FunFlow method
are improved significantly, say, about 50% for localization
“Bud neck” and about 70% for localization “Vacuole”,
respectively. However, this method failed to associate
proteins with four localizations, “Actin”, “Endosome”,
“Golgi” and “Microtubule”, for which, GMC achieve
competitive performance with or outperform these two
local methods. The superior performance of global meth-
ods is expected owing to the fact that the GMC algo-
rithm takes the full structure of the PPI network into
account, and FunFlow considers both the global and
local effects. The reason for the failure of FunFlow
method on four localizations can be explained as follow.
The GMC algorithm was implemented here through an
ILP as suggested by [22], and hence the solution is {0, 1}
vector for each localization, which means that a given
protein should be either assigned to this localization or
not. By contrast, the FunFlow method substantially
belongs to the rank-based classifier and thus the cutting
point for positive/negative predictions depends on the
corresponding threshold. According to the description in
[22], we choose 0 as the threshold, which is similar to
SVM where we use f (x) = 0 as the decision boundary.

Table 1 The classification of 2513 annotated proteins
into 22 subcellular localizations.

order subcellular localization number of proteins

1 Actin 30

2 Bud 12

3 Bud neck 51

4 Cell periphery 59

5 Cytoplasm 1195

6 Early Golgi 40

7 Endosome 39

8 Endoplasmic reticulum (ER) 125

9 ER to Golgi 6

10 Golgi 29

11 Late Golgi 36

12 Lipid particle 9

13 Microtubule 15

14 Mitochondrion 206

15 Nuclear periphery 51

16 Nucleolus 145

17 Nucleus 1071

18 Peroxisome 18

19 Punctate composite 96

20 Spindle pole 57

21 Vacuolar membrane 31

22 Vacuole 48
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However, it is not necessarily the best choice for some
localization, for example, the four localizations where the
failure occurred. How to select an appropriate threshold
to obtain a better performance is still a key open question
in rank-based multi-label learning [27], which is left for

our future study. Moreover, we are surprised to find that
two local methods as well as their variants achieved bet-
ter performance for two localizations, “ER to Golgi” and
“lipid particle” which are involved in protein transport
and secretion. Finally, it is astonishing that almost all the
methods fail to recall the “Bud” localization for proteins,
except for the c2 − 2 algorithm with a very low AP value.
We design case studies to further analyze these two
unexpected phenomena in the following section.
Similar results were observed in the “PPI-weight” sce-

nario (Figure 2). All the methods achieved good enough
performances for two localizations, “Cytoplasm” and
“Nucleus”. The global methods always outperform the
local counterparts on the 11 localizations, “Bud neck”,
“cell periphery”, “Early Golgi”, “Late Golgi”, “Microtubule”,
“Mitochondrion”, “Nuclear periphery”, “Punctate compo-
site”, “Spindle pole”, “Vacuolar membrane” and “Vacuole”.
As a benefit of weighting edges of PPI network, FunFlow
can successfully recall the two localizations, “Endosome”
and “Golgi”, which are a failure in the “PPI-only” case. But
it still su ers from the failure of associating proteins with

Table 2 Protein co-localization for 28 experiment sources in the BioGRID database.

Experiment system Throughput technique number of interactions number of common l localizations

≥ 1 (reliability) ≥ 2

Affinity Capture-Luminescence low throughput 29 0.3448 0

Affnity Capture-MS high throughput 44399 0.5343 0.0798

low throughput 5627 0.5873 0.0945

Affnity Capture-RNA high throughput 3657 0.2625 0.0014

low throughput 86 0.3140 0.0581

Affinity Capture-Western high throughput 213 0.6526 0.0798

low throughput 11257 0.5477 0.0759

Biochemical Activity high throughput 4211 0.3363 0.0686

low throughout 3427 0.4471 0.1100

Co-crystal Structure low throughput 364 0.6593 0.1703

Co-fractionation high throughput 102 0.0098 0

low throughput 585 0.4821 0.0598

Co-localization low throughput 448 0.5357 0.0588

Co-purification high throughput 11 0.8182 0.5455

low throughput 1667 0.6155 0.0834

FRET high throughput 13 0.1538 0

low throughput 121 0.6364 0.0579

Far Western low throughput 74 0.5811 0.0541

high throughput 4738 0.4185 0.0319

PCA low throughput 409 0.5232 0.0098

high throughput 9 0.3140 0

Protein-RNA low throughput 168 0.1116 0.0129

high throughput 328 0.3333 0

Protein-peptide low throughput 233 0.4940 0.0833

high throughput 27 0.5556 0.0370

Reconstructed Complex low throughput 3347 0.5088 0.0986

high throughput 6624 0.3578 0.0773

Two-hybrid low throughput 4622 0.4799 0.1019

Table 3 MAP of 5-fold cross validation for four graph-
based semi-supervised learning algorithms.

