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Abstract

display and organize the data in the heat map.

statistical background.

appearance and the interoperation of heat map data.

Data visualization plays a critical role in interpreting experimental results of proteomic experiments. Heat maps are
particularly useful for this task, as they allow us to find quantitative patterns across proteins and biological samples
simultaneously. The quality of a heat map can be vastly improved by understanding the options available to

This tutorial illustrates how to optimize heat maps for proteomics data by incorporating known characteristics of
the data into the image. First, the concepts used to guide the creating of heat maps are demonstrated. Then,
these concepts are applied to two types of analysis: visualizing spectral features across biological samples, and
presenting the results of tests of statistical significance. For all examples we provide details of computer code in
the open-source statistical programming language R, which can be used for biologists and clinicians with little

Heat maps are a useful tool for presenting quantitative proteomic data organized in a matrix format.
Understanding and optimizing the parameters used to create the heat map can vastly improve both the

Background

Heat maps are an efficient method of visualizing com-
plex data sets organized as matrices. In a biological con-
text, a typical matrix is created by arranging the data
such that each column contains the data from a single
sample and each row corresponds to a single feature
(e.g. a spectrum, peptide, or protein).

Correlation and interaction matrices are also common
[1,2], but anything which can be arranged as a matrix can
be displayed, for example the results from a series of sta-
tistical tests. In each case, the power of using a heat map
is its ability to display patterns in large quantities of data
without summarizing.

A heat map performs two actions on a matrix. First, it
reorders the rows and columns so that rows (and col-
umns) with similar profiles are closer to one another,
causing these profiles to be more visible to the eye.
Second, each entry in the data matrix is displayed as a
color, making it possible to view the patterns graphically.
Multiple methods exist to accomplish these two tasks. The
purpose of this tutorial is to demonstrate how these
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methods can be optimized for specific types of matrices.
To accomplish this, we describe a few common methods
in detail, and demonstrate how these methods are imple-
mented in the open-source statistical programming lan-
guage R [3]. Then, we use these methods to analyze the
Prostate2000Peaks data set, which is available in R
through the msProstate package [4]. Specifically, we
show (1) what steps are necessary to prepare the example
data set for display in a heat map, (2) how different meth-
ods compare in showing clusters of features and spectra,
and (3) how to map colors to significance results in a sys-
tematic manner that is easily interpretable. Table 1 lists
four independently maintained packages available in R
contain heat map functions. Most examples in this tutorial
are created using the heatmap.2 function in the
gplots package [5], which is the most customizable of
the heat map packages considered. For basic usage, the
heatmap function is automatically installed and loaded as
part of the stats package in R. The function heatmap.
plus, available in the package heatmap.plus[6], can
display multivariate group information and has slightly
improved layout controls. The functions heatmap_ 2 and
heatmap plus are both part of the Heatplus package
[7] in Bioconductor [8], and are located in Bioconductor
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Table 1 Heat map functions.

Function Package Version
heatmap stats [3] R version 2.12.1
heatmap.2 gplots [6] 280
heatmap.plus heatmap.plus [5] 113
heatmap 2 Heatplus [7] 1.16.0
heatmap plus Heatplus [7] 1.16.0

The heat map functions described in this tutorial.

repositories although they do not require Bioconductor to
run. These functions are based on an ancient version of
the standard heatmap function, and as such, they are the
most different from the other functions - with some draw-
backs as a result. That said, they also contain unique fea-
tures not present in the other functions. A more detailed
description of the features of each function and all code
used in this tutorial are included in Additional Files 1, 2.

Heat map components

A heat map is the combination of two independent pro-
cedures applied to a data matrix. The first procedure
reorders the columns and rows of the data in order to
make patterns more visible to the eye. The second pro-
cedure translates a numerical matrix into a color image.
Here, we use a series of illustrative examples to intro-
duce the concepts from each procedure, and show how
they impact the final heat map.

Data reordering

Data reordering plays a critical role in demonstrating
patterns in the data. The goal of data reordering is to
place columns (or rows) with similar profiles near one
another so that shared profiles become more visible.
Most heat maps use an agglomerative hierarchical clus-
tering algorithm to group the data, and display this
information using a dendrogram. An agglomerative hier-
archical clustering algorithm on 7 objects begins by con-
sidering each object to be a group of size 1. At each
step, the two closest groups are merged together, until
all # objects are in a single group.

A dendrogram is a common method of graphically dis-
playing the output of hierarchical clustering. At the bot-
tom, each line corresponds to each object (clusters of
size 1). When two clusters are merged, a line is drawn
connecting the two clusters at a height corresponding to
how similar the clusters are. The order of the objects is
chosen to ensure that at the point where two clusters are
merged, no other clusters are between them, but this
ordering is not unique. When two clusters are merged,
the choice of which cluster is on the left and which is on
the right is arbitrary.

