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Abstract

Automated database search engines are one of the fundamental engines of high-throughput proteomics enabling
daily identifications of hundreds of thousands of peptides and proteins from tandem mass (MS/MS) spectrometry
data. Nevertheless, this automation also makes it humanly impossible to manually validate the vast lists of resulting
identifications from such high-throughput searches. This challenge is usually addressed by using a Target-Decoy
Approach (TDA) to impose an empirical False Discovery Rate (FDR) at a pre-determined threshold x% with the
expectation that at most x% of the returned identifications would be false positives. But despite the fundamental
importance of FDR estimates in ensuring the utility of large lists of identifications, there is surprisingly little
consensus on exactly how TDA should be applied to minimize the chances of biased FDR estimates. In fact, since
less rigorous TDA/FDR estimates tend to result in more identifications (at higher ‘true’ FDR), there is often little
incentive to enforce strict TDA/FDR procedures in studies where the major metric of success is the size of the list
of identifications and there are no follow up studies imposing hard cost constraints on the number of reported
false positives.
Here we address the problem of the accuracy of TDA estimates of empirical FDR. Using MS/MS spectra from
samples where we were able to define a factual FDR estimator of ‘true’ FDR we evaluate several popular variants of
the TDA procedure in a variety of database search contexts. We show that the fraction of false identifications can
sometimes be over 10× higher than reported and may be unavoidably high for certain types of searches. In
addition, we further report that the two-pass search strategy seems the most promising database search strategy.
While unavoidably constrained by the particulars of any specific evaluation dataset, our observations support a
series of recommendations towards maximizing the number of resulting identifications while controlling database
searches with robust and reproducible TDA estimation of empirical FDR.

Introduction
Mass spectrometry (MS) based proteomics studies often
generate millions of tandem mass spectra. These spectra
are usually assumed to come from peptides and typically
interpreted using a database search engine. There are
numerous database search engines available such as
SEQUEST [1], Mascot [2], X!Tandem [3], OMSSA [4],
InsPecT [5] and MS-GFDB [6]. These engines take a set
of spectra and a protein database as the input and output
peptide-spectrum matches (PSMs) by scoring each spec-
trum against the peptides in the database and assigning
the best-scoring peptide as a “match” to each spectrum.
In most experiments, only a small portion of these PSMs
(20% - 40%) represent plausible matches [5-7]. Therefore,
identifying correct PSMs among a mixture of correct and

incorrect PSMs is an important problem in MS based
proteomics. Since confidence in PSM assignments is
usually represented as a score, this problem is equivalent
to setting up a score threshold where PSMs with scores
above the threshold are regarded as positive discoveries
(or positive PSMs) while the remaining are regarded as
negative discoveries (or negative PSMs). The score
threshold must be appropriately determined because low
thresholds lead to excessive false positives and high
thresholds lead to too many false negatives.
The target-decoy approach (TDA) [7,8] is currently the

most widely used strategy to address this problem. Given
a protein database (target database), this approach
requires that spectra be searched not just against the tar-
get database but also against a decoy database. A decoy
database is a reversed, shuffled (e.g., permuted) or other-
wise randomized database of the same size as the target
database. It is assumed that the positive PSMs from the
decoy database (decoy PSMs) are false and that the
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expected number of decoy PSMs equals the expected
number of false positive PSMs from the target database.
Thus, by counting the number of decoy PSMs, one can
estimate the False Discovery Rate (FDR) - the proportion
of false PSMs among positive PSMs. Estimating FDRs via
TDA is currently the standard in high-throughput MS
studies because it is simple, easily implementable, and
widely applicable to various experimental set-ups while
successfully distinguishing correct and incorrect PSMs.
However, there is no consensus on the exact procedure

for TDA - a worrisome situation since the quality of the
resulting FDR estimates and the number of resulting
PSMs are strongly dependent on such procedural varia-
tions. For example, there are multiple methods to gener-
ate decoy databases (e.g., it could be a reversed, shuffled
or randomized version of the target database) but it
remains an open problem to determine the optimal way
of generating and using decoy databases. Also, it is ques-
tionable whether to search the target and the decoy data-
base separately or to search the concatenated target and
decoy databases. Furthermore, even after the score
threshold is determined, it is ambiguous what formula to
use to calculate the FDR. Because of all these “variations”,
the same FDR (e.g., FDR 1%) may mean a different confi-
dence level depending on the specific procedure, and it is
often difficult to determine how much trust can be
allowed for FDRs reported in research papers on MS
studies.
We compare various TDA procedures and assess them

in terms of how accurate they estimate the “true” FDRs
and how many PSMs they identify at a fixed true FDR.
We also show how different database search parameters
such as the the choice of the protein database, parent
mass tolerance and enabling/disabling two-pass searches
affect the accuracy of FDR estimation and the resulting
set of PSMs. Based on our results, we recommend a set
of TDA guidelines and search parameters towards
improving the accuracy of FDR estimates while also pro-
ducing more resulting PSMs.
We used X!Tandem [3] and MS-GFDB [6] as the data-

base search engines. The conclusions presented here
should apply to most other database search engines but
may vary depending on particular implementation and
design details.

Materials
MS/MS spectra
The main MS/MS spectra dataset used in this study was
the LTQ-Orbitrap dataset in Mix 7 from the ISB Standard
Protein Mix Database [9]. It consists of 47,292 spectra
(denoted by ISB-All) from 10 replicates generated from
tryptic digests of 18 proteins called ISB Standard Protein
Mix. For most experiments, a subset containing 4,966
spectra from replicate 02 (denoted by ISB-02) were used.

We also analyzed the Study 6 LTQ-XL-Orbitrap@86
data set generated by the clinical proteomic technology
assessment for cancer (CPTAC) network [10]. This data-
set consists of LTQ-Orbitrap spectra from tryptic
digests of yeast proteins with Sigma UPS1 spiked in.
From the original dataset, we took 124,193 spectra to
form Y-All dataset and further randomly selected 9,758
spectra out of Y-All dataset to form Y-Small dataset.
To compute factual FDRs (to be defined below), we

additionally obtained a dataset of monoclonal antibody
spectra from a previous protein sequencing study by
Bandeira et al. [11] consisting of 19,982 spectra (denoted
by AB-All). Among them, 6,319 Spectra from trypsin
and chymotrypsin digests (denoted by AB-TC) were
mainly used for most experiments.

Protein database
We used the protein database of ISB Standard Protein
Mix (18 proteins, 7,440 amino acids, denoted by ISB)
for the ISB-All and ISB-02 datasets and the yeast data-
base (from Ensembl ftp://ftp.ensembl.org, release 60,
6696 proteins, 3,011,992 amino acids, denoted by Yeast)
for the Y-All and Y-Small datasets.
We also obtained an Arabidopsis thaliana database from

the Arabidopsis Information Resource (TAIR) (http://ara-
bidopsis.org, release 9, 33,410 proteins, 13,468,323 amino
acids). The Arabidopsis thaliana database (denoted by AT)
was also used to compute factual FDRs.

Database search engine
We used X!Tandem (version 12/01/2011) [3] and MS-
GFDB (version 01/06/2012) [6] as database search
engines. For both engines, the parent mass tolerance
was set to either 2.5 Da or 30 ppm (parts per million)
according to the experiment (see Table 1). When the
parent mass tolerance was 30 ppm, we allowed isotopic
mass errors (i.e., +1, +2 and -1 Da errors) in the parent
mass because such errors are very common for LTQ-
Orbitrap spectra. We used the spectral probability for
MS-GFDB and the hyper score for X!Tandem to score
PSMs unless otherwise noted. Only the best match per
spectrum was reported and no spectrum quality filter
was used. For X!Tandem, the fragmentation ion toler-
ance was set to 0.5 Da and the two-pass search was
deactivated.