Algorithms MAP (%)

PPI-only PPI-weight

Majority 42.13 42.39

Merged 32.53 32.53

Common 24.36 24.36

c2 −1 33.07

c2 −2 19.77

c2 −3 14.59

GMC 53.43 53.66

FunFlow 62.07 62.16

The c2-score method can be only applied to “PPI-only” case. The GenMultiCut
method were performed through ILP as suggested by [22].
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two other localizations, “actin” and “Microtubule”. Similar
to the “PPI-only” case, local methods show their superior-
ity for two localizations, “ER to Golgi” and “Lipid particle”.
Unfortunately, all of the methods fail to hit the “Bud”.

Case study: “ER to Golgi” and “Lipid particle” location
According to the cross validation results, an interesting
question might be naturally raised. Is the superiority of
these local methods for two subcellular locations “ER to
Golgi” and “Lipid particle” caused by the algorithms them-
selves or the immediate neighborhood structure of pro-
teins experimentally annotated with the two specific

locations? Here, we design a case study to explore the rea-
sonable explanation. We extracted the proteins annotated
with locations “ER to Golgi” and “Lipid particle” as well as
their immediate neighbors and the physical interactions
among them (Additional File 3) from our network. The
subnetwork, containing 72 unique proteins and 204
unique interactions, is illustrated in Figure 3A. Clearly,
although the 6 proteins that were experimentally anno-
tated with “ER to Golgi” location are linked with each
other, they do not form a densely connected community.
Instead, they scatter in the subnetwork to bridge two pro-
tein cliques that localized in “endoplasmic reticulum” and

Figure 1 Average precision and F1 micro score for each subcellular localization in the “PPI-only” scenario. Different colour bars
correspond to the results obtained by different algorithms. The first row is the average precision for the first 11 subcellular localizations; the
second one is the average precision for the last 11 subcellular localizations. The similar interpenetrations are used in the third and four rows for
F1 micro score.
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“Nuclear periphery”, which is in accordance with the func-
tions of endoplasmic reticulum and Golgi apparatus. As
we all know, amino acids dehydrate to form the peptide in
the ribosome attached to the endoplasmic reticulum
where the peptide correctly coils and folds with the help
of endoplasmic reticulum molecular chaperons. After that,
the peptide is transported into Golgi apparatus to be

converted into the specific proteins via chemical modifica-
tion (e.g., Golgi glycosylation, etc.) and then these proteins
are further transported to different organelles, such as
mitochondrion, or cytomembrane through secretory gran-
ule [28]. Therefore, the proteins labeled with “ER to Golgi”
are almost secretory proteins and often physically interact
with other proteins that localized in “ER”, “Golgi” and

Figure 2 Average precision and F1 micro score for each subcellular localization in the “PPI-weight” scenario. Different colour bars
correspond to the results obtained by different algorithms. The first row is the average precision for the first 11 subcellular localizations; the
second one is the average precision for the last 11 subcellular localizations. The similar interpenetrations are used in the third and four rows for
F1 micro score.
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“Nuclear periphery” (Figure 3A). For example, the protein
YLR208W is the component of both the Nup84 nuclear
pore sub-complex and the Sec13p-Sec31p complex of the
COPII vesicle coat, required for vesicle formation in ER to

Golgi transport and nuclear pore complex organization
[26]. 4 “Nuclear periphery” proteins and 2 “Unknown”
proteins are joined together with it in a tightly-knit fashion
(the lower left corner of Figure 3A). Obviously, it will