Inherent to this procedure is the ability to measure
the similarity between clusters, that is to represent
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similarity with a measurement of distance. In fact, many
hierarchical clustering algorithms only look at distances
between data points, never at the original data. Two
types of distance measurements are important: the dis-
tance between individual observations (distance), and
the distance between two clusters of observations
(agglomeration).

Distance

A distance metric is a non-negative number which mea-
sures the difference between two objects. A value of 0
denotes no difference, with higher values corresponding
to larger differences. The most common measure of dis-
tance calculates the difference in location, with 0 indi-
cating that the two objects are at the same location.
This is known as Euclidean distance, and is the default
for all heat map functions.

deuctidean(X,y) = \/(xl - }/1)2 o+ (0 — Yn)z @

For biological data, the most dominant variation in the
data often occur across the features (rows) of the data
matrix. Normally, these differences are not interesting,
especially in LC-MS/MS data where the intensity of a pro-
tein or peptide may be due to many different causes.
Rather, it is the changes in protein (or peptide) concentra-
tion across the spectra that is of interest. Using Euclidean
distance, this variability can cause features with similar
profiles to be treated as more distant than those with dif-
ferent profiles with similar mean intensities (Figure 1).
There are two strategies used to address this issue.

One solution is to use a distance metric based on the
correlation between profiles instead of change in location.
Correlation measures the degree to which two variables
increase and decrease together, with a range of [-1,1].
More extreme values demonstrate a strong relationship
and values close to 0 indicate a weaker (or non-existent)
relationship. The sign indicates whether the two variables
increase together (positive) or one increases when the
other decreases (negative). However, by default this is not
a distance metric because it includes negative values, and
increasingly similar patterns are represented by values
further from zero instead of closer to 0. Two different
methods are used to convert correlations to correlation
distances.

deor(x,y) =1 — |C0r(x, Y)| 2)

dcor(Xr Y) =1- COI‘(X, Y) (3)

Using Equation 2, if two variables have a strong rela-
tionship, they have a closer distance, regardless of whether
they are both up-regulated together, or if one is up regu-
lated when the other is down-regulated. In Equation 3,
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(a) original scale

o>

(b) standardized scale

Measurement 1 Measurement 2

Euclidean distance

Correlation distance

original standard original  standard
A B 11.4058  0.4980 0.0177 0.0177
A C 5.4447 47830 0.3659 0.3659
A D 10.9919  5.2709 0.0155 0.0155
B C 13.1881 47092 0.4159 0.4159
B D 21.2118  5.2096 0.0615 0.0615
= D 8.5680 23094  0.3809 0.3809

correlation distance (using Equation 2) is low.

(c) distance measures

Figure 1 Distance Measures. A simulated example of distance measurements using 4 measurements on 8 samples. On the original scale,
measurements in A and C are closest in location, while A and B are the most correlated. On the standardized scale, correlation distance does
not change, but measurements A and B now are very similar in location. Note that D has a large negative correlation with the A and B, so its

two variables must have a strong positive relationship to
have a close distance: they must both be up-regulated
together. Both definitions are useful in proteomic data sets
where the actual measurements are not important, but
the change in measurement from spectra to spectra is.
Correlation distance captures whether the profile of up-
regulation and down-regulation across spectra is the same
for two proteins.

The second strategy for handling the variability across
features is to standardize each row (feature) so that it
has a mean of 0 and a standard deviation of 1. This
removes systematic differences between different fea-
tures with the same profile, so that proteins with the
same profile have a small Euclidean distance. This strat-
egy is illustrated by Figure 1(b). Standardizing the scale
does not affect the correlation distance (Figure 1(c)).

The default distance function used by all heat map
implementations is Euclidean distance, and can be mod-
ified using the distfun parameter. To change the dis-
tance function, a stand-alone (single parameter) distance
function is required, such as those included in the bio-
Dist package [9], which is a part of Bioconductor [8].
Alternatively, more flexibility can be gained by defining
the distance function manually. For example, the cor.

dist function in the bioDist package provides a
measure of correlation distance, but cannot handle any
missing data. Manually defining correlation distance
allows more flexibility in how missing data is handled.
cor.dist <- function (x) {
as.dist (1- abs (cor (t (x),
use="pairwise.complete.obs”)))

Agglomeration

Agglomeration is the process by which clusters are
merged into larger clusters: and more importantly,
determining which clusters should be merged. Unfortu-
nately, measuring the distance between clusters is more
complicated than measuring the distance between
objects. Agglomeration methods must be compatible
with the distance metric, because it is possible to merge
two objects, two clusters, or a cluster and an object at
most stages in the algorithm. It also must produce con-
sistent results: the height of a cluster should never be
smaller than the heights of the two clusters which were
merged to create it. Several algorithms have been devel-
oped which meet these properties, of which two are
especially common.
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The default metric used by the heat map function is
called complete linkage. For two clusters, X and Y, it is
calculated as

Deomplete (X,Y) = max(d(xi, Yj)) (4)

for all x; in X and y; in Y. In words, the distance
between two clusters is calculated as the distance
between the two most distant points in each cluster
(Figure 2(a)). This type of agglomeration method was
developed from networking models, where the distance
between two nodes is measured by the longest path
between them. Variations on this method use the mini-
mum or average distance between all pairs.