Methods
The most commonly used TDA procedure (denoted by
Standard TDA Protocol) is as follows:
Given a set of spectra, a protein database (target data-

base) and a database search engine,

1. Generate a decoy database by reversing the target
database.
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2. Concatenate the target and decoy database and
run a database search engine against the concate-
nated database. For each spectrum, consider only
the best scoring (either target or decoy) PSM.
3. Sort all PSMs in decreasing (or increasing) order
of match scores (or E-values/p-values).
4. For a threshold t, estimate the FDR as Ndecoy/Ntar-

get where Ntarget (Ndecoy) is the number of positive
target (decoy) PSMs (i.e., PSMs with scores better
than t).

5. Report the set of target PSMs with scores better
than t and a corresponding FDR.

Although the above TDA procedure is frequently used,
many researchers do not follow exactly these steps. For
example, instead of using the reversed database, some
generate decoy databases by shuffling protein sequences
in the target database [5] or enumerating amino acids
randomly. Also, some prefer to run database searches
separately for the target and decoy database and consider

Table 1 Details on experiments performed

Search#1 Spectra2 Database3 Decoy4 PMTol8 Note11

I-1 ISB-02 ISB Rev5 2.5 Da9

I-2 ISB-02 ISB Shfl6 2.5 Da

I-3 ISB-02 ISB+Yeast Rev 2.5 Da

I-4 ISB-02 ISB+Yeast Shfl 2.5 Da

I-5 ISB-02+AB-TC ISB+Yeast Rev 2.5 Da

I-6 ISB-02+AB-TC ISB+Yeast Shfl 2.5 Da

I-7 ISB-02+AB-TC ISB+AT Rev 2.5 Da

I-8 ISB-02+AB-TC ISB+AT Shfl 2.5 Da

I-9 ISB-02 ISB Sep.Rev7 2.5 Da

I-10 ISB-02+AB-TC ISB+Yeast Sep.Rev 2.5 Da

I-11 ISB-02+AB-TC ISB+AT Sep.Rev 2.5 Da

I-12 ISB-02 ISB+Yeast Rev 2.5 Da Alt.Formula12

I-13 ISB-02+AB-TC ISB+Yeast Rev 2.5 Da Alt.Formula

I-14 ISB-02+AB-TC ISB Rev 2.5 Da

I-15 ISB-02+AB-All ISB+Yeast Rev 2.5 Da

I-16 ISB-02 ISB Rev 30 ppm10

I-17 ISB-02+AB-TC ISB+Yeast Rev 30 ppm

I-18 ISB-02+AB-TC ISB+AT Rev 30 ppm

I-19 ISB-02 ISB Rev 2.5 Da Alt.Score13

I-20 ISB-02+AB-TC ISB+Yeast Rev 2.5 Da Alt.Score

I-21 ISB-02+AB-TC ISB+AT Rev 2.5 Da Alt.Score

I-22 ISB-All+AB-TC ISB+Yeast Rev 2.5 Da

I-23 ISB-All+AB-TC ISB Rev 2.5 Da

Y-1 Y-Small+AB-TC Yeast+AT Rev 30 ppm

Y-2 Y-Small+AB-TC Yeast+AT Shfl 30 ppm

Y-3 Y-Small+AB-TC Yeast+AT Sep.Rev 30 ppm

Y-4 Y-Small+AB-TC Yeast+AT Rev 30 ppm Alt.Formula

Y-5 Y-Small+AB-TC Yeast Rev 30 ppm

Y-6 Y-Small+AB-All Yeast+AT Rev 30 ppm

Y-7 Y-Small+AB-TC Yeast+AT Rev 30 ppm Alt.Score

Y-8 Y-All+AB-TC Yeast+AT Rev 30 ppm

Y-9 Y-All+AB-TC Yeast Rev 30 ppm

Y-10 Y-Small+AB-TC Yeast+AT Rev 30 ppm TwoPass(1)14

Y-11 Y-Small+AB-TC Yeast+AT Rev 30 ppm TwoPass(2)

Y-12 Y-Small+AB-TC Yeast+AT Rev 30 ppm TwoPass(3)

Y-13 Y-Small+AB-TC Yeast+AT Rev 30 ppm TwoPass(4)

For each of the searches I-1 to I-23 (Y-1 to Y-13), we counted the numbers of positive target PSMs (Ntarget) at factual/empirical FDR 5% (1%) and computed the
corresponding factual/empirical FDR of the positive PSMs. The underlined characters represent either dummy spectra, dummy databases, or dummy tolerance.
1Search identifier; 2MS/MS spectra used; 3Protein database; 4Decoy database type; 5Reversed decoy database; 6Shuffled decoy database; 7Separate search against
target and reversed decoy database; 8Parent mass tolerance; 9Dalton; 10Parts per million; 11Additional note; 12Alternative formula was used to calculate FDR (see
text); 13Alternative score was used to calculate FDR (see text); 14Two-pass searches (see text and Table 11).
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two PSMs per spectrum (one from the target database
and the other from the decoy database). Moreover, some
use 2 · Ndecoy/(Ntarget + Ndecoy) instead of Ndecoy/Ntarget as
the formula to compute FDRs. Depending on such
choices, the set of resulting PSMs is very likely to vary.
In addition to the specific TDA procedure, one may get

significantly different resulting PSMs depending on the
choice of the protein database and search parameters.
Below, we evaluate how these factors affect FDR estima-
tion and change the resulting set of PSMs. In particular,
we address the following cases/issues:

1. How to construct a decoy database: reversed vs
shuffled
2. Concatenated vs separate decoy
3. Choice of formula to calculate FDR
4. Impact of the size of the database
5. How the number of spectra affects the results
6. Expected gains from accurate peptide parent
masses
7. How the score normalization affects the results
8. PSM-level vs Peptide-level FDR
9. Two-pass searches and TDA

To address these issues, we designed a set of experi-
ments by varying the set of spectra, protein database, TDA
procedure, and search parameters (Table 1). For each
experiment we measure how accurate the FDR estimation
is by measuring the factual FDR. The factual FDR is
defined as follows: If we are given a dataset where all spec-
trum identifications are perfectly known (a fully-labeled
approach) in advance then one can easily validate the FDR
estimated via TDA (denoted by empirical FDR) because it
would be possible to compute the “true” FDR. But since
such a dataset is not readily available, similar to Granholm
et al. [12], we use a semi-labeled approach where false
PSMs (termed dummy PSMs) are intentionally introduced
using the following three ways.