Figure 3 Subgraphs of the PPI network in our case studies. (a) the subgraph consists of 72 proteins annotated with localizations “ER to
Golgi” and “Lipid particle” as well as their immediate neighbors, and 204 interactions between these proteins. (b) the subgraph consists of 83
proteins annotated with localizations “Bud” as well as their immediate neighbors, and 164 interactions between these proteins.
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receive more label information from 4 “Nuclear periphery”
negative samples than that from 2 “ER to Golgi” positive
samples if the global methods are applied. By contrast, if
we adopt the local method, the “ER to Golgi” location is
one of the two subcellular locations that frequently appear
among its neighbors. This subcellular localization, “Lipid
particle”, has been defined in Gene Ontology [29] as term
GO:0005811 with the description that any particle of coa-
lesced lipids in the cytoplasm of a cell and may include
associated proteins. As illustrated in Figure 3A, proteins
labeled with this localization can usually interact with pro-
teins that localized in smooth endoplasmic reticulum
(SER) whose functions include synthesis of steroids and
lipids. For instance, the protein YML008C are densely
linked to 9 proteins in “ER” and 2 proteins in “Lipid parti-
cle” to constitute a clique involved in ergosterol biosynth-
esis [26]. Hence, it is easily misclassified into “ER”
localization if the full structure is taken into account. Con-
trarily, such localization can be successfully recovered by
the local methods since they consider up to three common
localizations that the neighbors of a given protein share.
Another interesting example is the protein YBR041W, a
long chain fatty acid synthetase and transporter. In Figure
3A, it acts as a hub in the subnetwork consisting of 5 “ER”
proteins, 2 “Lipid particle” proteins and 1 “punctate com-
posite” protein involved in lipid metabolism and phospha-
tidic acid biosynthesis [26]. Thus, “ER” localization is far
more preferable to “Lipid particle” if the global methods
were adopted. From the above analysis, we assert that the
superiority of the local algorithms for these two localiza-
tions is totally due to the neighborhood topology of these
proteins annotated with corresponding localizations.

Case study: “Bud” location
We are astonished to find that none of these methods
can recover the “Bud” location for proteins. To explore
the reason, we extracted the subnetwork that comprises
the interactions of the proteins labeled with “Bud” loca-
tion and its immediate neighbors. This subnetwork con-
tains 83 proteins and 164 interactions (Additional File 4).
From Figure 3B, we see clearly that three “Bud” proteins
YBR109C, YBL085W and YHL007C play a role of hub in
the subnetwork and physically interact with a large num-
ber of proteins annotated with other locations. Therefore,
neither local methods nor global algorithms can success-
fully assign these proteins to “Bud” location. Although 7
proteins labeled with “Bud” location, YBR200W,
YPR102C, YIL068C, YPR055W, YJL085W, YLR166C,
YER008C and YDR166C are densely jointed together to
form an exocyst complex [26](the upper left corner of
Figure 3B). Unfortunately, there are 6 out of them which
were experimentally labeled with “ambiguous” in Yeast
GFP Fusion Localization database [17] and thus treated
as uncharacterized proteins in our study (Methods). In

this way, there is so few positive samples for “Bud” loca-
tion, i.e., the data sparsity problem [18] occurred in the
5-fold cross validation. This is possibly the primary rea-
son why none of these algorithms can associate proteins
with “Bud” location.

Assign subcellular localizations to uncharacterized
proteins
There are still 529 unlabeled proteins and 137 proteins
labeled with ambiguous localization in our PPI network.
Considering that the local methods and global methods
have their own particular advantages and disadvantages,
we build an ensemble classifier to assign subcellular locali-
zations to these 666 uncharacterized proteins (Methods).
According to their annotation situations in [17], the 137
ambiguous localized proteins could be divided into two
groups: (1) 60 proteins labeled with localizations besides
“ambiguous”, and (2) 77 proteins labeled with “ambiguous”
only. Our predictions for the first group are listed in Addi-
tional File 5 where we split them into four different types,
i.e., 9 Correct (15%), 21 Partial Correct (35%), 18 Mis-
match (30%) and 12 Unknown (20%). In the Correct case,
for a given protein, our predictions are strictly the same as
its another experimentally observed localizations [17]. By
contrast, in the Partial Correct case, our predictions and
the experimental observation share at least one but not
total localizations. Mismatch case means that our predic-
tions cannot be found in the experimental observation,
while Unknown case denotes that a recall failure of the
ensemble classifier occurred (Additional File 5). We only
give 5 predictions for each type in Table 4. From the table,
we can clearly see that most of our assignments are sup-
ported by the records in UniProt [25] and SGD database
[26]. It is worth noting that these four types correspond to
different situation of the match between our predictions
and experimental observation for each protein. Hence,
they do not mean that such predictions are right or
wrong. For example, protein YDR181C in the Correct
case, were labeled with “Nucleus” localization in UniProt
and SGD database which conflicts with our prediction and
experimental observation. On the contrary, our predic-
tions of two proteins YDL146W and YDR309C in the Mis-
match case, “actin”, could be found in their annotations in
SGD database (Table 4).
We incorporate the second group into 529 unlabeled
proteins since they are all lack of prior knowledge. The
total predictions for these 606 proteins are given in Addi-
tional File 6 where we also split them into four different
types, Correct, Partial Correct, Mismatch and Unknown.
These types correspond to different situation of our pre-
dictions supported by annotations in UniProt and SGD
database. That is, for a given protein, Correct case means
that every predicted localization was previously charac-
terized in these two database; in the Partial Correct case,
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Table 4 Top 5 predictions of each type for the first group of 60 “ambiguous” annotated proteins.

