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Abstract

Background: Metamorphosis in insects transforms the larval into an adult body plan and comprises the
destruction and remodeling of larval and the generation of adult tissues. The remodeling of larval into adult
muscles promises to be a genetic model for human atrophy since it is associated with dramatic alteration in cell
size. Furthermore, muscle development is amenable to 3D in vivo microscopy at high cellular resolution. However,
multi-dimensional image acquisition leads to sizeable amounts of data that demand novel approaches in image
processing and analysis.

Results: To handle, visualize and quantify time-lapse datasets recorded in multiple locations, we designed a
workflow comprising three major modules. First, the previously introduced TLM-converter concatenates stacks of
single time-points. The second module, TLM-2D-Explorer, creates maximum intensity projections for rapid
inspection and allows the temporal alignment of multiple datasets. The transition between prepupal and pupal
stage serves as reference point to compare datasets of different genotypes or treatments. We demonstrate how
the temporal alignment can reveal novel insights into the east gene which is involved in muscle remodeling. The
third module, TLM-3D-Segmenter, performs semi-automated segmentation of selected muscle fibers over multiple
frames. 3D image segmentation consists of 3 stages. First, the user places a seed into a muscle of a key frame and
performs surface detection based on level-set evolution. Second, the surface is propagated to subsequent frames.
Third, automated segmentation detects nuclei inside the muscle fiber. The detected surfaces can be used to
visualize and quantify the dynamics of cellular remodeling. To estimate the accuracy of our segmentation method,
we performed a comparison with a manually created ground truth. Key and predicted frames achieved a
performance of 84% and 80%, respectively.

Conclusions: We describe an analysis pipeline for the efficient handling and analysis of time-series microscopy
data that enhances productivity and facilitates the phenotypic characterization of genetic perturbations. Our
methodology can easily be scaled up for genome-wide genetic screens using readily available resources for RNAi
based gene silencing in Drosophila and other animal models.
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Background
The fruit fly Drosophila melanogaster is a well-established
model to investigate the function of genes involved in
human diseases, including cancer, developmental disorders
and neuromuscular diseases [1,2]. Metamorphosis
describes the phase in the development that lasts 5-6 days
and transforms the larva into an adult fly [3]. Conversion
of the body plan involves elimination of obsolete larval
and the formation of adult tissues that either originate
from the proliferation and differentiation of stem cells or
the remodeling of larval cells. Larval muscles undergo two
fates during metamorphosis. While most are destroyed by
autophagic cell death [4], such as the dorsal external obli-
que muscles (DEOMs), a few change morphology and
acquire a new function. For example, the dorsal internal
oblique muscles (DIOMs) of the abdomen become tem-
porary adult muscles [5]. The remodeling of the DIOMs
involves a 4-5 fold reduction in diameter in first two days
of the pupal stage and 2-3 fold increase in the last day of
metamorphosis [6]. Thanks to a transparent cuticle and an
increasing availability of fluorescent reporter proteins [7],
the dynamics of muscle remodeling can be studied by
time-lapse microscopy at high cellular resolution. A better
understanding of the control of muscle size is important
for human health. While disuse, starvation, ageing and dis-
ease can lead to atrophy, hypertrophy, or the increase in
muscle size and strength, can result from physical exercise
[8,9]. Therefore, in vivo imaging of muscles in Drosophila
metamorphosis in combination with genetics promises to
be a model for studies of human genes that regulate skele-
tal muscle mass. In Drosophila, targeted gene perturba-
tions can be induced by the UAS-Gal4 overexpression
system [10] which facilitates overexpression of proteins as
well as gene silencing by RNA interference [11]. Combin-
ing genetic screens with time-lapse in vivo imaging may
lead to the detection of transient phenotypes that can be
easily missed by traditional endpoint assays [12]. More-
over, observed phenotypes in endpoint assays may not be
the primary effect of gene perturbation and thus lead to
inaccurate interpretations.
The quantification and 3D visualization of multi-dimen-

sional (3D+time) microscopic image data, like those of
Drosophila muscles [13], require fast and accurate image
segmentation methods. Over the last decade, a number of
segmentation algorithms have been developed for the ana-
lysis of the time-lapse fluorescence microscopy images.
These algorithms can be classified into two classes with
respect to the detection model being used. The first class
of algorithms [14-18] performs frame-by-frame object
detection, which do not use the information about the
previous or next frames. The second class of algorithms
[19-22] uses level set-based approaches for object detec-
tion in time-series images. In this category, models are
first fitted to image data in a given frame and then evolve