1. Dummy databases: let dummy proteins be the pro-
teins from which the searched spectra are not sup-
posed to be generated. The dummy database is a
database containing only dummy proteins. For exam-
ple, consider the search of ISB-All spectra against ISB
+Yeast (i.e., a database formed by concatenating ISB
and Yeast databases) or ISB+AT database. We do not
expect any significant match between the spectra in
ISB-All and proteins in Yeast or AT databases. Thus,
in this case, Yeast or AT databases are dummy data-
bases for ISB-All dataset. All PSMs matched to
dummy databases are dummy PSMs.
2. Dummy spectra: the dummy spectra are the spectra
that are not supposed to be matched to the database
searched against. For instance, we sometimes

appended the spectra from either AB-TC or AB-All
to ISB-02, ISB-All, Y-Small, or Y-All datasets and
searched the merged datasets. Since we do not expect
any significant match between the spectra in AB-All
or AB-TC dataset and any protein sequence database
used, AB-TC or AB-All spectra are dummy spectra
for all experiments. All PSMs from dummy spectra
are dummy PSMs.
3. Dummy parent mass tolerance: all spectra used in
our experiments were obtained with a LTQ-Orbitrap,
using an MS acquisition mode where the parent mass
error is usually less than 30-50 ppm . Although run-
ning database searches with parent mass tolerance 50
ppm would be enough to find most correct matches,
we used 2.5 Da parent mass tolerance (dummy toler-
ance) instead. Dummy parent mass tolerance was
applied only to the experiments for the ISB-All and
ISB-02 datasets. All PSMs with parent mass error lar-
ger than 50 ppm are dummy PSMs.

Note that all dummy PSMs are regarded as false but
not all remaining PSMs (termed putative PSMs) are cor-
rect. To compute FDR (either empirical or factual) we
have to estimate the number of false positive target
PSMs. In case of empirical FDR, we estimate this number
by the number of decoy PSMs (Ndecoy) without distin-
guishing between dummy and putative PSMs. In case of
factual FDR, however, we use the information that posi-
tive dummy PSMs always represent false positive PSMs;
the total number of false positive PSMs is thus the num-
ber of positive dummy PSMs (denoted by Ndummy) plus
the number of false positive PSMs among the putative
PSMs (denoted by Nfalse). Since Ndummy is given, we only
need to estimate Nfalse.
To estimate Nfalse, we use the Standard TDA Protocol.

The inputs to the Standard TDA Protocol are the spectra
of putative PSMs and the target database excluding any
dummy proteins. The decoy database is generated by
reversing this target database. For search, the parent
mass tolerance is set to 50 ppm, and Nfalse is given by the
number of positive decoy PSMs in this search. The fac-
tual FDR is then defined by

Ndummy + Nfalse

Ntarget
.

where Ntarget denotes the number of positive target
PSMs (including dummy PSMs). Since Nfalse is estimated
via TDA, the factual FDR also may suffer from the bias
introduced by TDA as the empirical FDR does. How-
ever, since the factual FDR is using “extra information”
of dummy PSMs (not available to the database search
engine nor to TDA), it is expected to be closer to true
FDR than empirical FDR in particular when the number
of dummy PSMs (Ndummy) is large. The definition of the
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factual FDR for two-pass searches is more complicated
and is discussed below.
For each experiment, we fixed the factual/empirical

FDR thresholds to 5% for searches I-1 to I-23 and 1%
for searches Y-1 to Y-13 and reported the corresponding
empirical/factual FDR values and the number of positive
target PSMs (Ntarget). Also for each experiment, we eval-
uated how significant the difference between empirical
FDR and factual FDR is using the Fisher’s exact test
[13]. The 2×2 tables given in Table 2 were used for the
Fisher’s exact test. When the p-value of the Fisher’s
exact test (the Fisher’s p-value) for a specific experiment
was smaller than 5%, we regarded the empirical FDR for
the experiment as inaccurate.
Note that we do not aim to compare database search

engines (i.e., MS-GFDB vs. X!Tandem). We only evalu-
ate how FDR estimation via TDA is reliable and how
the number of positive PSMs (or peptides) changes for
different search strategies with different parameters or
protocols.

Results
How to construct a decoy database: reversed vs shuffled
The decoy database can be generated by reversing the
target proteins (reversed), shuffling amino acids of pro-
teins (shuffled), or enumerating amino acids randomly
(randomized) [7]. To avoid biased FDR estimates, it is
important for decoy PSMs to have a score distribution
similar to that of false target PSMs. To meet this condi-
tion, the decoy database should presumably preserve the
amino acid composition (the numbers of individual
amino acids) and the portion of shared peptides between
different proteins in the target database. Additionally, for
each spectrum, the number of target and decoy peptides
matching the parent mass (within the chosen tolerance)
should be similar.

The reversed database meets all these conditions when
fully-tryptic peptide digestion is not enforced. Moreover,
there is only one possible reversed database for every
target database. This is beneficial because it removes the
dependence on the randomization procedure and makes
the FDR calculation deterministic and reproducible.
Moreover, shuffled or randomized databases usually do
not contain as many shared peptides (peptides that are
shared between multiple proteins) as target protein
database. This makes the actual search space in the
decoy database larger than the search space in the target
database, thus resulting in conservative FDR estimates
[8]. Elias and Gygi noticed this problem and suggested a
possible correction procedure [8] but most labs using
shuffled databases still do not apply any correction.
To assess the impact of this choice of reversed vs

shuffled decoy databases, we performed various pairs of
searches (Table 3). For each pair of searches, the search
conditions differ only in the use of decoy databases -
reversed or shuffled. Except the databases, all searches
followed the Standard TDA Procedure. Note that we
did not apply the correction suggested by Elias and Gygi
in the case of shuffled database search.
Conclusion
No notable difference was observed between both
approaches. Regardless of the database, both approaches
reported similar numbers of PSMs at a fixed factual FDR
(5% or 1%). The Fisher’s p-value exceeded 5% for all
cases; in contrast with popular belief, we did not observe
a conservative estimation of FDR with shuffled decoy
when compared to the reverse decoy database.
Based on these results, we would recommend the uti-

lization of reversed decoy databases rather than shuffled
decoy databases. While there was no noticeable disad-
vantage, there are several advantages of using reversed
decoy databases: it is easy to generate, deterministic,

Table 2 2 ×2 tables for Fisher’s exact test.

Estimator # positives # estimated false positives

a FactFDR1 Ntarget Ndummy + Nfalse

EmpiricalFDR2 Ntarget Ndecoy

b FactFDR Ntarget + Ndummy + Nfalse 2 · Ndummy + Nfalse

EmpiricalFDR Ntarget + Ndecoy 2 · Ndecoy

c FactPepFDR3 Ntarget peptides Ndummy peptides + Nfalse peptides

EmpiricalFDR Ntarget Ndecoy

d FactPepFDR Ntarget peptides Ndummy peptides + Nfalse peptides

EmpiricalPepFDR4 Ntarget peptides Ndecoy peptides

When the p-value of the Fisher’s exact test (the Fisher’s p-value) for a specific experiment was smaller than 5%, we regarded the empirical FDR for the
experiment as inaccurate. For most searches the definitions in (a) were used. The definitions in (b) were used only for the searches I-12, I-13, and Y-4 (i.e.,
searches using the alternative formula - see Table 5 and text). The definitions in (c) were used for experiments in Table 10 (empirical PSM-level FDR vs. factual
peptide-level FDR), and the definitions in (d) were for experiments in Table 11 (empirical peptide-level FDR vs. factual peptide-level FDR). 1factual FDR;
2empirical FDR; 3factual peptide-level FDR; 4empirical peptide-level FDR; Ntarget: the number of positive target PSMs; Ndummy: the number of positive dummy PSMs;
Nfalse: the estimated number of false positive putative PSMs; Ndecoy: the number of positive decoy PSMs; Ntarget peptides: the number of positive target peptides;
Ndummy peptides: the number of positive dummy peptides; Nfalse peptides: the estimated number of false positive putative peptides; Ndecoy peptides: the number of
positive decoy peptides.
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reproducible and maintains the amino acid composition
and distribution of shared peptides/parent masses
between target and decoy databases.