Type Protein
(ORF)

Annotation Prediction UniProt SGD

Correct YBL034C ambiguous spindle pole spindle
pole

Nucleus. Spindle.
cytoskeleton. kinetochore.

spindle pole body (IDA)

YDR181C ambiguous; cytoplasm; cytoplasm; Nucleus nuclear chromatin (IDA) nuclear chromosome, telomeric
region (IC)

YGR020C ambiguous; vacuolar
membrane

vacuolar
membrane

fungal-type vacuole membrane (TAS) vacuolar proton-
transporting V-type ATPase, V1 domain (TAS)

YHR119W ambiguous; nucleus nucleus Nucleus (Probable).
Chromosome (Probable).

Set1C/COMPASS complex (IPI)

YHR183W ambiguous; cytoplasm cytoplasm Cytoplasm cytoplasm (IDA)
mitochondrion (IDA)

Partial
Correct

YAL029C ambiguous;
cell periphery; bud
neck; cytoplasm;bud

Bud Bud cellular bud (IDA)
cellular bud tip (IDA)
filamentous actin (IDA)
mitochondrion (IDA)

YBR102C ambiguous;
cell periphery;
bud neck;bud

cytoplasm;
bud

secretory vesicle.
Bud. Bud neck.

cellular bud neck (IDA)
cellular bud tip (IDA)

YBR130C ambiguous;
cell periphery;
cytoplasm;bud

bud actin cap (TAS)
cellular bud tip (IDA)
cytoplasm (IDA)

YBR260C ambiguous;
cytoplasm;
bud;bud neck;

cytoplasm Cytoplasm. actin cortical patch (IDA)
cellular bud (IDA)
mating projection tip (IDA)

YFR016C ambiguous;
cytoplasm;bud

cytoplasm cellular bud (IDA)
cytoplasm (IDA)

Mismatch YAR019C ambiguous; spindle
pole

cytoplasm cellular bud neck (TAS)
spindle pole body (IDA)

YBL105C ambiguous;
cytoplasm;
bud neck;bud

actin cytoplasm (IDA)
cytoskeleton (IDA)
nucleus (IDA)

YDL146W ambiguous;
cell periphery;
cytoplasm;
bud neck;bud

actin Bud.
Cytoplasm
Bud neck

colocalizes with actin cortical patch (IDA)
cellular bud (IDA)
cytoplasm (IDA)
cellular bud neck (IDA)

YDR309C ambiguous;
cytoplasm;
bud

actin Bud neck (By similarity).
Bud tip (By similarity).
cell cortex (By similarity)
cytoskeleton (By similarity).

actin cap (TAS)
cellular bud tip (IDA)
incipient cellular bud site (IDA)
mating projection tip (IDA)
plasma membrane (IGI)

YHR158C ambiguous;
cell periphery; bud
neck; bud

cytoplasm;
nucleus

cellular bud neck (IDA)
cellular bud tip (IDA)
mating projection tip (IDA)
cytoplasm (IDA)

YCL024W ambiguous;
cell periphery; bud
neck;bud

Bud neck cellular bud neck (IDA)

cellular bud neck septin collar (IDA)
incipient cellular bud site (IDA)

YDL089W ambiguous;
nuclear periphery

Membrane nuclear periphery (IDA)

Unknown YDR069C ambiguous;
endosome

Cytoplasm.
Late endosome
membrane;

endosome (IDA)
membrane fraction (IDA)
proteasome complex (IPI)
mitochondrion (IDA)