The Ward method [10] has a more statistical basis
(Figure 2(b)). Using this metric, the distance between
groups is defined as the amount of information lost (or
error created) by summarizing the objects into # clus-
ters. At each step, the merge is chosen which minimizes
this information loss, which is defined by the error sum
of Squares (ESS).

n nj nj 2
min ESS,ESS =) | Y "« — ) (Z x) (5)
j=1 \ i=1 i=1

where j is an index for each cluster, #; is the number
of objects in cluster j, and i is an index for each object
in cluster j.

As an example, consider Figure 2b. After the 6th step,
there are 3 clusters:

{1,3,3,4,5},{9}, {15, 16, 16} (6)

There are three ways to take these 3 clusters and
merge them into 2
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Calculating the ESS for each set of groups, we see

ESS(1,3,3,4,51,19,15,16,16) = 42.8 (10)
ESS(1,3,3,4,591,15,16,16} = 37.5 (11)
ESS9},(1,3,3,4,515,16,16) = 300.875 (12)

The second merge produces a smaller ESS, and so that
is the clustering used. In general, the Ward method
tends to produce tight concentric clusters.

The purpose of reordering the data is to cluster rows
and columns with similar profiles so that patterns
among the features and spectra can be easily observed.
The most important consideration in this process is
ensuring that the distances efficiently measure the simi-
larity across spectra in biologically meaningful ways, i.e.
without being influenced by systematic differences in
features caused by technical aspects of detection via
mass spectrometry. This can be accomplished by stan-
dardizing the data or using correlation distance. A good
agglomeration method will cause patterns to be easily
discerned across features and spectra. The same method
may not be ideal for all data sets, so it is important to
explore several to see what works best. All heat map
functions default to using the hclust function to per-
form agglomeration. Within the hclust function, the
agglomeration method is specified using the method
option, but this cannot be adjusted it is called through
the heat map. The simplest way to adjust this is to cre-
ate a wrapper for the hclust function (or any other
preferred agglomeration algorithm) with the desired
method. For example, a wrapper which calls hclust

(1,3,3,4,5},{9, 15,16, 16} (7) using the Ward method would be written as:
hclust.ward <- function (x) {
{1,3,3,4,5,9,1, {15,16, 16} ®) hclust (x, method="ward”)
’ 7 ’ 7 ’ 7 7 ’ ’ }
This function is specified using the hclustfun
{9}.{1,3,3,4,5,15,16, 16} ©) option in all heat map implementations.
— ! ‘

(a) Complete linkage

merge strategy is used.

Figure 2 Agglomeration Methods. An illustration of the difference between (a) complete linkage and (b) the Ward method of agglomeration.
When merging 3 groups into 2 using complete linkage, 16 - 9 =7 > 9 -1 =8, 50 9 is grouped with the larger numbers. Using the Ward
method, the groups {1, 3, 3, 4, 5}, {9, 15, 16, 16} produces an ESS? = 428, while {1, 3, 3, 4, 5, 9}, {15, 16, 16} produces ESS? = 37.5, so the second

(b) Ward method
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Image representation

Image representation is the process of mapping the inten-
sity range of the data to a color palette. A mapping will
assign a specific range of values to a particular color, for
example suppose we map all numbers in the range (5,8) to
green. Mappings are constant across the entire data set:
any value between 5 and 8 in all columns and all rows of
the data matrix are mapped to green. Similar to the pro-
blem with distance calculations, a mapping which uses the
original data is likely to be dominated by differences in the
range of each feature. Figure 3 shows this for the simu-
lated data presented in Figure 1. In Figure 3(a), the color
scale is mapped to the original data while in Figure 3(b),
the data has been scaled across rows before mapping to
colors. Using the original data, the most dominant charac-
teristic of the heat map is the difference in intensity across
features. Using the standardized data, these differences are
removed so that it is easy to see that rows A and B have a
similar pattern across samples. Unless the actual numeri-
cal values in the data matrix have an explicit meaning, row
scaling is usually advisable, and the heat map functions
typically do this by default.