Concatenated vs separate decoy
Given target and decoy databases, it is common to con-
catenate them and search the concatenated database [8]
but some groups prefer to search them separately [14].
The difference between the two approaches is whether
to allow competition between target PSMs and decoy
PSMs for every spectrum. The separated search does
not allow this competition in that all positive decoy
PSMs are considered for FDR calculation even if the
same spectra of the PSMs match to the target database
with better scores.
No competition in the separated searches means rather

conservative FDR estimation because the fraction of false

PSMs among all target PSMs is not counted (denoted by
PIT in [14], but conventionally by π0) [14,15]. Several
methods to estimate π0 were suggested (e.g., [16]), but
we did not apply them for our experiments.
We compared both approaches using pairs of searches

that differ only by the database search method - concate-
nated or separated search. For all searches, the standard
TDA procedure was followed except step 2 for the sepa-
rate search. For separate searches, the target and decoy
databases are searched separately and the best scoring
PSM is selected from each database and used for the
empirical FDR calculation. Table 4 shows the results.
Conclusion
The results show that the separate-decoy searches tend
to estimate FDR conservatively. In particular for small
databases, the separate-decoy searches resulted in more
conservative FDR estimation than concatenated-decoy

Table 3 Comparison between searches using reversed or shuffled decoy databases

Search# Spectra Database PMTol Decoy EmpiricalFDR1 fixed FactFDR2 fixed

N3
target FactFDR(%) p-value(%) 4 Ntarget EmpiricalFDR(%)

I-1 ISB-02 ISB 2.5 Da Rev 2329/1009 5.8/4.4 10.9/30.9 2279/1024 3.9/5.7

I-2 ISB-02 ISB 2.5 Da Shfl 2339/1023 6.0/4.6 7.2/38.6 2279/1025 3.6/5.1

I-3 ISB-02 ISB+Yeast 2.5 Da Rev 1578/602 4.7/5.1 40.8/50.3 1583/596 5.1/3.9

I-4 ISB-02 ISB+Yeast 2.5 Da Shfl 1597/577 5.0/4.2 50.2/34.5 1589/588 4.8/5.6

I-5 ISB-02+AB-TC ISB+Yeast 2.5 Da Rev 1490/569 5.0/5.8 50.2/31.2 1480/553 4.5/4.3

I-6 ISB-02+AB-TC ISB+Yeast 2.5 Da Shfl 1488/530 5.0/4.0 50.2/28.7 1478/550 4.9/5.5

I-7 ISB-02+AB-TC ISB+AT 2.5 Da Rev 1320/441 4.6/4.1 36.6/38.0 1342/464 5.8/7.3

I-8 ISB-02+AB-TC ISB+AT 2.5 Da Shfl 1287/441 3.4/4.1 7.5/38.0 1342/464 6.8/7.3

Y-1 Y-Small+AB-TC Yeast+AT 30 ppm Rev 2574/1988 1.0/1.3 50.1/22.7 2588/1759 1.0/0.5

Y-2 Y-Small+AB-TC Yeast+AT 30 ppm Shfl 2554/1940 0.9/1.2 38.7/27.3 2620/1758 1.1/0.6

All searches followed the standard TDA procedure except the step 2 for shuffled database searches. The results in columns labeled “FDR fixed” are obtained at
empirical FDR threshold of 5% (the searches I-1 to I-8) or 1%(the searches Y-1 to Y-2). The results in columns labeled “FactFDR fixed” are obtained at factual FDR
threshold of 5% (the searches I-1 to I-8) or 1%(the searches Y-1 to Y-2). The underlined characters represent either dummy spectra, dummy databases, or dummy
tolerance. The first numbers in Ntarget/FactFDR/FDR/p-value fields are from MS-GFDB, and the second from X!Tandem. Note that we do not aim to compare
database search engines (i.e., MS-GFDB vs. X!Tandem). We only evaluate how FDR estimation via TDA is reliable and how the number of positive PSMs (or
peptides) changes for different search strategies with different parameters or protocols.

In contrast with popular belief, we did not observe a conservative estimation of FDR with shuffled decoy when compared to the reverse decoy database.
1the empirical FDR; 2the factual FDR; 3 the number of positive target PSMs; 4 Fisher p-value (see Table 2) - Fisher p-values less than 5% were emphasized with
bold fonts.

Table 4 Comparison between concatenated-decoy searches and separate-decoy searches

Search# Spectra Database PMTol Decoy EmpiricalFDR fixed FactFDR fixed

Ntarget FactFDR(%) p-value(%) Ntarget EmpiricalFDR(%)

I-1 ISB-02 ISB 2.5 Da Rev 2329/1009 5.8/4.4 10.9/30.9 2279/1024 3.9/5.7

I-9 ISB-02 ISB 2.5 Da Sep.Rev 2159/941 2.1/2.4 0.0/0.4 2287/1028 8.6/12.2

I-5 ISB-02+AB-TC ISB+Yeast 2.5 Da Rev 1490/569 5.0/5.8 50.2/31.2 1480/553 4.5/4.3

I-10 ISB-02+AB-TC ISB+Yeast 2.5 Da Sep.Rev 1462/504 4.6/3.6 40.3/18.7 1482/544 5.3/7.9

I-7 ISB-02+AB-TC ISB+AT 2.5 Da Rev 1320/441 4.6/4.1 36.6/38.0 1342/464 5.8/7.3

I-11 ISB-02+AB-TC ISB+AT 2.5 Da Sep.Rev 1287/453 3.4/4.9 3.7/56.1 1342/456 7.0/5.5

Y-1 Y-Small+AB-TC Yeast+AT 30 ppm Rev 2574/1988 1.0/1.3 50.1/22.7 2588/1759 1.0/0.5

Y-3 Y-Small+AB-TC Yeast+AT 30 ppm Sep.Rev 2501/1605 0.8/.0.7 33.1/28.7 2589/1759 1.4/1.5

All searches followed the standard TDA procedure except the step 2 for separate reverse database searches. The search I-9 demonstrates that the separate-decoy
searches result in more conservative FDR estimation than concatenated-decoy searches, in particular for small databases.
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searches. For instance, the Fisher’s p-value for the search
I-9 was far less than 5% for both MS-GFDB and X!Tan-
dem. This is because the π0 factor is expected to be smal-
ler for small databases than for large databases.
Thus, we recommend to use concatenated-decoy

search. Separate-decoy searches should be used with
reliable estimation of the π0 factor, in particular for
searches using small databases.
Choice of formula to calculate FDR Given the num-
bers of target and decoy positive PSMs (denoted by Ntar-

get and Ndecoy respectively), one can estimate FDR as
Ndecoy/Ntarget as in the standard TDA procedure. How-
ever, the first review on TDA by Elias and Gygi [8] sug-
gested an alternative formula: 2 · Ndecoy/(Ntarget + Ndecoy)
and both formulas are used in MS experiments (when
using separate decoy with the π0 estimation, π0 · Ndecoy/
Ntarget should be used to estimate FDR, which is
excluded because we are using concatenated decoy data-
bases). The latter formula assumes the database search
engine reports both target and decoy PSMs as positive
discoveries. However, decoy PSMs do not need to be
included in the final set of positive discoveries since
these are obviously known to be false.
To compare how the choice of formula affects the

results we modified the searches I-3, I-5, and Y-1 by
changing the FDR formula (the searches I-12, I-13, and
Y-4, respectively). For searches using the alternative for-
mula, we used the second table in Table 2 for the Fish-
er’s exact test. The comparison results are shown in
Table 5.
Conclusion
For most cases, the alternative formula (2 · Ndecoy/(Ntar-