YDR507C ambiguous;bud
bud neck;cytoplasm

Cytoplasm.
Bud neck.

cellular bud neck (IDA)

YHL019C ambiguous;
late Golgi

coated pit. AP-1 adaptor complex (IPI)

In this table, “Annotation” denotes the experimentally observed subcellular localizations in Yeast GFP Fusion Localization Database [17]. “UniProt” means the
subcellular localization in general annotation (comments) in UniProt Database [25]. “SGD” means the cellular component of GO annotation in SGD database [26].
Each type corresponds to different situation of the match between our prediction and the experiment validation.
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at least one of but not all of the predicted localizations
could be found in these two database; Mismatch case
denotes that none of our predicted localizations was sup-
ported by these two database currently; in the Unknown
case, the given protein has not been characterized in
these two database or a failure of our ensemble classifier
occurred. Similarly, we give 5 predictions for each type in
Table 5. Once again, most of the predictions are sup-
ported by the localization annotation in Uniprot and
SGD database.
There are 46 proteins annotated with more than one
subcellular localization sites in the first group. To com-
pare the performance of the ensemble classifier with the

4 basic classifiers, we summarized these predictions in
Additional File 7. Table 6 lists 5 examples of proteins
and their associated localizations predicted by different
methods. We clearly see that the localizations of these 5
proteins identified by the ensemble classifier are almost
the same as the annotations of these proteins in the
yeast GFP Fusion Localization database. By contrast, the
4 basic classifiers can only predict some of the labels.

Conclusions
Traditionally, individual proteins’ physical, chemical and
biological characteristics were the major features used
for subcellular localization prediction. Different from

Table 5 Top 5 predictions of each type for the 606 proteins without prior knowledge.

Type Protein(ORF) Prediction UniProt SGD

Correct Q0045 mitochondrion Mitochondrion inner membrane. mitochondrion (IDA)

Q0080 mitochondrion Mitochondrion membrane. mitochondrion (IDA)

YAL020C cytoplasm cytoplasm (IDA, IPI)

YAL029C bud Bud. cellular bud (IDA)
cellular bud tip (IDA)

YBL041W cytoplasm;
nucleus

Cytoplasm.
Nucleus.

endoplasmic reticulum membrane (IC)
nucleus (IC)

Partial Correct YAL042W ER Endoplasmic reticulum membrane;
Golgi apparatus membrane

ER to Golgi transport vesicle (IDA)
integral to endoplasmic reticulum membrane (IDA)
integral to Golgi membrane (IDA)

YBL088C cytoplasm;
nucleus

Nucleus.
telomere

nucleus (IC)
mitochondrion (IDA)

YBR020W cytoplasm;
nucleus

cytoplasm (IGI)

YBR072W cytoplasm cytoplasm (IDA)
nucleus (IDA)

YBR108W actin;
cytoplasm

Membrane raft;
Peripheral membrane protein

actin cortical patch (IDA)
colocalizes-with membrane raft (IDA)

Mismatch YAL003W cytoplasm ribosome (TAS)

YAL028W cytoplasm;
nucleus

Endoplasmic reticulum membrane endoplasmic reticulum (IDA)

YAL030W lipid particle Endomembrane system cellular bud neck (IDA)
endosome (IDA)
plasma membrane (IDA)
trans-Golgi network (IDA)
transport vesicle (IDA)

YAL040C cytoplasm nucleus (IDA, IMP)

YAL062W actin;
cytoplasm

nucleus (IDA)
mitochondrion (IDA)

Unknown Q0120 Mitochondrion. mitochondrion (IDA)

YAL034C nucleus

YAR018C spindle pole

YAR027W Nucleus membrane;
Cell membrane

nuclear envelope (IDA)

YAR042W Cytoplasm
Golgi apparatus membrane
Nucleus outer membrane

early endosome (IDA)
endoplasmic reticulum (IDA)
Golgi trans cisterna (IDA)
nuclear envelope (IDA)