Color mapping

Once any scaling has been performed, color mapping
assigns breaks to the data range. Breaks are the transition
points between one color in the palette and the next. By
default, the data range is dividing into n equally spaced
bins, requiring # + 1 breaks (including the minimum, # - 1
internal breaks, and the maximum). The number # varies
across the different heat map functions, but is normally
between 9 and 20. Equally-spaced breaks are ideal for
compact data sets without outliers. In many real data sets,
especially proteomics data sets, outliers can make this
representation less effective.
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In the presence of outliers, equally spaced bins are
often inefficient, as seen in Figure 4(a). In this example,
1000 data points were generated from a normal distribu-
tion with mean 6 and 20 data points were generated
from a normal distribution with mean 15. Using a color
scale with 15 equally spaced bins, 5 are completely
empty, 4 contain the 20 outliers, and 6 are used to
represent the remaining 1000 data points. An alternative
strategy is to define bins based on percentiles. Using
percentiles, breaks are chosen to ensure that approxi-
mately the same number of data points are assigned to
each bin (Figure 4(b)). While percentiles ensure that
only one bin is used to represent the outliers, it tends to
over-correct the problem: in highly populated mid-
ranges each bin is likely to cover a very small range. A
mixed strategy usually works best: the outliers are
placed into one or two bins defined by the top (and bot-
tom) p'" percentiles, while the remaining bins are
equally spaced between these percentiles. This is shown
in Figure 4c. The heatmap_ 2 and heatmap plus
functions in the Heatplus package contain the option
trim=p which creates bins for values below the p™ per-
centile and above the (1 - p) percentile. Using other
functions, these breaks must be defined explicitly.

Color mapping is controlled by the breaks option. A
vector of # + 1 monotonically increasing numbers is
required to map the data set to n colors, with the first
number no larger than the minimum value in the data set
and the last number no smaller than the maximum value
in the data set. Breaks are always applied to the final data
after any scaling has been performed, so if manually speci-
fied breaks are desired, the data matrix must be scaled
outside of the heat map function, and the breaks must be
calculated using the scaled data. By default, each heat map
function uses equally spaced breaks.

o

(a) original scale

>

m

=

{

- ] o - w @0 - «

(b) standardized scale

Figure 3 Color mapping. Heat maps produced using the simulated data from Figure 1 and Euclidean distance. In (a), the colors are mapped to
the original data, in (b) the colors are mapped to row-scaled data. Using row-scaled data, it is much easier to see that the patterns in A and B
are the same. Using the original data, the differences in intensity between each row dominate the image. By default, data is row-scaled.
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(a) Equally spaced breaks (b) Quantile breaks (c) Trimmed breaks

Figure 4 Breaks. Breaks are assigned to 1000 randomly generated N(6, 1) data points plus 20 randomly generated N(15, 1) data points using 15
bins and 3 different strategies. In the default scheme, (a), spaces the breaks evenly across the entire data range. In (b), breaks are chosen to
ensure that roughly the same number of data points fall within each break. In (c) the top 1% of the data is placed in a single bin while the

remainder is placed in equally spaced bins.

Color palette

The color palette is the set of colors used to represent
the values of the data matrix. This is normally chosen to
gradually shift from one color representing low values to
a second color representing high values, sometime by
way of a third color representing intermediate values. In
the default scheme, low values are represented by red
and high values are represented by yellow using the
heat.colors palette. This palette and a few other
popular choices are shown in Figure 5.

Several packages in R, including gplots can be used
to generate a custom color palettes by designating the
low, middle, and high colors. For example, the following
code will create a vector of 64 colors from pink to blue,
going through brown in the middle:

#Requires gplots package

my.colors <- colorpanel (64, low="pink”,

mid="brown”,
high="blue”)

While the choice of color palette is largely personal
preference, two considerations are worth mentioning.
First, although the green-black-red color scheme is extre-
mely common due to its relation to red/green channels
in microarray experiments, it cannot be interpreted by
the color blind. For this reason, it should be avoided. Sec-
ond, dark colors can be harder to distinguish from one
another compared to light colors, as evidenced by com-
paring the bluered and greenred color schemes in
Figure 5. In order to maximize the ability to distinguish

colors in midranges, using a light “mid” color may be
preferable.

The gplots package also contains pre-defined pal-
ettes particularly common in high throughput biological
experiments including redgreen, greenred blue-
red, and redblue. This author prefers the bluered
scheme, where low values are blue, middle values are
white, and high values are red. This palette will be uti-
lized throughout the remainder of this tutorial.

Extras

Although the basic components discussed above are
shared by all heat map functions, the implementation of
other features varies significantly. While it is beyond the
scope of this tutorial to provide an in-depth review of
all the features of all the functions, three features in par-
ticular require mentioning.

Color key

A color key is used to show the map between the data
range (after scaling) and the colors. For any matrix, this
can be useful in demonstrating which color(s) represent
smaller values and which represent larger values. It
becomes far more important when the data values have
an explicit meaning. For example, a correlation matrix
may contain values in the range of -1 and 1. When all the
correlations contained in the matrix are greater than 0,
using a blue-white-red color scheme without careful con-
sideration of the breaks could produce a misleading

default (heat.colors)
‘opo.colors
greenred

bluered

\

Figure 5 Color palettes. A selection of pre-defined color palettes available in R.




