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Abstract

Background: The metabolic network is an aggregation of enzyme catalyzed reactions that converts one
compound to another. Paths in a metabolic network are a sequence of enzymes that describe how a chemical
compound of interest can be produced in a biological system. As the number of such paths is quite large, many
methods have been developed to score paths so that the k-shortest paths represent the set of paths that are
biologically meaningful or efficient. However, these approaches do not consider whether the sequence of enzymes
can be manufactured in the same pathway/species/localization. As a result, a predicted sequence might consist of
groups of enzymes that operate in distinct pathway/species/localization and may not truly reflect the events
occurring within cell.

Results: We propose a path weighting method CMPF (Class-switching Minimized Pathfinder) to search for routes
in a metabolic network which minimizes pathway switching. In biological terms, a pathway is a series of chemical
reactions which de ne a specific function (e.g. glycolysis). We conjecture that routes that cross many pathways are
inefficient since different pathways define different metabolic functions. In addition, native routes are also well
characterized within pathways, suggesting that reasonable paths should not involve too many pathway switches.
Our method can be generalized when reactions participate in a class set (e.g., pathways, species or cellular
localization) so that the paths predicted have minimal class crossings.

Conclusions: We show that our method generates k-paths that involve the least number of class switching. In
addition, we also show that native paths are recoverable and alternative paths deviates less from native paths
compared to other methods. This suggests that paths ranked by our method could be a way to predict paths that
are likely to occur in biological systems.

Background
Metabolic networks consist of small chemical molecules
that are transformed from one to another by enzymes in
a specified series of reactions. Predicting source-to-target
routes in metabolic pathways is an interesting problem
that has applications in synthetic biology, bioengineering
and systems biology. For example, a biologist might be
interested to know how long-chained lipids might be
produced. It is also useful in tracer and genetic knockout
experiments [1].

The problem is defined on a set of rules which dictate
how substrates are transformed into products on a given
enzyme. Blum and Kohlbacher described two early
approaches targeted at this problem [1]. The first models
compound transforming rules into a graph and employs
shortest path algorithms to predict routes [2,3]. The sec-
ond approach expands a set of compounds (initially just
the starting substrate) by applying the set of rules itera-
tively adding the products of reactions to the set [4]. A
shortest path algorithm is then run on a graph constructed
from the resulting set of compounds.
It is uninteresting to only output a single shortest path,
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length. For example, the path from glucose to pyruvate has
a shortest length of 4, but the native path requires 9 reac-
tions. On the other hand, the number of paths between a
source and a target can grow exponentially in a highly
connected network. For example, Blum and Kohlbacher
reported that between glucose and pyruvate, there can be
about 500,000 paths [5]. Most reported methods use
Eppstein’s k-shortest path algorithm [6] in which the
paths are not guaranteed to be simple loopless paths.
Routes with loops are biologically uninteresting because
they overlap with a shorter route previously discovered.
The problem of finding k-shortest simple loopless paths
incurs higher complexity and is harder to implement. The
results from shortest-path finding is also highly dependent
on the weights associated with nodes or edges, which are
modelled differently in different approaches. For example,
Croes et al. use nodes to represent chemical compounds
and assigned weights to nodes based on its degree central-
ity [2]. Rahman et al. assign weights to edges based on
compound structure similarity [3].
Earlier approaches also try to avoid compounds parti-

cipating in many reactions but do not play an important
role in the path. These compounds are termed as ‘cur-
rency’ compounds since they are circulating in meta-
bolic pathways. Blum and Kohlbacher use atom
mapping rules which keeps track of atom transfer
between substrate and product compounds to avoid

paths with currency compounds [1]. More recent
approaches relied on new information – e.g., the RPAIR
database [7-10] – to avoid ‘currency’ compounds and to
infer more reliable routes. Xia et al. use species informa-
tion to model the weights of graph edges [11], they
believed that reactions that can be found in more spe-
cies are more reliable. However, these approaches do
not check whether it is possible to start with a reaction
from a certain pathway/species and end with a reaction
so that as little change in pathway/species is required in
the route. It might be biologically unmeaningful to
obtain routes where there are reactions in the middle of
the route that cannot be produced from the pathway/
species that the first substrate started from. We think
that routes with minimal switches are more preferable.
In addition, most approaches fail to recover the native
source-to-target route that is used by biological systems.
We suggest that plausible routes should not deviate too
much from native routes.
In this paper, we propose a method, Class-switching