In this table, “UniProt” means the subcellular localization in general annotation (comments) in UniProt Database [25]. “SGD” means the cellular component of GO
annotation in SGD database [26]. Each type corresponds to different situation of the match between our prediction and the experiment validation.
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this idea, we exploit another important resource, i.e.,
protein-protein interaction network, to address this pro-
blem. Our start point is the recent studies that observed
the protein interactions in many species are related to
the subcellular localization of proteins. The main contri-
bution of this paper is the application of this concept to
compare several the state-of-the-art algorithms and their
uses as building block of an ensemble classifier.
Firstly, we systematically and quantitatively validate the

hypothesis that proteins physically interacting with each
other probably share a common subcellular localization.
After that, for the first time, four graph-based semi-
supervised learning algorithms, Major, c2-score, Gen-
MultiCut and FunFlow originally proposed for function
assignment, are introduced to associate “multiplex locali-
zation” to proteins. In a large-scale cross validation test
on a yeast proteome complied from BioGRID database,
we show that, compared to local methods, the global
approaches consistently, sometimes significantly improve
the predictive performance over the 22 protein subcellu-
lar localizations, except for two locations, “ER to Golgi”
and “lipid particle”.
Considering that there are both advantages and disad-

vantages of each method, we build an ensemble classifier
to predict the subcellular localizations for 529 unlabeled
and 137 “ambiguous” annotated proteins in the PPI net-
work. Most of these predictions have been experimentally
characterized in Uniprot and/or SGD database. The
results further illustrate that physical interaction is
indeed an important hint for co-localization of proteins.

Methods
Data source
The yeast protein interaction dataset were obtained from
BioGRID database (version 3.1.73, released 25-Jan-2011)
[24]. To reduce the noise and false positive, we used only
those interactions that were determined by physical
experiment and confirmed by at least two publications.
The redundant and self-connecting interactions were

excluded and the largest connected component of the
resulted network is extracted for our studies. The labora-
torially identified localizations of proteins were down-
loaded from the Yeast GFP Fusion Localization database
[17].

Weighting edges
It is well known that the weights of the edges has a pro-
found influence on the results,even though the networks
are based on the same underlying topology [22]. In the
context of graph-based algorithms, it is possible to weigh
edges by modeling the reliability for each interaction. For
every physical interaction, the reliability is in turn based
on the experimental sources that contribute to our knowl-
edge about the existence of the interaction. To estimate
the values, we follow the approach in [22]. That is, we
separate the physical interaction data into 16 groups
according to di erent experimental systems and further
divide each group into two smaller ones if this experiment
system can be implemented as high-throughput and low-
throughput, respectively. Then, we allocate one group for
the family of all specific experiments and totally obtained
28 groups. We assume that the reliability of different
sources are independent, and thus conclude by estimating
the reliability of an interaction to be the noisy or of the
unreliability of the underlying data sources. Let ri be the
reliability of experimental source i, i.e., the fraction of
interaction pairs that are from experimental source i and
share at least one common subcellular localization. For an
interaction between a pair of proteins u and v, we com-
pute the reliability of that interaction using

ruv = 1 −
∏
i∈Euv

(1 − ri)
ni , uv

(1)

where Euv is the set of experimental sources in which
interaction between u and v is observed, and ni,uv is the
number of times which interaction between u and v is
observed from experimental source i. This treats each ri
as a probability and assumes independence; the product

Table 6 Annotation results of 5 proteins in yeast GFP Fusion Localization database by the ensemble classifier and 4
basic classifiers.

Protein Annotation Majority c2 score GMC FunFlow Ensemble

YAL029C cell periphery;bud neck;
cytoplasm;bud

bud neck; cytoplasm;
nucleus

cell periphery;
bud neck;bud

nucleus cytoplasm bud neck;cytoplasm;
nucleus;bud

YBR130C cell periphery;
cytoplasm;bud

cell periphery;
cytoplasm;nucleus

cell periphery;
bud neck;bud

cytoplasm cell periphery;
cytoplasm;bud

YBR260C bud neck; cytoplasm;bud bud neck;
cytoplasm

mitochondrion;
bud neck;nucleus

cytoplasm bud neck;
cytoplasm

YDR181C cytoplasm;
nucleus

cytoplasm;
nucleus

mitochondrion;
nucleolus;nucleus

cytoplasm;
nucleus

nucleus cytoplasm;
nucleus

YNL298W cell periphery;
cytoplasm;bud

cell periphery;
cytoplasm;nucleus

cell periphery; bud neck;
cytoplasm

cytoplasm cell periphery;
cytoplasm

Our method can predict all the labels for the proteins, while other approaches can only recover part of the labels.
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is taken over all experimental sources. We introduce
two types of schemes for applying our algorithm. The
first variant attempts to capture only qualitative func-
tional links between proteins by PPI. In the second
scheme, we weighted each edge by the above-mentioned
procedure. In this paper, we call these variants as “PPI-
only” and “PPI-weight” network, respectively.