Key BMC Bioinformatics 2012, 13(Suppl 16):S10
http://www.biomedcentral.com/1471-2105/13/5S16/S10

visualization. By including a color key, such a mistake can
be caught and corrected.

The functions heatmap_ 2, and heatmap.2 will
produce legends as part of the heat map graphics. Color
keys can be created manually for functions which will
not create them or in cases where a non-standard key
may be desired, as shown in Figure 4.

Group labels

Group labels provide the final piece of information for a
heat map. They allow us to incorporate known group
memberships (e.g. the disease group or gender for a
sample, the protein membership of a peptide, or the
annotation of a protein) into the heat map picture. This
information can be used to determine (1) whether
groups of samples or features with the same group
membership tend to cluster together and (2) if sub-
groups of samples or features with the same group
membership have a distinct profile.

Each heat map function has unique methods available
for displaying group information, so its useful to
demonstrate each function separately. Consider a simu-
lated data set with 24 samples and 10 features. The 24
samples are each associated with two different grouping
variables: one which takes on 2 values (e.g. male/female)
and one with 3 values (e.g. 3 disease groups). For the
purpose of illustration, 5 features are associated with
each variable.

The heatmap and heatmap. 2 functions allow a
color vector with group information for columns and
rows to be added to the plot using the options ColSi-
deColors and RowSideColors respectively. In
Figure 6(a) and 6(b), ColSideColors is used to show
how samples are divided by gender Figure (a) and
group Figure (b). To display more than two groups on
the same heat map, the heatmap.plus function uses
a data matrix of colors instead of a vector in Figure 6(c).
It is possible to show colors on both the rows and col-
umns of the image, but both must be matrices with at
least 2 columns and rows equal to the rows (or col-
umns) of the image.

The heatmap_plus function can display a binary
(0,1) data frame with group information for each column
using the addvar option. Each 1 in the data frame is dis-
played as a black box under the image plot. The h option
is unique to the heatmap_ plus function. Clusters of
data points are defined by cutting the dendrogram at the
specified height, with each cluster shown using a different
color in both the dendrogram and in the group display.
This is illustrated in Figure 6(d).

Layout
The image layout determines the amount of space in the
graphics window devoted to the dendrograms, group
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labels, image matrix, color key (if applicable) and mar-
gins. The heatmap 2 and heatmap_ plus functions,
based off of an early version of the heatmap function,
provide very little control over the image layout: each
component (if available and incorporated) has a fixed
size and shape in the graphic, which cannot be modified.
For example, a data matrix with dimensions 20 x 20 and
a data matrix with dimensions 40 x 500 will both dis-
play in the heat map as a square - but the latter data
matrix will contain smaller, rectangular boxes to repre-
sent each entry. The most control is possible with the
heatmap. 2 function. In this function, it is possible to
explicitly define the fraction of space in the graphic win-
dows for each component of the heat map. By default,
heatmap.2 and heatmap.plus, fill the entire gra-
phics window, so by changing the size of the output
window or file, each cell can be made approximately
square. The heatmap function is less predictable, with
the results depending on the operating system.

Example

To demonstrate the use of heat maps in an analysis, we
will use the Prostate2000Peaks data set, which is
available in the msProstate package [4] in R. This case
study consists of 779 aligned, background-corrected, and
normalized peaks detected in 652 spectra using SELDI
TOF mass spectrometry [11]. The 652 spectra consist of
duplicate measurements on 326 serum samples from 167
subjects with prostate cancer (PCA), 77 subjects with
benign prostate hyperplasia (BPH), and 82 normal
controls.

Data preparation

Before any analysis can begin, the data must be formatted
appropriately. At the very least, the data must be orga-
nized into a # x p matrix where # is the number of spec-
tral features and p is the number of samples. This is
often insufficient to produce a good heat map, particu-
larly when the data has a non-symmetric distribution and
missing values - both common situations when working
with proteomic data. The Prostate2000Peaks data
set is typical example of this, with a log normal distribu-
tion and a large number of zeros assumed to come from
unobserved peaks.

Excluding the zeros, the range of data in the Pros-
tate2000Peaks data set is (0.006, 79.234), which
translates to a range of (-7.381, 6.308) on a log, scale.
Since log,(0) = -0, the zeros must be removed or
replaced with a different value before applying the log
transformation. Because the data reordering and color
mapping steps are performed independently, different
strategies can be used for each component of the heat
map. Initially, we replace each zero with an NA, which
designates missing data in R.
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(a) heatmap

(c) heatmap.plus

both heatmap and heatmap_plus produce a square image as output.