get + Ndecoy)) resulted in conservative FDR estimation,
yielding less positive target PSMs than the original for-
mula Ndecoy/Ntarget. For example, the Fisher’s p-value
was less than 5% in the search I-12 for both MS-GFDB
and X!Tandem, indicating inaccurate FDR estimation
from the alternative formula.
Since the FDR estimation of the original formula

tends to be more accurate, we recommend using the

original formula. In fact, recently Elias and Gygi also
advocated using the original formula by stating that
“decoy hits should not contribute to the final tally of
incorrect hits since they can be easily recognized and
removed” [17].
Impact of the size of the database The choice of target
database is obviously critical in all MS experiments.
While this database should be chosen to include the
sequences of proteins contained in the sample, it should
also be as compact as possible because searching a lar-
ger database takes more time and more importantly
reduces the number of resulting PSMs by allowing more
choices for false PSMs. The former issue is well recog-
nized by the community but the latter is often not
addressed. Since larger databases increase the chances of
false matches getting high-scores, the score threshold to
determine positive PSMs at a fixed FDR also becomes
higher for larger databases containing higher propor-
tions of proteins not present in the sample.
To demonstrate the effect of database size, we ran

searches against various databases of different sizes and
compared the results (Table 6).
Conclusion
As expected, for smaller databases, TDA yielded more
resulting PSMs. The FDR estimation via empirical FDR
was reliable regardless of the database size.
Based on these results, we recommend choosing the

smallest possible database containing the sequences of
proteins presumed to be in the sample.
How the number of spectra affects the results In most
high-throughput MS experiments, only less than 40% of
all MS/MS spectra are identified. The remaining spectra
are not identified because of reasons such as signal-to-
noise ratio, poor peptide fragmentation, non-peptide
spectra, spectra from peptides missing from the target
database, post-translational modifications that are not
considered in the database search, etc. If such unidentifi-
able spectra could be removed in advance, this would
reduce the database search time and possibly produce
more PSMs because unidentifiable spectra can only

Table 5 Comparison between two FDR formulas

Search# Spectra Database PMTol Formula EmpiricalFDR fixed FactFDR fixed

Ntarget FactFDR(%) p-value(%) Ntarget EmpiricalFDR(%)

I-3 ISB-02 ISB+Yeast 2.5 Da 1 1578/602 4.7/5.1 40.8/50.3 1583/596 5.1/3.9

I-12 ISB-02 ISB+Yeast 2.5 Da 2 1452/550 2.3/2.5 0.0/2.9 1583/596 9.6/7.4

I-5 ISB-02+AB-TC ISB+Yeast 2.5 Da 1 1490/569 5.0/5.8 50.2/31.2 1480/553 4.5/4.3

I-13 ISB-02+AB-TC ISB+Yeast 2.5 Da 2 1387/502 2.8/3.2 0.6/15.7 1480/553 8.7/8.3

Y-1 Y-Small+AB-TC Yeast+AT 30 ppm 1 2574/1988 1.0/1.3 50.1/22.7 2588/1759 1.0/0.5

Y-4 Y-Small+AB-TC Yeast+AT 30 ppm 2 2453/1626 0.8/0.8 27.8/36.2 2588/1759 2.0/1.0

The Formula field in the fifth column specifies the formula for the FDR calculation: 1 for Ndecoy/Ntarget and 2 for 2 · Ndecoy/(Ntarget+Ndecoy). For all searches, the
standard TDA procedure was followed except the step 4 for searches using formula 2. The searches I-12 and I-13 show that using formula 2 results in
conservative FDR estimation.
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generate false PSMs and could thus increase the TDA-
determined score threshold. To estimate the effect of uni-
dentifiable spectra, we compared searches with various
datasets differing only in the portion of unidentifiable
spectra (Table 7).
Conclusion
Adding unidentifiable spectra reduces the number of posi-
tive PSMs, but does not change the accuracy of FDR esti-
mations significantly. Thus filtering noisy spectra prior to
a database search [18-20] should be helpful towards
increasing the number of resulting identifications.
Expected gains from accurate peptide parent masses
Modern mass spectrometry instruments (e.g., FT/ICR or
Thermo LTQ Orbitrap) can measure masses very accu-
rately and are commonly configured to generate high-
accuracy MS spectra (e.g., ≤50 ppm) and low-accuracy
MS/MS spectra (e.g., ≤0.5 Da) [21]. The availability of
high-accuracy parent masses allows database search
engines to greatly restrict the masses of eligible database
peptides and thus significantly reduces the number of
peptides scored against each spectrum. Here we mea-
sured how the availability of high-accuracy parent masses
changes the results (Table 8).
Conclusion
As expected, when using strict parent mass tolerance
more PSMs were identified (at the same factual FDR
threshold) in most cases. For the searches I-17 and I-18,

the empirical FDRs reported by MS-GFDB were rather
inaccurate. However, while the empirical FDR in I-17 was
too conservative, that in I-18 was too liberal. This indicates
that the empirical FDR in searches using strict tolerance is
not strongly biased toward one direction. Thus, we recom-
mend using strict tolerance in database searches.
How the score normalization affects the results TDA
implicitly assumes that given two PSMs (S1, P1) and (S2,
P2) where S1 ≠ S2, if Score(S1, P1) ≥ Score (S2, P2), the
chances of (S1, P1) being correct should be higher than
the chances of (S2, P2) being correct (namely, (S1, P1) is
better than (S2, P2)). However, this is not true for all
scoring functions. For example, SEQUEST Xcorr tends
to assign large scores to long peptides. Thus, even if
Score(S1, P1) ≥ Score (S2, P2), if Length(P1) >> Length
(P2), it is possible that (S1, P1) is a worse match than
(S2, P2). This score normalization problem is an impor-
tant issue for TDA to work effectively.
Using probabilistic scores (e.g. q-value, p-value or pos-

terior error probability) is a good solution to obtain a
good normalization. Most database search engines
nowadays report a pair of scores: a “raw” score and a
probabilistic score. For example, Mascot reports ion
scores and E-values and MS-GFDB reports MS-GF
score and spectral probability. Alternatively, one can get
probabilistic scores by running post-processing tools like
Peptide-Prophet [22].

Table 6 Comparison between searches against databases of different sizes

Search# Spectra Database PMTol DB size EmpiricalFDR fixed FactFDR fixed

Ntarget FactFDR(%) p-value(%) Ntarget EmpiricalFDR(%)

I-1 ISB-02 ISB 2.5 Da 7,440 2329/1009 5.8/4.4 10.9/30.9 2279/1024 3.9/5.7

I-3 ISB-02 ISB+Yeast 2.5 Da 3,019,432 1578/602 4.7/5.1 40.8/50.3 1583/596 5.1/3.9

I-14 ISB-02+AB-TC ISB 2.5 Da 7,440 2262/984 5.8/4.5 5.7/34.5 2221/995 4.0/6.0

I-5 ISB-02+AB-TC ISB+Yeast 2.5 Da 3,019,432 1490/569 5.0/5.8 50.2/31.2 1480/553 4.5/4.3

I-7 ISB-02+AB-TC ISB+AT 2.5 Da 13,475,763 1320/441 4.6/4.1 36.6/38.0 1342/464 5.8/7.3

Y-5 Y-Small+AB-TC Yeast 30 ppm 3,011,992 3340/2734 1.2/1.0 30.0/50.1 3209/2717 0.8/1.0

Y-1 Y-Small+AB-TC Yeast+AT 30 ppm 16,480,315 2574/1988 1.0/1.3 50.1/22.7 2588/1759 1.0/0.5

As expected, for smaller databases, TDA yielded more resulting PSMs. Fisher p-values were higher than 5% for all cases, which indicates that the FDR estimation
via empirical FDR is reliable regardless of the database size.