Graph-based semi-supervised learning algorithms
For a multiplex subcellular localization prediction pro-
blem, we have K subcellular localizations and a protein set
P = {pu}u=1,...,n . The first l proteins are labeled as {y1,..., yl}
with yuk = 1 in case protein u is annotated with localiza-
tion k. Our goal is to predict the labels {yl+1,..., yn} for the
remaining unlabel proteins {pl+1,..., pn}. The PPI network
of these proteins can be represented as a graph
G = (V , E , W) , with nodes set V = L ∪ U where L cor-
responds to labeled proteins and U corresponds to
uncharacterized proteins. The element wuv of the affinity
matrix WÎℜn × n indicates the reliability of edge between
protein u and v.
Here, we introduce, analyze and compare four graph-

based semi-supervised learning algorithms. Although they
were originally proposed for inferring protein function
from PPI networks, these methods can also be applied to
our problem as far as the functions are replaced with dif-
ferent subcellular localizations. We briefly describe the
four methods in terms of our problem.
Majority
It is the simplest and most straightforward algorithm that
determines the subcellular localization of a protein based
on the known localization of proteins lying in its immedi-
ate neighborhood. We consider all neighboring proteins
and sum up the number of times each annotation occurs
for each protein. As suggested by [13], we predict a given
protein up to three subcellular localizations that are com-
mon among its neighbors. In the case of “PPI-weight”, we
simply extend the method by taking a weighted sum
instead. For each protein, the score of a particular function
is the corresponding sum. Two variants, Merged and
Common have been proposed in [15] for comparison. In
the Merged variant, for each protein, a subcellular localiza-
tion is assigned based on the union of localization annota-
tions for all its interaction partners. In contrast, for the
Common variant method, when a protein interacts with
more than one other protein only those subcellular locali-
zations common to all its interaction partners are
employed as a prediction.
c 2-score
For each protein, we consider all other proteins within a
radius s as described in [20], and then for each subcel-
lular location, we use a c2-test to determine if it is over-
represented. More precisely, for a protein u, each sub-
cellular location k is assigned a score

fuk =
(nk − ek)

2

ek
(2)

where nk is the number of proteins in the s-neighbor-
hood of protein u that resides in the subcellular com-
partments k and ek is the expected number based on the
overall frequency of subcellular location k within the
network. Neighborhoods within radius s = 1, 2, 3 are
considered, referred to as c2 - 1, c2 - 2 and c2 - 3,
respectively. However, this method can not extend natu-
rally to the case of weighted interaction graphs.
GenMultiCut
The method utilize cut-based methodology so as to
maximize the number of times the same annotations are
associated with neighboring proteins [21]. Thus, it is
global and takes the full structure of the network into
account. Precisely, it tries to maximize

∑
(u,v)∈E′

δ(fu, fv) +
∑
u∈V

hv(fv) (3)

where E’ is the set of edges incident on two unanno-
tated proteins, δ is a function that equals to 1 if x = y
and 0 otherwise, and hv(k) denotes the number of neigh-
bors of v previously annotated with subcellular localiza-
tion k. This optimization problem, which generalizes the
NP-hard problem of minimum multiway cut [22], can
be heuristically solved using simulated annealing for
multiple runs [21]. To find a good approximation, Kar-
aoz et al. [30] applied a local search procedure in which
for every vertex in turn (until convergence), the state of
the vertex is changed according to the majority of the
states of its neighbors. In addition, they also consider
the case where edges are weighted using gene expres-
sion profiles. An integer linear programming (ILP) refor-
mulation of this problem suggested by [22] allows
solving the problem in practice.
Functional flow
Nabieva et al. [22] proposed a graph-based algorithm
that simulates functional flow between proteins. Proteins
are initially assigned infinite potential for a subcellular
localization if a given protein is annotated with the spe-
cific subcellular localization and 0 potential otherwise, i.
e.,

Rk
0(u) =

{∞ if u annotated with k
0 otherwise

(4)

Labels are then simulated to flow from proteins with
higher potential to their neighbors that have lower
potential