by using the final results from one frame as the starting
point for segmentation in the next frame. The main
advantage of the model evolution approach is that all the
deformed contours or surfaces in the previous frame
can be directly incorporated into the segmentation of cur-
rent frame. However, level set-based model evolution
approaches are impractical for large-scale image segmen-
tations as they are considered computationally expensive.
In this study, we designed a workflow for the analysis of

time-lapse microscopy data in the context of muscle
apoptosis and remodeling during Drosophila metamor-
phosis. We demonstrate how the module for time-series
analysis can be used to characterize phenotypic changes
resulting from genetic perturbations. We show that a
truncated GFP tagged version of nuclear EAST protein is
able to inhibit histolysis of muscle fibers. Furthermore,
we developed a semi-automated 3D segmentation
method that can be used to visualize and quantify the
morphological changes of muscle fibers. The method
incorporates an Bayesian level set-based surface evolution
[23] and cell nuclei detection based on multiple level-set
[24]. Most of the published studies on 3D segmentation
of microscopic images have dealt with the detection of
discrete objects such as cell nuclei [14,15]. Few studies
have addressed the problem of segmenting multi-
nucleated muscle fibers. One previous report described
the segmentation algorithm for human muscles for the
purpose of measuring the cross sectional area. In contrast
to our work, this method was designed for cryostat sec-
tions [25]. To our knowledge, our study is the first
attempt to analyze the developmental dynamics of live
multi-nucleated muscles in 3D using bioimage infor-
matics. In the future, the methodology can be applied to
the phenotypic characterization of targeted gene silencing
by RNA interference.

Methods
Microscopy
Drosophila muscle cells were visualized using the fluores-
cent fusion proteins Grasp65-GFP [26] to label the cyto-
plasm and Histone-2av-mKO (histone-2av C-terminally
tagged with monomeric Kusabira Orange [27]) to label
cell nuclei. The reporter construct was generated by
cloning Histone-2av-mKO cDNA into the pUAST vector.
This reporter protein will be referred to as histone-mKO.
Expression of the reporter genes were activated with the
help of the UAS-GAL4 system using the muscle specific
driver Mef2-GAL4 [11]. UAS-Grasp65-GFP and Mef2-
Gal4 were obtained from the Bloomington Drosophila
Stock Center, Indiana University. As an alternative to
UAS-Grasp65-GFP, we also used the reporter gene
MHC-tauGFP [28]. To produce a genetic perturbation
that affects muscle remodeling in metamorphosis we used
a UAS -east (1-1902)-GFP transgene which expresses the
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first 1902 (out of 2301) amino acids of the nuclear EAST
protein [29] tagged by a C-terminal GFP. Prepupae were
collected with a soft brush and examined under a fluores-
cent stereomicroscope (Olympus MVX10, Olympus,
Tokyo, Japan) to confirm stage and reporter gene expres-
sion. Specimen (up to 30 per glass-bottom dish) were
transferred to a 1.5 mm glass bottom dish (MatTek, Ash-
land, Massachusetts), oriented with the dorsal side facing
down and mounted in either 0.5% low melting (LMP)
agarose or CyGel (Biostatus Ltd, Leicester, UK).
In vivo imaging of muscles in metamorphosis was per-

formed on a high-speed, line scanning Zeiss 5 Live (Car
Zeiss, Jena, Germany) confocal laser scanning inverted
microscope equipped with a XY scanning stage. Time-
lapse acquisition was carried out in multiple locations with
the help of the multi-time series (MTS) macro, which
saves one LSM image file per time point and location.
Datasets were recorded in two different resolutions at a
frame size of 1024 × 1024 pixels. Low resolution time-
lapse data with stack sizes of 20-30 z-slices were recorded
at 30 minute intervals for over 4 days (199 frames) using a
Zeiss EC Plan-Neofluar 10 ×/0.27 objective at voxel sizes
of x/y = 1.25 μm and z = 13.20 μm. High resolution time-
lapse with stack sizes of 97 z-slices were acquired at 10
minute intervals for over 2 days (360 frames) using a Zeiss
Plan-Apochromat 20 ×/0.8 objective at voxel sizes of x/y =
0.62 μm and z = 1.48 μm. Due to the refractive index mis-
match between lens medium air (N = 1.0) and the embed-
ding media the refractive index mismatch correction was
set to 1.33 and 1.37 for 0.5% LMP agarose and CyGel,
respectively.