Table 7 Comparisons between searches with different portions of unidentifiable spectra

Search# Spectra Database PMTol # spec EmpiricalFDR fixed FactFDR fixed

Ntarget FactFDR(%) p-value(%) Ntarget EmpiricalFDR(%)

I-1 ISB-02 ISB 2.5 Da 4,966 2329/1009 5.8/4.4 10.9/30.9 2279/1024 3.9/5.7

I-14 ISB-02+AB-TC ISB 2.5 Da 11,285 2262/984 5.8/4.5 5.7/34.5 2221/995 4.0/6.0

I-3 ISB-02 ISB+Yeast 2.5 Da 4,966 1578/602 4.7/5.1 40.8/50.3 1583/596 5.1/3.9

I-5 ISB-02+AB-TC ISB+Yeast 2.5 Da 11,285 1490/569 5.0/5.8 50.2/31.2 1480/553 4.5/4.3

I-15 ISB-02+AB-All ISB+Yeast 2.5 Da 24,948 1367/531 4.2/5.3 33.0/34.5 1393/518 5.5/4.2

Y-1 Y-Small+AB-TC Yeast+AT 30 ppm 16,077 2574/1988 1.0/1.3 50.1/22.7 2588/1759 1.0/0.5

Y-6 Y-Small+AB-All Yeast+AT 30 ppm 29,740 2238/1913 1.1/1.4 44.2/14.7 2208/1629 0.9/0.7

Adding unidentifiable spectra reduces the number of positive PSMs, but does not change the accuracy of FDR estimations significantly.
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To estimate the effect of score normalization, we ran
pairs of MS-GFDB searches. For each pair of searches,
one used the spectral probability (probabilistic score)
and the other used the MS-GF score (raw score) to
compute FDR. The spectral probability can be consid-
ered simply as “better normalized” score of the MS-GF
score for this experiment [23]. Table 9 shows the
results.
Conclusion
Using the well-normalized score (i.e., the spectral prob-
ability) always produces substantially more resulting
PSMs, with higher gains for larger databases. Furthermore,
as in the search Y-7, the TDA-determined empirical FDR
tended to be more accurate when well-normalized score
was used. Thus, we recommend to use well-normalized
scoring function (e.g., probability scores) to maximize the
number of positive target PSMs at a fixed FDR. To com-
pute FDRs separately depending on the precursor charge
is also recommended if the scoring function is not well
normalized across the spectra of different precursor
charges. For example, most engines using peptide
sequence tags (e.g., InsPecT [5]) identify spectra of charge
2 relatively well but struggle in identifying spectra with
precursor charges 3 or more. For such database search
engines, it is better to compute FDRs separately depending

on the precursor charge to maximize the resulting PSMs
(In fact, the script to compute FDRs contained in the
InsPecT package computes FDR separately for charge 2
spectra and others).
PSM-level vs Peptide-level FDR In MS experiments, it
is common to compute FDRs at the PSM-level (as the
portion of false PSMs among positive PSMs), and use the
resulting PSMs to identify peptides (if at least one PSM is
identified as peptide P then P is said to be identified).
These identified peptides are in turn used to identify pro-
teins (e.g. two-peptide rule: for a protein, if it contains at
least two identified peptides, it is assumed to be identi-
fied). However, while multiple correct PSMs often corre-
spond to a single correct peptide, false PSMs typically
correspond to distinct false peptides. Consequently, even
a set of PSMs with a very low (PSM-level) FDR may
result in excessive false peptide identifications.
Computing the empirical peptide-level FDR is a readily-

available solution to this problem: if multiple PSMs are
matched to the same peptide, only the best-scoring PSM
is retained; the peptide-level FDR is then calculated using
only these best-scoring PSMs per peptide. The factual
peptide-level FDR is defined similarly.
To demonstrate the problem of PSM-level FDRs, we

reported factual peptide-level FDRs for various searches

Table 8 Comparison between searches with strict and loose parent mass tolerance.

Search# Spectra Database PMTol EmpiricalFDR fixed FactFDR fixed

Ntarget FactFDR(%) p-value(%) Ntarget EmpiricalFDR(%)

I-1 ISB-02 ISB 2.5 Da 2329/1009 5.8/4.4 10.9/30.9 2279/1024 3.9/5.7

I-16 ISB-02 ISB 30 ppm 2128/1009 N/A1 N/A N/A N/A

I-5 ISB-02+AB-TC ISB+Yeast 2.5 Da 1490/569 5.0/5.8 50.2/31.2 1480/553 4.5/4.3

I-17 ISB-02+AB-TC ISB+Yeast 30 ppm 1638/569 6.4/5.3 3.1/45.2 1570/565 3.9/4.8

I-7 ISB-02+AB-TC ISB+AT 2.5 Da 1320/441 4.6/4.1 36.6/38.0 1342/464 5.8/7.3

I-18 ISB-02+AB-TC ISB+AT 30 ppm 1358/463 3.2/5.1 2.0/50.3 1425/463 6.5/4.3

As expected, when using strict parent mass tolerance more PSMs were identified (at the same factual FDR threshold) in most cases.
1 For the search I-16, the factual FDR is not available because no dummy element is used.

Table 9 Comparison between searches with differently normalized scoring functions

Search# Spectra Database PMTol Score EmpiricalFDR fixed FactFDR fixed

Ntarget FactFDR(%) p-value(%) Ntarget EmpiricalFDR(%)

I-1 ISB-02 ISB 2.5 Da SpecProb1 2329 5.8 10.9 2279 4.4

I-19 ISB-02 ISB 2.5 Da MSGFRaw2 2079 4.6 36.5 2079 4.6

I-5 ISB-02+AB-TC ISB+Yeast 2.5 Da SpecProb 1490 5.0 50.2 1480 4.5

I-20 ISB-02+AB-TC ISB+Yeast 2.5 Da MSGFRaw 1272 5.7 25.2 1210 4.5

I-7 ISB-02+AB-TC ISB+AT 2.5 Da SpecProb 1320 4.6 36.6 1342 5.8

I-21 ISB-02+AB-TC ISB+AT 2.5 Da MSGFRaw 987 3.9 37.3 1064 6.1

Y-1 Y-Small+AB-TC Yeast+AT 30 ppm SpecProb 2574 1.0 50.1 2588 1.0

Y-7 Y-Small+AB-TC Yeast+AT 30 ppm MSGFRaw 1215 1.9 1.8 861 0.3

The spectral probability can be considered simply as “better normalized” score of the MS-GF score for this experiment [23]. Using the well-normalized score (i.e.,
the spectral probability) always produces substantially more resulting PSMs, with higher gains for larger databases. Furthermore, as in the search Y-7, the TDA-
determined empirical FDR tended to be more accurate when well-normalized score was used.
1Spectral probability was used to compute the FDR; 2MS-GF score was used to compute the FDR.
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when the score threshold was determined using empiri-
cal PSM-level FDR (Table 10). Among the searches in
Table 10, the search I-23 illustrates the problem most
explicitly. The ISB-All dataset used in the search I-23
contains spectra of 10 replicate runs of the same ISB
standard protein mixture and thus many spectra are
expected to be identified as the same peptides. The fac-
tual peptide-level FDRs of this search were 42.8% and
39.6% for MS-GFDB and X!Tandem, respectively.
Table 11 shows the comparison between empirical