Rk
t (u) = Rk

t−1(u) +
∑

(u,v)∈E
(gkt (v, u) − gkt (u, v)) (5)
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where gkt (u, v) represent the flow of subcellular loca-
lization k at time t from protein u to protein v. subse-
quent time step, the amount of flow is influenced by the
strength of the interactions between interaction partners
and satisfies the capacity constraints

gkt (u, v) =

⎧⎨
⎩

0 if Rk
t−1(u) < Rk

t−1(v)

min
(
wuv,

wuv

�(u.z)∈Ewuz

)
otherwise (6)

The score for associating protein u with subcellular
localization k over d iterations is calculated as the total
amount of flow that the protein received

fuk =
d∑
t=1

∑
(u,v)∈E

gkt (v, u) (7)

Figure 4 Flowchart to show the ensemble classifier. The ensemble classifier ℂ is formed by fusing four basic individual classifiers ℂ1, ℂ2, ℂ3

and ℂ4 derived from four graph-based semi-supervised learning.
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Evaluation of learning methods
We test the performance using 5-fold cross-validation.
In the “mono-localization” case, the standard evaluation
criteria is the receiver operating characteristic (ROC)
which plot the numbers of true positives (TPs) as a
function of the number of false positives (FPs) as the
scoring threshold vary. By contrast, in the “multiplex
localization” scenario, we adopt the TRECVID perfor-
mance metric [31], Average Precision (AP) to evaluate
and compare the approaches on each subcellular locali-
zation. Through averaging the AP over all subcellular
localizations, we can obtain the mean average precision
(MAP), an overall evaluation. In addition, we also use
the F1 micro score to evaluation both the precision and
recall together. The F1 micro score for the subcellular
localization k is defined as

F1(k) =
2pkrk
pk + rk

(8)

where pk and rk are the precision and recall of the
subcellular localization k, respectively. And they can be
calculated by using the following equations

pk =

∑n
i=1 yikfik∑n
i=1 fik

(9)

rk =

∑n
i=1 yikfik∑n
i=1 yik

(10)

where yik and fik are the true label and predicted label,
respectively.

Ensemble classifier and predictions
Considering that all these methods have both advantages
and disadvantages (see Methods), we build an ensemble
classifier by combining the four classifiers together so as
to make predictions for the 667 uncharacterized proteins.
This framework can reduce the variance caused by the
peculiarities of a single training dataset and hence be able
to learn a more comprehensive concept than any single
classifier. Figure 4 illustrates the basic framework for the
ensemble classifier that consists of these 4 basic classi-
fiers. The final output of the ensemble is the weighted
fusion of the outputs produced by the 4 individual classi-
fiers, as formulated below.
The ensemble classifier ℂ is represented as

C = C1 ⊕ C2 ⊕ C3 ⊕ C4 (11)

where ℂ1, ℂ2, ℂ3 and ℂ4 represent the 4 basic classi-
fiers, Majority, c2-score, GenMultiCut, and FunFlow
respectively. The symbol ⊗ denotes the fusing operator.
Thus, the process of how the ensemble classifier ℂ
works can be formulated

fuk =
4∑
c=1

wcf
c
uk (12)

where fuk is the confidence score that protein u should
be annotated with the k-th localization site, f cuk is the
prediction for protein u annotated with subcellular loca-
lization k of the basic classifier ℂc, c = 1,..., 4, and wc is
the weighting factor, which was assigned in this study
with the value of the AP obtained by the basic classifier
ℂc. In other words, we define the weighting factor as

wc =
APck∑4
c=1 AP

c
k

(13)

where APc
k is the average precision of the basic classi-

fier ℂc for subcellular localization k.

Additional material

Additional file 1: The yeast proteome complied from the BioGRID
database.

Additional file 2: The subcellular localization annotations of 3165
proteins in the PPI network collected by the Yeast Gtp Fusion
Localization database.

Additional file 3: The subnetwork consists of 72 proteins and 204
interactions.

Additional file 4: The subnetwork consists of 83 proteins and 164
interactions.

Additional file 5: Prediction for the first group of 60 “ambiguous”
proteins.

Additional file 6: Prediction for the 606 proteins without prior
knowledge.

Additional file 7: Comparison of the four basic classifiers and the
ensemble classifier for 46 “ambiguous” proteins that was
annotated with more than one subcellular localization sites.
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