Image analysis workflow and 2D time-lapse visualization
We designed an image analysis workflow for the analysis
of multi-location 3D time-lapse datasets that consists of
three components (Figure 1). During image acquisition,
the Zeiss MTS macro creates one folder per location
where it saves all corresponding files (1 LSM file per time
point). The TLM (Time Lapse Microscopy) Converter
software [30] concatenates multiple LSM files of each
location into a single ICS file (The software can be down-
loaded from the following website: http://web.bii.a-star.
edu.sg/archive/TLM-Converter). Subsequently, the 3D
time-series images were transformed into maximum
intensity projections (MIP) for rapid inspections using the
TLM-2D-Explorer. Multiple MIP time-lapse datasets can
be displayed side-by-side for phenotypic analysis. The
onset of the prepupal to pupal transition (PPT), which
occurs around 12 hours after pupariation, served as a
reference for temporal alignment. Rotating time-series
images and displaying time stamps helped to recognize
phenotypic abnormalities caused by genetic perturbations
and place them in the developmental context. The TLM-
2D-Explorer was implemented in C++.NET with the help

of the OpenCV [31] and libics [32] libraries. A third mod-
ule, TLM-3D-Segmenter, performs 3D segmentation of
muscle fibers (see below).

Semi-automated segmentation of muscle fibers using
TLM-3D-segmenter
We developed a semi-automatic 3D time-lapse image seg-
mentation method for the detection of selected muscle
fibers in time series image stacks. Figure 2 illustrates the
three major steps of the 3D time-lapse image segmenta-
tion method. The first step consists of 3D object detection
in a key frame k, where the user places a seed into a mus-
cle fiber. Surface detection is performed based on level-set
based surface evolution. In the second step, the converged
surface is projected into the next (predicted) frame p
where it initializes a new level set function that evolves
into a new predicted surface. Propagation of the surface is
repeated for a user-defined maximum number of subse-
quent time points. The third step detects nuclei inside the
segmented muscle fibers in an automated fashion as pre-
viously described [24]. A detailed description of the 3D
object detection is provided below.

3D object detection
In 3D object detection, we consider the case of binary
partition, where a single object of interest has to be seg-
mented from the rest of the image stack I = DI Î ℝ, DI

⊂ ℤ3. We used the concept of Bayesian region-based
front evolution [33] to separate the selected object Oi

from background by maximizing the a posteriori prob-
ability (MAP) that is equivalent to minimizing the
energy function. Let Fi be the signed distance function
that borders between the object Oi and the background
B. We used an implicit representation of the surface S(x,
y, z) as the zero level set of a hyper-surface Fi (S(x, y,
z), t) [34,35]. The function Fi defined by Fi (X, t) = ± d,
where X Îℝ3 and d was the unit distance from X to the
surface front S. The Bayesian region-based surface evo-
lution is represented by the following equation,
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Corresponding statistical parameters θB = 〈μB, σ 2
B 〉 were

used for the background. I(X) denotes the intensity value
of voxel p. The viscosity term -υK helps to smooth the sur-
face, where K is the mean curvature of surface and υ is the
entropy condition expressing the importance of
regularization.

Chinta et al. BMC Bioinformatics 2012, 13(Suppl 17):S14
http://www.biomedcentral.com/1471-2105/13/S17/S14

Page 3 of 13

http://web.bii.a-star.edu.sg/archive/TLM-Converter
http://web.bii.a-star.edu.sg/archive/TLM-Converter


The surface evolution algorithm is composed of two
basic steps: the initialization and the active surface
evolution. Initially, background and foreground regions
(labeled as 0 and 1) in the entire image stack are

detected as previously described [24]. Then, the level set
function of a selected object is either initialized by user
interaction, e.g. placing a spherical seed, or automati-
cally with the surface of an adjacent frame. Starting