peptide-level FDRs and factual peptide-level FDRs. For
this experiment, the Fisher’s exact tests were done using
number of distinct peptides instead of PSMs.
Conclusion
PSM-level FDR differs significantly from peptide-level
FDRs. In particular when the larger datasets (e.g., ISB-
ALL+AB-TC or Y-All+AB-TC) were used, the resulting
empirical PSM-level FDRs seriously underestimated the
factual peptide-level FDRs (up to 10 folds), indicating
that the peptide-level FDR is more important when large
datasets/experiments are considered. On the other hand,
Table 11 demonstrates that in most cases the empirical
peptide-level FDR reliably estimates the peptide-level
FDR even if for some cases (e.g., the search I-23) the esti-
mation was still too liberal.
Thus, in MS experiments where peptide identifications

are used in downstream applications (e.g., protein iden-
tification) peptide-level FDR should be used instead of
PSM-level FDR. Other applications choosing to use
empirical PSM-level FDR should be required to present
supporting evidence that such FDR estimates are accu-
rate and appropriate for the proposed goals.
Two-pass searches and TDA Craig and Beavis [24] pio-
neered the two-pass search approach that searches the
target database twice. In the first pass, spectra are
searched against the database to identify candidate pro-
teins; in the second pass, spectra are again searched
against only the candidate proteins identified in the first

pass. The spectra matched in the first pass are sometimes
removed in the second pass (matched spectrum removal
(MSR) step [24,25]). This approach was originally pro-
posed to accelerate the database search by quickly finding
proteins containing non-modified fully tryptic peptide
matches in the first pass and identifying more complex
peptides (e.g., nontryptic peptides or peptides with modi-
fications) in the second pass. In addition to expediting
the database search, the two-pass approach can also be
used to produce more resulting PSMs by reducing the
database size in the first pass.
Recently, it was recognized that TDA should be care-

fully applied when estimating FDRs for two-pass searches
[25-27]. Traditionally, TDA treats a database search
engine as a black box that reports a sorted list of PSMs.
If we consider a database search engine supporting the
two-pass search (e.g., X!Tandem [3]) as a black box and
apply TDA, the candidate proteins selected at the first
pass will contain more target proteins than decoy pro-
teins. Therefore, in the second pass, the assumption of
TDA that matches to decoy are representative of false
matches to target no longer holds and TDA will report a
significantly smaller FDR than the true FDR. Results
from the searches Y-10 and Y-11 in Table 12 illustrate
this problem. When the empirical FDR was fixed to 1%,
the factual FDRs of both searches were close to or
exceeded 10%.
To remedy this problem, Everett et al. [27] suggested to

generate a decoy database for the second pass by reversing
the candidate target proteins selected in the first pass. In
this way, target and decoy databases in the second pass
can have the same number of proteins. However, Bern
and Kil [25] claimed that these target and decoy databases
still can be “unbalanced” because the false positive PSMs
in the target database are likely to have better scores than
the positive decoy PSMs in the decoy database. They pro-
posed to generate the decoy database by first taking candi-
date decoy protein sequences and second appending

Table 10 Comparison between peptide-level factual FDR and PSM-level FDR

EmpiricalFDR fixed

Search# Spectra Database PMTol Ntarget # peptides1 FactPepFDR(%)2 p-value(%)

I-5 ISB-02+AB-TC ISB+Yeast 2.5 Da 1490/569 600/262 12.0/11.8 0.0/0.1

I-22 ISB-All+AB-TC ISB+Yeast 2.5 Da 13441/5086 1375/538 38.6/38.1 0.0/0.0

I-14 ISB-02+AB-TC ISB 2.5 Da 2262/984 815/361 13.1/10.5 0.0/0.1

I-23 ISB-All+AB-TC ISB 2.5 Da 19501/8497 1628/556 42.8/39.6 0.0/0.0

Y-1 Y-Small+AB-TC Yeast+AT 30 ppm 2574/1988 2355/1841 1.1/1.4 37.8/15.8

Y-8 Y-All+AB-TC Yeast+AT 30 ppm 9005/6269 3567/2640 2.4/2.0 0.0/0.0

Y-5 Y-Small+AB-TC Yeast 30 ppm 3340/2734 3033/2515 1.2/1.0 19.1/54.5

Y-9 Y-All+AB-TC Yeast 30 ppm 11151/8969 4341/3582 2.3/2.3 0.0/0.0

Score thresholds were determined using PSM-level FDR thresholds and used to calculate factual peptide-level FDRs. The results illustrate that PSM-level empirical
FDR underestimates peptide-level FDR significantly (e.g., the searches I-22 and I-23).
1Number of distinct peptides; 2Factual peptide-level empirical FDR.
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Table 11 Comparison between peptide-level factual FDR and peptide-level FDR

EmpiricalPepFDR1 fixed FactPepFDR fixed

Search# Spectra Database PMTol Ntarget # peptides1 FactPepFDR(%) p-value(%) Ntarget # peptides EmpiricalPepFDR(%)

I-5 ISB-02+AB-TC ISB+Yeast 2.5 Da 1340/498 532/234 5.3/6.4 45.0/22.6 1335/479 529/226 4.9/4.4

I-22 ISB-All+AB-TC ISB+Yeast 2.5 Da 10245/3688 758/304 6.6/6.6 7.0/4.3 9448/3596 696/292 2.4/4.1

I-14 ISB-02+AB-TC ISB 2.5 Da 2088/907 727/333 6.7/5.1 10.4/50.3 1994/900 693/332 2.9/4.8

I-23 ISB-All+AB-TC ISB 2.5 Da 16602/6676 1083/416 9.2/8.9 0.0/2.0 15663/6203 1015/385 1.7/1.3

Y-1 Y-Small+AB-TC Yeast+AT 30 ppm 2574/1963 2355/1818 1.1/1.3 38.7/17.6 2556/1759 2339/1636 0.9/0.6

Y-8 Y-All+AB-TC Yeast+AT 30 ppm 7867/5068 3142/2201 1.3/1.0 6.1/50.1 7121/5068 2849/2201 0.4/1.0

Y-5 Y-Small+AB-TC Yeast 30 ppm 3209/2666 2916/2455 1.0/0.9 44.7/50.1 3209/2734 2916/2515 0.9/1.0

Y-9 Y-All+AB-TC Yeast 30 ppm 10005/7309 3885/2987 1.0/0.9 50.0/44.9 10005/7309 3885/2987 0.9/0.9

Score thresholds were determined using empirical/factual peptide-level FDR and used to calculate factual/empirical FDRs. For the searches I-5, I-22, I-14, and I-23, the peptide-level FDR thresholds were set to 5%, and
for the remaining searches they were set to 1%. The search I-23 illustrates the difficulty of enforcing peptide-level FDR when searching small databases.
1Empirical peptide-level FDR.
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Table 12 Comparison between the single-pass search (the search Y-1) and various two-pass search methods (the searches Y-10 to Y-13)

Search# Spectra Database PMTol MSR2 EmpiricalFDR fixed FactFDR fixed

IsTwoPass 2th decoy1 Ntarget FactFDR(%) p-value(%) Ntarget EmpiricalFDR(%)