Minimized Path Finder (CMPF), to find k routes that
minimizes species/pathway switching. A switch is the
case when a reaction in a path leads from a plausible set
of species/pathways to a distinct set of species/pathways
(See Figure 1). The routes are scored so that routes that
cross many species/pathways have a higher penalty than
those that do not.

Figure 1 A pathway-switching route crossing the glycolysis/serine pathway. A pathway switch occurs when an enzyme catalyzed reaction
exist in a separate pathway from precursor reactions. In this example, the enzyme that catalyzes the reaction from Glycerate-3P to
3-Phosphonoexypyruvate does not exist in the glycolysis pathway.
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Methods
Basic Framework
One way to find paths that minimizes species crossing is
to reduce this problem to the original k shortest path
problem. This can be done by modelling the network
using a reaction connecting graph where by the nodes
are reactions and an edge connects two reactions if the
product of one is the substrate of the other. Unique reac-
tion nodes are duplicated for each species that the reac-
tion occurs in. For example, if ten species are involved in
a reaction, then ten separate reaction nodes will be cre-
ated. An edge is assigned weight of zero if the two nodes
have the same supporting species and one otherwise. Any
k-shortest path produced by the algorithm also has mini-
mum species crossing because each cross-species reac-
tion in the path has a penalty of one, whereas reactions
that do not cross species have no penalty. However, this
results in a prohibitively large number of nodes and
edges. For example, if every reaction is supported by
1000 species on average, then for every two reaction
nodes in the original graph, we obtain 2000 nodes with
1,000,000 edges between them.
If the reaction nodes are compacted by storing all the

species supporting that reaction, then a k-shortest-path
approach does not work. This is because two routes

might share a common reaction and a switch is
incurred in one of the routes but not the other. On the
other hand, a k-shortest-path approach requires the
edge weight to be unchanged. When the shared reac-
tion has a shared edge weight, a switch cannot be cap-
tured by such a framework. This suggests that paths
should be scored independently from one another (See
Figure 2).
Instead, the algorithm in CMPF uses bounded depth

path enumeration and scores the paths based on a scor-
ing scheme where paths that cross species/pathways
many times have higher penalty scores than those that
do not. We use a bipartite graph to model the metabolic
network which consists of RPAIR nodes r1, ..., rn and
compound nodes c1, ..., cn. An RPAIR is pair of com-
pounds with similar chemical structure on two sides of
a reaction [7]. A directed edge connects RPAIR to com-
pound and vice versa if the compound participates in
the reaction represented by the RPAIR. We use the
notation RPAIR and reaction interchangeably in this
paper, since they represent similar concepts.
Given a reaction ri in a linear path j = r1 ® ... ® rn, we

write Pj (ri) and Sj (ri) respectively to be the set of path-
ways and species that “support” the reaction ri in the lin-
ear path j. We assume that the pathways and species