Figure 1 Time-series image analysis workflow for the study of muscle remodeling in Drosophila metamorphosis. (a) Upon multi-location
3D time-lapse microscopy, image data belonging to the same location are concatenated using the TLM-Converter and converted into open
source ICS files. (b) The TLM-2D-Explorer produces maximum intensity projections (MIP) of 3D stacks for the rapid visual inspection of time-lapse
images. Multiple MIP time-lapse datasets can be displayed side-by-side to assist in the identification of phenotypic abnormalities. Developmental
reference points, such as PPT, can be used for the temporal alignment of multiple datasets. (c) To examine the morphological dynamics of
individual muscle fibers in 3D, the TLM-3D-Segmenter performs semi-automated segmentation based on level sets and Bayesian surface
evolution.
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Figure 2 Segmentation of muscles in 3D time-lapse Images. Muscle cells are visualized in vivo using the UAS-Gal4 system with the Mef2-
Gal4 driver and the fluorescent reporter proteins Grasp65-GFP (green) and Histone-mKO (red). The segmentation of 3D time-lapse image data
consists of three major steps. First, after the user places spherical seeds in selected muscles in frame k, Bayesian level-set based active surface
evolution detects the cytoplasmic regions (green). Second, the surfaces of detected objects are projected into the next frame k+1 to initialize and
perform surface evolution of the same muscles in the next time point. Third, an automated 3D multi-level-set based nuclear segmentation
method is applied to detect syncytial nuclei (red) within the confines of muscles cells.
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from the initial surface points, recursive surface evolu-
tion is performed using queue-based data structure in
breadth-first order.
A brief description of the algorithm is given as follows

Initialization: Initialize the 3D level set function Fi =
{-1, 0, 1}, -1 for the voxels of a selected seed, 0 for
surface front and +1 for background. Compute the

statistical parameters of background θB = 〈μB, σ 2
B 〉

and object regions θi = 〈μi, σ 2
i 〉 and initialize the

queue Q by adding all the surface points of the
object seed. Furthermore, p represents any point of

the queue Q and q ∈ N26
G (p) any of the 26 neigh-

borhood points of p.
Active Surface Evolution:

Shrinking: Visit all surface points in the queue Q
and compute the speed F’ of every point p using
the following equation:
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is the regulation function and Δk denotes a user-
defined fine-tuning parameter for the surface
evolution process that is selected based on seg-
mentation performance compared to a manually
specified ground truth as previously described
[24].
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are inserted into the queue Q.
Inflation: Visit all current surface points in the
queue Q and compute the speed F ’ of every
point p as given in Eq. (2).If F′

D(p) is positive,
the candidate point becomes an object point (F
(p) ¬ -1) and all its neighboring points(
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inserted into the queue Q.
Update: Update the statistical parameters of
background θB = 〈μB, σ 2

B 〉 and candidate object
θi = 〈μi, σ 2

i 〉
Stopping Criteria: If the speed function of none of the
surface front point is negative or the number of itera-
tions reaches to pre-defined maximum, the surface evo-
lution process is terminated. Otherwise, active surface
evolution (step 2) will be continued until convergence.

Constrained muscle detection
The inflation of active surfaces may result in segmenta-
tion errors if the image stack was recorded at a spatial

resolution (e.g. using a low NA objective) that is insuffi-
cient to resolve objects in close proximity. To prevent
the merging of adjacent objects that are not separated
by an intensity gradient we implemented a variant of
the above algorithm that differs in two aspects. First,
instead of a seed, the level set function is initialized by a
polygon that is manually drawn around the ROI in a
projection of the image stack. As such, the polygon
demarcates the maximum ROI boundary. Second, the
object surface can only evolve by shrinking (the inflation
operation is disabled) to constrain the surface.

Feature extraction
Shape features were extracted to characterize the remo-
deling of abdominal oblique muscles during metamor-
phosis. Upon segmentation, 3D surfaces were projected
into the xy plane to produce 2D silhouette ROIs. The
tensor (2nd order) moments [36,37] of the silhouette
contours were calculated to derive the axis of minimum
inertia, which was used to determine the mean and
standard deviation of cell diameter. The extent was cal-
culated as the ratio between the area of the ROI and the
area of its minimum bounding rectangle.

Implementation
We implemented the 3D segmentation algorithm in C++
using the OpenCV computer vision library [31], the libics
v1.5.2 [38] library for Image Cytometry Standard (ICS)
and the visualization tool kit (VTK) [39].The standalone
application “TLM-3D-Segmenter” was developed for the
Windows platform using the Qt SDK. The software is
freely available for academic research upon request.