Y-1 Y-Small+AB-TC Yeast+AT 30 ppm No Rev N/A 2574/1988 1.0/1.3 50.1/22.7 2588/1759 1.0/0.5

Y-10 Y-Small+AB-TC Yeast+AT 30 ppm Yes Trad3 No 5361/5744 15.9/20.1 0.0/0.0 3260/2655 0.6/0.3

Y-11 Y-Small+AB-TC Yeast+AT 30 ppm Yes Trad Yes 4114/3925 7.3/10.1 0.0/0.0 3102/2320 0.9/0.5

Y-12 Y-Small+AB-TC Yeast+AT 30 ppm Yes BK4 No 3529/3089 1.2/1.0 24.9/45.0 3262/3074 0.7/0.9

Y-13 Y-Small+AB-TC Yeast+AT 30 ppm Yes BK Yes 3137/2514 1.1/1.1 40.1/39.3 3103/2521 1.0/0.8

For the searches Y-10 and Y-11, the traditional second pass decoy database was used to estimate FDR (see text). For the searches Y-12 and Y-13, the decoy database proposed by Bern et al. [25] was used. Also, for
the searches Y-11 and Y-13, the matched spectrum removal (MSR) step was used.

Low Fisher p-values in Y-10 and Y-11 illustrate that using the traditional second pass decoy database results in significant underestimation of the true FDR.
1The decoy database for the second pass search; 2Whether the matched spectrum removal step was used; 3The traditional decoy database; 4The BK decoy database.
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reversed sequences of candidate target protein sequences
until the number of proteins in the decoy database equals
to the number of the target proteins. The decoy database
constructed in this way is specified by BK decoy database.
On the other hand, the decoy database constructed by
retaining only candidate decoy protein sequences is speci-
fied by traditional decoy database.
We tested two methods - the traditional and the BK

decoy database - with or without the MSR step (we did
not test the decoy database proposed by Everett et al.
[27]). For this experiment, only the searches using Y-All
or Y-Small databases were tested because the ISB database
contains too few proteins to observe the effect of the
reduced target database in the second pass. From the first
pass search, we used score threshold corresponding to 1%
empirical FDR to find candidate proteins.
For two-pass searches, the number of dummy PSMs

(Ndummy) can be counted as previously described (in
Methods section), but the number of false positives out
of putative PSMs (Nfalse) should be estimated differently
because the search space of a two-pass search is typi-
cally different from a single-pass search. We call the
estimation method of Nfalse for single-pass searches
described in Methods section the single-pass estimation
method.
To estimate Nfalse for two-pass searches, first consider

the cases in which the MSR step is not used. In this case,
the search space is decided by the candidate proteins
found in the first pass. To estimate Nfalse, for each search
we take the candidate proteins found in the first pass of
the search, remove dummy proteins, and generate the BK
decoy database using these proteins. The spectra exclud-
ing dummy spectra are searched against the target pro-
teins (with dummy proteins removed) and the proteins in
the generated BK decoy database. Nfalse is given by the
number of decoy positive PSMs in this search. This esti-
mation method for two-pass searches is specified by the
two-pass estimation method.
Second, in case in which the MSR step is applied, we

first divide the set of spectra into two groups: S1 matched
spectra in the first step and S2 remaining spectra. To esti-
mate the false positives in the first pass, we use the sin-
gle-pass estimation method with the spectra S1 instead of
all the spectra. To estimate the false positives in the sec-
ond pass, we use the two-pass estimation method with
the spectra S2 instead of all the spectra. The final estima-
tion of Nfalse is given by summing up the two estimated
numbers of the false positives.
The results of the four two-pass search methods are

shown in Table 12.
Conclusion
For most cases, the two-pass searches produced signifi-
cantly more PSMs than the single-pass search at the
same factual FDR. The empirical FDR from traditional

decoy database significantly underestimated the factual
FDR, in particular when the MSR step was not used
(shown in the search Y-10). On the other hand, the
empirical FDR from the BK decoy database was close to
the factual FDR, whether the MSR step was used or not
(shown in the searches Y-12 and Y-13). The numbers of
target PSMs in these searches were still larger than in the
single-pass search. For example, MS-GFDB reported
3262 - 2588 = 674 and 3103 - 2588 = 515 additional
PSMs in the searches Y-12 (without the MSR step) and
Y-13 (with the MSR step), respectively, as compared to
the search Y-1. The factual FDRs of these additional 674
and 515 PSMs were 1.8% and 1.4%, respectively. This
indicates that the additional PSMs without the MSR step
result in rather high FDR.
Based on the results, we recommend to use two-pass

searches using the BK decoy database because it outputs
more target PSMs than single-pass searches with reliable
FDR estimation.

Discussion
Reliable estimation of false discovery rates is a necessary
precondition for the downstream utility of high through-
put proteomics studies. Without accurate FDR estimates
it is not possible to meaningfully compare results across
different labs or search procedures and substantial
amounts of time and resources may be wasted following
‘surprising leads’ later shown to be no more than just
false positives. While the final decision of which FDR
(e.g., 1% or 5%) is reasonable and appropriate for a par-
ticular experiment should ultimately rest with the
researcher responsible for the analysis, it is important to
be aware of the expected statistical consequences of the
possible procedural choices to allow for both ameliora-
tion and critical evaluation of their effects in the result-
ing lists of identifications. Here we evaluated these
possible effects using MS/MS data from samples where
we were able to define a factual FDR estimator of ‘true’
FDR using strong indicators of false identifications that
were not available to TDA or the database search
engine.
While the particulars of specific experiments may war-

rant additional exploration, the results presented here
indicate that the adoption of a simple set of guidelines
could substantially improve the odds that TDA esti-
mates of ‘true’ FDR will be within an acceptable interval
around measured empirical FDRs. Conversely, we show
that there are cases where PSM-level FDR is highly
inappropriate since it results in a peptide-level FDR over
10× higher than the only reported FDR. In fact, we
argue that peptide-level FDR should be the norm when
reporting identification results and PSM-level FDR
should be avoided whenever possible and require addi-
tional evidence from the authors showing that there are
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substantial reasons to avoid imposing peptide-level FDR.
The main reason behind this strong assertion is that
most MS based experiments are conducted with the
purpose of identifying peptides and proteins for biologi-
cal interpretation where one is not concerned about the
identity of any particular spectrum but rather with the
expected number of false positives in the list of identifi-
cations used for follow up analysis. Another reasonable
way to control FDR is to impose protein-level FDR;
however, these procedures usually faces difficulties of
their own (e.g., how to handle peptides shared by multi-
ple proteins) and should be addressed separately in a
different study. Other aspects beyond the scope of this
study that could also have a significant impact on the
accuracy of TDA estimation of FDR are post-transla-
tional modifications, MS/MS acquisition modes (e.g.,
MS/MS + MS/MS/MS), local FDR (e.g., as used in Pep-
tideProphet), spectral library searches [28], etc.
Out of the recommendations derived and supported

by the results above, we observed that two-pass searches
seem to be the most promising search strategy. Out of
all tested strategies, two-pass searches came closest to
identifying as many peptides as would be possible with
perfect advance knowledge of the exact list of proteins
in the sample of interest. Of course, it should be noted
that such gains are likely to deteriorate for higher com-
plexity samples where the second pass database is not
substantially smaller than the initial database. Also we
remark that the increased number of identified peptides
does not necessarily mean the increased number of
identified proteins in two-pass searches because the can-
didate proteins are fixed in the first pass of the searches.
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