Figure 6 Group labels. Rows and columns can be labeled using all heat map functions, but the implementation varies. The heatmap
(@) andheatmap.2 (b) functions are limited to displaying a single color bar.The heatmap.plus (c) function can display a matrix of color bars. The
heatmap_plus (d) function can display a data frame of binary variables. While heatmap.2 and heatmap.plus can produce a rectangular image,

(b) heatmap.2

~ ™ s

(d) heatmap_plus

The distance function determines how robust the heat
map function is to missing data. At a minimum, it is
necessary to have at least one observed value in common
for two samples or features to calculate a distance. In the
Prostate2000Peaks data set, we address this by filter-
ing out all features in which over 90% of the data is miss-
ing or fewer than 4 observations are found for any of the
three disease groups. For the remaining 139 spectra, we

replace the missing data with a low value for the purpose
of calculating distances.

Example 1: Simultaneous clustering of samples
and features

In the Prostate2000Peaks data set, the primary
goal of clustering spectra is to determine whether there
is a characteristic abundance pattern in each type of
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spectra. The choice of distance function and agglomera-
tion method should be chosen to aid in this visualiza-
tion, and multiple methods can be compared. Only one
group label is available (type of spectra), so the func-
tions heatmap or heatmap.2 provide sufficient group
information. In this case, the two advantages of using
heatmap.?2 is that it provides an option to change the
cell color of missing values, and generates a color key.

While entire books have been written on the subject of
missing data (e.g., [12]), the large quantities of missing
data often encountered in mass spectrometry data make
it necessary to briefly address the issue here. Several
characteristics affect how missing data is incorporated
into the heat map. In mass spectrometry experiments,
missing data is typically assumed to result from unob-
served or unquantifiable peaks. Consequently, the
observed data and the missing data have different proper-
ties: missing data would have had lower values if it had
been observed. In a heat map, missing data affects how
the rows are standardized, the calculation of distances
between rows (and columns), and how the matrix entries
are represented in the color scheme.

Missing data affects row standardization because the
center and standard deviation of the data are determined
by the observed data. When the smallest values in the
row are unobserved, these estimates are biased. In parti-
cular, the calculated standard deviation is likely to under-
estimate the true standard deviation, which magnifies
differences in the observed data (after standardization).
Alternatively, replacing the missing data with a low value
can have a noticeable impact on the resulting heat map.
Choosing a replacement value without understanding
how the data was quantified will lead to bias. In this data
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set, the data is standardized while treating unobserved
values as missing.

To measure the distance between two objects, the two
objects must have at least 1 measurement in common. So
to measure the distance between two samples, there must
be one feature in which both samples have non missing
data, and two features must have one sample on which
both are measured. In this particular data set, this restric-
tion would greatly reduce the number of features we
could display. Since this would greatly diminish the value
of the heat map, we know that the unobserved values are
low, and we are primarily interested in visualization (and
not a statistical test), we can justify the decision to
impute the missing data to calculate the distance between
rows. The missing values are replaced with a value of -10,
which corresponds to approximately 0.001 on the origi-
nal scale (and much lower than the minimum observed
value of 0.006). Both dendrograms are created indepen-
dently of the heat map using correlation distance and the
Ward method of agglomeration. Creating them indepen-
dently allows us use the data matrix with missing values
in the call to heatmap. 2 so that we can use the options
heatmap. 2 offers for displaying missing data.

For this heat map, gray is chosen to represent missing
values. The breaks are specified to group the top and
bottom 0.2% of the data into separate bins, with the rest
of the data placed into equally spaced bins. The final
heat map is shown in Figure 7, with a larger version
available in the supplementary materials.

Interpretation
We focus on interpreting the behavior of the samples in
Figure 7, shown in columns. While it is clear that there

2y
‘

B |

L I NAR | I I TE T T
[ Y A e u y | L P T iy

] Mok ™ VRIE-AT

Figure 7 Features and samples in the Prostate2000Peaksdata set. The spectral features (rows) and samples (columns) from the
Prostate2000Peaks data set. Columns are colored according to group (green = control, orange = BPH, brown = PCA). In the heat map image,
gray indicates a missing value. The dendrograms are created using correlation-based distances and the Ward method of hierarical clustering.
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are rows with similar profiles, the absence of any addi-
tional data on the spectrum make it difficult to analyze
the features further. The colors at the top of the heat
map show the disease group (green = control, orange =
BPH, brown = PCA). It is immediately obvious that the
primary divisions between these samples is not the dis-
ease group. However, samples from the same disease
group do tend to form small clusters with other samples
from the same disease group. Furthermore, it is appar-
ent that some of the BPH and PCA samples form clus-
ters which exclude the healthy controls. Focusing on
understanding the difference between these samples and
those that cluster with healthy controls may provide
insight which can be explored further through follow-up
experiments.