Results
To study apoptosis and remodeling of muscles in Droso-
phila metamorphosis, we designed a time-lapse image
analysis system that consists of three components. The
previously described TLM-Converter reorganizes multi-
dimensional image data [30], the TLM-2D-Explorer is
used for the exploration time-lapse data as 2D projec-
tions and the TLM-3D-Segmenter is a tool for 3D seg-
mentation and visualization of developmental dynamics.
The TLM-2D-Explorer converts 3D time-series images
into maximum intensity projections that can be used for
quality control of image acquisition and rapid data
exploration. Multiple time-lapse datasets can be tempo-
rally aligned using developmental reference points, such
as the prepupal to pupal transition (PPT), and viewed
side-by-side. Browsing through equivalent developmental
stages in different specimen helps to identify phenotypic
abnormalities resulting from genetic perturbations. As a
case study for the phenotypic characterization of a
genetic perturbation, we performed an in vivo imaging
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experiment involving the overexpression of a truncated
version of the nuclear EAST protein [34]. A previous
study showed that the east (enhanced adult sensory
threshold) gene was involved in controlling apoptosis and
remodeling of various tissues in metamorphosis [21].
While overexpression of EAST-GFP was able to delay
apoptosis of salivary glands, the loss of gene function
resulted in premature destruction and abnormal remo-
deling of muscles. To evaluate our software, we induced
muscle specific overexpression of a C-terminally trun-
cated form of EAST (residues 1-1902) tagged to GFP.
Full length EAST of 2301 residues could not be used as it
caused developmental arrest in larvae. We performed in
vivo imaging of the dorsal abdominal muscles in pupae
over a 4-day period at 30 minute intervals. To elucidate
possible phenotypic abnormalities, 192 time points start-
ing during the prepupal stage 6 hours prior to PPT until
86 hours into the pupal stage were compared between an
EAST (1-1902)-GFP overexpressing and a control sample
(Figure 3). The whole time series of both samples can be
viewed as QuickTime Movie (Additional File 1). During
the prepupal stage (Figure 3a, a’), no discernible differ-
ences could be observed between control and genetic
perturbation, indicating that the overexpression does not
affect larval muscle morphology. During the early pupal
stage, transgene overexpression caused a delay in the
apoptosis of the DEOMs (Figure 3d-e, 3d’-e’). While the
control DEOMs along the midline have completed histo-
lysis by +12 hours (Figure 3b, arrowhead), the transgenic
counterparts remain intact until 24 hours into the pupal
stage. Furthermore, EAST(1-1902)-GFP overexpression
was found to affect the remodeling of larval DIOMs into
adult muscles. The genetic perturbation was observed to
slow the reduction in the diameter of muscles fibers
(Figure 3f ’, arrow) compared to control muscles (Figure
3f’, arrow). As remodeling progressed, the truncated
EAST resulted in abnormal muscle morphology followed
by the collision of fibers from opposing hemi-segments
(Figure 3g’). A larger C-terminal deletion EAST(1-1536)-
GFP [40] did not produce any of these morphological
changes (not shown), indicating that the phenotypes are
specific to the EAST and not GFP portion of the
transgene.
To quantify and visualize muscle remodeling in 3D, we

developed a semi-automated image segmentation tool,
TLM-3D-Segmenter, which is based on a previous level-
set based method for the automated detection of nuclei in
Drosophila embryos [24]. The surface of each muscle is
represented by a separate level set function that evolves
from a seed that the user places inside the cell body,
which is visualized by the first color channel (Figure 2).
Once convergence happens, the level set function of the
key frame is propagated to a user-defined number of sub-
sequent or predicted frames. Finally, nuclei are detected in

the second color channel within the boundaries of the
muscle surface using the above-mentioned automated
nuclear segmentation algorithm. This approach was
applied to monitor remodeling of a selected set of muscles
in the 3D time-lapse images. We did not pursue the idea
of a fully automated approach to avoid detection of
incompletely shown muscles that extend out of the field of
view and of GFP-labeled apoptotic cell fragments that
were not the primary interest of this study.
To estimate the accuracy of image segmentation, we

compared it to a manually defined ground truth for key
and predicted frames. Ground truth segmentation of two
muscles (Figure 4a) in 30 continuous frames was speci-
fied and verified using the ImageJ plugin “Segmentation
Editor” [41]. In our tests, key frames were segmented
every 10 time points and propagated forward to the next
9 frames (Figure 4b, c). Mean segmentation performance
was found to be 84.0% ± 4.7% for key and 80.0% ± 6.34%
for predicted frames (Figure 4d).
To examine muscle remodeling in 3D, we segmented 2