Example 2: Presenting significance results

Most statistical analyses involve one or more tests of sta-
tistical significance. In a mass spectrometry data set, the
same tests is usually performed separately for each fea-
ture, or on the group of spectrum coming from the same
protein. When multiple tests are performed on each pro-
tein or feature, a heat map can be used to organize and
display the results. For the Prostate2000Peaks data
set, we use t-tests to compare the disease groups in a
pairwise fashion, with 3 comparisons total: PCA - BPH,
PCA - control, and BPH - control. Each t-test is per-
formed separately for each feature, resulting in two
results matrices: one with the p-values, and a second
with the ¢-statistics.

The most important component of presenting signifi-
cance results is the map between the matrices and the
color palette. Specifically, a 3-color palette (e.g. the blue-
white-red palette used here) should have a natural inter-
pretation: white should indicate non-significance, while
progressively more saturated values of blue and red
should indicate increased significance, with the color
dependent upon the sign of the ¢-statistic. This will pre-
vent three possible interpretation pitfalls which can
occur if the heat map is created using ¢-statistics with
equally spaced breaks, as shown in Figure 8. Finally,
when the number of degress of freedom is different for
each ¢-statistic, as is the case when the number of sam-
ples in each comparison varies, the significance cut-off
may be different for each comparison. For all of these
reasons, displaying raw ¢-statistics in a heat map is not
recommended. Instead, compute

r = —logy(p) x sgn (1) (13)

that is, taking the log of the p-value, and multiplying it
by the sign of the ¢ statistic. The first transformation
ensures that large p values (close to 1) are mapped near
0 while smaller p values are mapped to larger numbers.
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The second transformation ensures that the sign of the
new matrix is the same as the sign of the ¢-statistic.
Working with p-values has one additional benefit: multi-
ple comparison correction is easy to incorporate.
Typically, a p-value is not considered significant unless
it is below a specific threshold, where 0.1, 0.05, and 0.01
are typical starting points. Using this as a starting point,
we consider the following breaks, based on significance:

(0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 1)(14)

This color scale is independent of the distribution of
the p-values. This prevents the pitfalls discussed earlier,
and ensures that we have a standard basis for under-
standing any heat map presentation of results. The
resulting color scale is shown in Figure 9.

Creating this type of heat map requires the following
procedure:

1. Calculate the ¢-statistics and p-values, and arrange
as a matrix. Perform multiple comparison correction on
the p-values.

2. Calculate the matrix of displayed values using
Eq.13.

3. Calculate the inner breaks by applying Eq.13 to the
p-values above.

4. Calculate the minimum break as the minimum dis-
play value or -7, whichever is smaller. Calculate the
maximum break as the maximum display value or 8,
whichever is larger. Put all of these values into a single
monotonically increasing breaks vector.

5. Create the heat map. Note that the option scale="-
none” must be used. In the Prostate2000Peaks data
set, the trace option is used to emphasize how signifi-
cant some results are without affecting the color scale.

Interpretation

We see the significance results for the Prosta-
te2000Peaks data set in Figure 10. The option
trace in the heatmap.2 function produces the gray
line, which provides an alternative means of showing
the results matrix. From the picture, we see that we can
find significant differences between all three disease
groups. The bottom cluster of features have significantly
lower abundances in disease (PCA and BPH) when com-
pared to healthy subjects, thus presenting a disease sig-
nature. At the very top, we can see a second group of
features which are significantly higher in subjects with
PCA when compared to controls, and another group
which are significantly lower in subjects with BPH when
compared to controls. These two groups of features
appear to differentiate the three groups. These groups of
spectra form a starting point for further experiments
and analyses into the proteins which differentiate these
three disease groups.



Key BMC Bioinformatics 2012, 13(Suppl 16):S10 Page 11 of 13
http://www.biomedcentral.com/1471-2105/13/516/510

(b) Significant t-statistics not saturated enough

(c) Zero doesn’t map to white

Figure 8 Pitfalls in using t-statistic based breaks. Three possible problems when deriving a color scale based on t-statistics. The veritcal lines
mark (-2, +2), outside of which we will consider the t-statistics significant. In (a), marginally significant t-statistics are shown in extremely
saturated colors, because the range of t-statistics does not extend far past the significance threshold. In (b), a small number of t-statistics
extends far past the significance threshold, resulting in less significant t-statistics to appear extremely light (e.g. the colors assigned to +5 and -5).
In (c), the range of t-statistics is not symmetric around 0, resulting in slightly positive t-statistics (approximately 0 - 1) to have a light blue color
instead of white or light red.
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Figure 9 p-value based breaks. A color-scale based on p-value-based cut-offs. Increasingly more saturated hues are associated with lower p-

values. The color is based on the sign of the t-statistic.
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Figure 10 Significance results for the Prostate2000Peaksdata set. A heat map is used to display the significance results when performing
pairwise comparisons between the disease groups, using the color key in Figure 9.
A
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Additional material

Additional File 1: The file contains all the source code necessary to
reproduce the figures in this tutorial.

Additional file 2: The file summarizes features available in each
heat map function.

Additional file 3: A larger version of Figure 7.

Acknowledgements

I'would like to thank Olga Vitek for her guidance and support, without
whom this tutorial would not have been possible.

This article has been published as part of BMC Bioinformatics Volume 13
Supplement 16, 2012: Statistical mass spectrometry-based proteomics. The
full contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/13/516.

Competing interests
The author declares no competing interests.

Published: 5 November 2012

References

1. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S,
Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X,
Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B,
Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A,

Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R,
Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S,

Lam MHY, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O'Shea E,
Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ,
Emili A, Greenblatt JF: Global landscape of protein complexes in the
yeast Saccharomyces cerevisiae. Nature 2006, 440(7084).637-43 [http://
www.ncbi.nlm.nih.gov/pubmed/16554755].

2. de Folter S, Immink RGH, Kieffer M, Parenicova L, Henz SR, Weigel D,
Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC:
Comprehensive interaction map of the Arabidopsis MADS Box
transcription factors. The Plant cell 2005, 17(5):1424-33 [http://www.
pubmedcentral.nih.gov/articlerender.fcgi?
artid=1091765&to0l=pmcentrez&rendertype=abstract].

3. R Development Core Team: R: A Language and Environment for Statistical
Computing R Foundation for Statistical Computing, Vienna, Austria; 2010
[http://www.r-project.org/l.

4. Gong L, Constantine W, Chen YA: msProstate: Protein Mass Spectra Dataset
from a Prostate Cancer Study 2009 [http://cran.open-source-solution.org/
web/packages/msProstate/].

5. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T,
Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B: gplots:
Various R programming tools for plotting data. 2009 [http:/cran.r-project.
org/package=gplots].

6. Day A: heatmap.plus: Heatmap with more sensible behavior 2007.

Ploner A: Heatplus: A heat map displaying covariates and coloring clusters .

8. Gentleman RC, Carey VJ, Bates DM, Others: Bioconductor: Open software
development for computational biology and bioinformatics. Genome
Biology 2004, 5:R80[http://genomebiology.com/2004/5/10/R80].

9. Ding B, Gentleman R, Carey V: bioDist: Different distance measures .

10.  Ward JH: Hierarchical grouping to optimize an objective function. Journal
of the American Statistical Association 1963, 58(301):236.

11. Adam BI, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, Semmes O,
Schellhammer PF, Yasui Y, Feng Z, Wright GL: Serum Protein
Fingerprinting Coupled with a Pattern-matching Algorithm Distinguishes
Prostate Cancer from Benign Prostate Hyperplasia and Healthy Men
Advances in Brief Serum Protein Fingerprinting Coupled with a Pattern-
matching Algorithm Distinguishes Pr. Cancer Research 2002, 62:3609-3614.

12. Little RJ, Rubin DB: Statistical Analysis with Missing Data. 2 edition. Hoboken:
John Wiley & Sons, Inc,; 2002.

~

Page 13 of 13

doi:10.1186/1471-2105-13-516-510

Cite this article as: Key: A tutorial in displaying mass spectrometry-
based proteomic data using heat maps. BMC Bioinformatics 2012
13(Suppl 16):S10.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.biomedcentral.com/content/supplementary/1471-2105-13-S16-S10-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-13-S16-S10-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-13-S16-S10-S3.pdf
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S16
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S16
http://www.ncbi.nlm.nih.gov/pubmed/16554755?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16554755?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16554755
http://www.ncbi.nlm.nih.gov/pubmed/16554755
http://www.ncbi.nlm.nih.gov/pubmed/15805477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15805477?dopt=Abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1091765&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1091765&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1091765&tool=pmcentrez&rendertype=abstract
http://www.r-project.org/
http://cran.open-source-solution.org/web/packages/msProstate/
http://cran.open-source-solution.org/web/packages/msProstate/
http://cran.r-project.org/package=gplots
http://cran.r-project.org/package=gplots
http://www.ncbi.nlm.nih.gov/pubmed/15461798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15461798?dopt=Abstract
http://genomebiology.com/2004/5/10/R80
http://www.ncbi.nlm.nih.gov/pubmed/12097261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097261?dopt=Abstract

	Abstract
	Background
	Heat map components
	Data reordering
	Distance
	Agglomeration

	Image representation
	Color mapping
	Color palette

	Extras
	Color key
	Group labels
	Layout

	Example
	Data preparation
	Example 1: Simultaneous clustering of samples and features
	Interpretation

	Example 2: Presenting significance results
	Interpretation

	Acknowledgements
	Competing interests
	References