muscle fibers recorded over 50 hours at 10 minute inter-
vals (Figure 5). Surface reconstructions of the muscle
along with their syncytial nuclei provided 3D views of the
cellular remodeling and the changing subcellular distribu-
tions of syncytial nuclei (Figure 5b). The segmented
objects could be further used to calculate shape features
such diameter and axis of inertia, to quantify the progres-
sion of muscle atrophy in metamorphosis (Figure 5c). In
our experiments, we set the shift factor Δk to a constant
value of 0.25 based on the visual inspection of segmenta-
tion outputs. To quantify morphological differences during
muscle remodeling for the mutant and control genotypes
in the case study above (Figure 3), we performed 3D seg-
mentation and extracted features from the 2D projections
(Figure 6). Mean and standard deviation of the diameter
along the medial axis was calculated to compare the pro-
gression of muscle atrophy (Figure 6a), while extent was
determined to characterize cell shape. The time series plot
confirms the observation that the overexpression of EAST
(1-1902)-GFP delays the size decrease to the muscle fiber
in metamorphosis. In addition, the divergence from a
straight shape in the control to an irregular morphology
resulting from genetic perturbation is reflected by a
decreased extent (Figure 6b).

Discussion
3D time-lapse microscopy of intact tissues is becoming an
important tool to study developmental biology and the
genes involved. To optimally benefit from the information
hidden in large-scale digital image data, novel approaches
for image processing and analysis are required. The meta-
morphosis of muscles and other cell types in Drosophila is
a process that is amenable to in vivo imaging, cell biology
and genetics. We developed a workflow that addressed a
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Figure 3 Temporal alignments of time-series data help to uncover phenotypic abnormalities caused by genetic perturbations. This
example compares a control genotype (left panels) and a genetic perturbation caused by the overexpression of EAST(1-1902)-GFP (right panels)
that interferes with muscle remodeling. The panels show maximum intensity projections (MIPs) of 3D stacks of dorsal abdominal regions. The
control pupa expresses UAS-Grasp65-GFP (green) and UAS-Histone-mKO (red) driven by Mef2-Gal4 to label cytoplasm and nuclei, respectively.
The UAS-east(1-1902)-GFP mutant pupa (green nuclei) expresses MHC-tau-GFP (green) to label cytoplasm and UAS-histone-mKO. Time stamp 0:00
(hours:minutes) refers to the onset of PPT, negative time stamps indicate prepupal and positive ones pupal stages. (a, a’) At -6:00, no discernible
differences are observed. The arrows point in the anterior to posterior direction along the bilateral symmetry axis. Arrow head indicate external
oblique muscles that undergo apoptosis during metamorphosis. (b, b’) At -2:00, deformation of the external muscle (arrow head) is more
pronounced in the control than the mutant animal. (c) Muscle contractions at the onset of PPT lead to blurring of the MIPs. (d) At +12:00,
disintegrating external muscles give rise to vesicles (arrow head) while the mutant specimen (d’) shows intact external muscles (arrow head) and
significant lower quantities of vesicles. (e) At 23:30, external muscles in the control are completely destroyed, providing a non-occluded view of
the internal oblique muscles (arrows). Mutant external muscles (arrow head) show a delayed onset of muscle degeneration. Internal muscles
(arrows) remain mostly occluded. (f) At 33:00, apoptosis of persistent muscles is also completed in the mutant. Note that atrophy is more
advanced in the control than in the mutant (f’), resulting in a smaller diameter of the muscle fibers (arrows). (g) At 77:00, persistent control
muscles (arrow) show progressive erosion and an orientation parallel to the body axis. (g’) Corresponding mutant fibers (arrow) display irregular
morphologies and orientations. Note that the complete time series can be viewed as a movie (Additional File 1).
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Figure 4 Validation of the 3D time-lapse image segmentation method. (a) MIP views of persistent dorsal abdominal muscles. (b) & (c) The
performance of 3D image segmentation method for muscles 1 and 2 was determined for semi-automatic segmentation in frame k and for
automated segmentation in 9 predicted frames p. Time-lapse data were acquired at 10 minute intervals. Time is shown relative to PPT. (d) Mean
segmentation performance for the two muscles over 30 frames, including 3 k and 27 p-frames. Hence nk = 6 and np = 54. Recall R = (TP)/(TP-
FN), Precision P = (TP)/(TP-FP) and Accuracy F = 2*P*R/(P+R), with TP = true positives, FN = false negatives and FP = false positives.
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Figure 5 Segmentation facilitates visualization and quantification of muscle remodeling. (a) Selected dorsal views derived from MIPs of a
pupal abdomen where muscles are labeled using Grasp65-GFP (green). Arrows indicate two segmented persistent muscles. The scale bar in the
top panel represents 100 μm and applies to all other panels. (b) Iso-surface rendering of the two segmented muscles. Syncytial nuclei are
rendered in red. (c, d) Segmentation permits the measurement of dynamic features, such as volume (c), diameter and the axis of inertia.
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Figure 6 Comparison of morphological changes during muscle remodelling between EAST(1-1902)-GFP misexpression and control
genotypes. (a) The mean diameters of silhouette ROIs of segmented muscles (Figure 3f, 3f’, arrows) decrease as a result of atrophy during
metamorphosis. Time is shown in hours after PPT. Consistent with a visual inspection of images (Figure 3), EAST(1-1902)-GFP misexpression leads
to a delay in muscle atrophy. (b) The extent of the muscle silhouettes can be used to quantify phenotypic differences in cell shape. The
progression towards irregular cell morphology is accompanied by a decrease in extent. In contrast, the corresponding values in controls remain
constant while the shape of the muscle fiber maintains its straight morphology.
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variety of challenges, including data management, intuitive
phenotypic characterization and 3D visualization of cellu-
lar dynamics.
The case study illustrated the benefits of performing

time-series rather than endpoint assays. Examining the
terminal phenotype resulting from EAST (1-1902)-GFP
overexpression at the end of metamorphosis would have
uncovered an abnormal terminal phenotype of abdominal
muscles. However, interpretation would be incomplete as
we would have missed that the morphology was normal
until the prepupal stage and that the genetic perturbation
suppressed apoptosis. Metamorphosis lasts around 5 days
and is dynamic. As such, quantitative and transient pheno-
typic effects, such as a wider diameter of muscle fibers or
delayed cell histolysis are easier to detect if time-series
data of control specimen of the same age are displayed in
parallel. The overexpression of truncated EAST corrobo-
rates previous data of its function in inhibiting histolysis
[6]. However, since endogenous east is expressed ubiqui-
tously, it could be counter-argued that the muscle pheno-
type was a secondary effect of a different abnormality,
such as loss of innervation. The targeted genetic perturba-
tion described in this case study supports our initial con-
clusion. Moreover, the fact that overexpression of shorter
version of GFP tagged EAST (aa 1-1536) did not affect
muscle development suggests that the region spanning
residues 1537-1901 may be specifically required for autop-
hagic cell death. No defects were observed in larvae and
prepupae, suggesting that EAST (1-1902)-GFP overexpres-
sion did not interfere with muscle structural maintenance
and function prior to pupariation.
In the future, we plan to apply our workflow to the

characterization of targeted gene silencing in muscles
using RNAi. Public stock collections offer several thou-
sand UAS-RNAi lines, e.g. the Transgenic RNAi Project
(TRiP) collection [42]. Furthermore, the accuracy of the
3D segmentation requires improvements. We noticed a
loss of performance of predicted frames compared to
key frames segmented in an interactive fashion. The
increased false positive rates could be attributed to dead
muscle fragments being merged to segmented objects.
Our efforts will focus on using temporal information to
exclude these fragments as their mobility is higher than
that of intact muscles.

Additional material

Additional file 1: Temporal comparisons of time-lapse images
facilitate the discovery of phenotypic abnormalities resulting from
genetic perturbations. The movie shows metamorphosis of two
genotypes at 30 minute intervals, a control specimen (left panel)
expressing Grasp65-GFP (green) and Histone-mKO (red) and specimen
expressing EAST(1-1902)-GFP (right panel), tau-GFP (green) and Histone-
mKO (red). The time-lapse starts during the prepupal stage (-6 hours)
and last until late pupal stage (+88 hours). The transition from the

prepupal to pupal stage begins at zero hours. Note that EAST(1-1902)-
GFP overexpression lead to suppression of muscle histolysis in the first
25 hours of the pupal stage and abnormalities of muscle morphology
from +38 hours onwards. See Figure 3 for more details.

List of abbreviations used
DEOM: dorsal external oblique muscle; DIOM: dorsal internal oblique muscle;
GFP: Green Fluorescent Protein; MIP: Maximum intensity projection; mKO:
monomeric Kusabira Orange; PPT: prepupal to pupal transition; TLM: time-
lapse microscopy.
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