Figure 2 An example demonstrating that k-shortest path cannot be used to find paths with minimal-switching. The nodes represent
reactions and are annotated with species in which the reaction exist. The path on the left requires species p1 and the path on the right
requires speices p3. Reaction nodes 3 and 4 are shared between the two paths. The path on the left incurrs a switch and the path on the right
incurrs no switch. The switching requirement cannot be captured using edge weights assigned to the edge 3,4. Instead, the score of each paths
should be computed separately.
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that support the first reaction r1 of j are all the pathways
and species that r1 belongs to; that is, Pj (r1) = P(r1) and
Sj (r1) = S(r1). For an intermediate reaction ri in the lin-
ear path j, if possible, the pathways and species that sup-
port it should be those that ri belongs to and also
support the preceding reaction ri - 1 . Thus, Pj (ri) = Pj
(ri -1) ∩ P(ri), provided Pj (ri-1) ∩ P(ri) is nonempty; and
Sj (ri) = Sj (ri - 1 ) ∩ S(ri), provided Sj (ri - 1 ) ∩ S(ri) is
nonempty. On the other hand, when the set of pathways
or species that support the preceding reaction ri -1 is
totally different from the set of pathways or species that
ri belongs to, it is not possible to transition from reaction
ri -1 to ri in the linear path j. That is, in this case, a path-
way or species switch is necessary. We assume that the
entire set of pathways or species that ri belongs to can be
used for this switch. Thus, Pj (ri) = P(ri) when Pj (ri -1) ∩

P(ri) is empty; and Sj(ri) = S(ri) when Sj (ri -1) ∩ S(ri) is
empty (See Figure 3).
Now, we are ready to define our basic framework of

reaction transition weight and linear path score as
follows:
Definition 1 The weight of a transition ri ® ri+1 in a

linear path j = r1 ® ... ® rn based on pathways is
defined as

weightP,φ (ri → ri+1) = γ + δ,

where g is some constant denoting the cost of making a
within-pathway transition and δ is the extra cost of making
a pathway switch; note that δ = 0 if Pj(ri -1) ∩ P(ri) is none-
mpty, as a pathway switch is not needed in this situation.
We will further refine g and δ in the next section.

Figure 3 An example illustrating the sets Pj(r) and P(r). A bipartite graph showing reactions r1, r2, r3 and compounds c1, c2, c3. The
transition from r1 to r2 can be made by using pathway b but the transition from r2 to r3 requires a switch from pathway b to one of the
pathways d,e,f.
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Table 1 Comparing average number of pathways crossed from the top 20 routes in two methods.

Source Target switchmrsd switchneato switchmetaroute switchcmpf1 switchcmpf2

glucose pyruvate 1.95 1.5 2.95 0 0.85

glutamate proline 2.45 2.79 0.47 0 0.3

oxaloacetate malate 1.75 1.33 0.65 0 0.95

glutamate arginine 2.45 2.05 0.4 0 0

cdp-diacyl-glycerol cardiolipin 1.75 1.0 1.8 0 0.1

gtp riboflavin 2 1.78 4.25 0.95 1.05

allantoin glyoxylate 4.3 2.0 * 1.85 3.15

rhamnose pyruvate 1.9 0.875 1.1 0.85 1

CMPF1 uses static penalty and CMPF2 uses dynamic penalty. (*denotes no path found by method)

Figure 4 Top 10 routes from glucose to pyruvate obtained using CMPF with dynamic penalties. Paths predicted using CMPF with
dynamic penalties deviate the least from the native path highlighted in red compared to other methods. As compared to using constant
penalties, using dynamic penalties may permit a switch if the species/pathways involved in the switch are similar to each other. Dynamic
penalties can also differentiate two paths with equal number of switches.
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The weight of a transition ri ® ri+1 based on species
is denoted weightS,j (ri ® ri +1), which is defined
analogously.
Definition 2 The pathway- or species-based score of

linear path j = r1 ® ... ® rn is just the sum of the
weights of all the transitions in j based on pathways or
species. That is,

score (φ) =
n−1∑

i=1

weightφ (ri → ri+1)

where weightj (ri ® ri+1) is either weight P,j (ri ® ri +1)
or weight S,j (ri ® ri+1), for pathway- or species-based
score respectively.
In the composite network, vertices represent proteins

and edges represent relationships between proteins. The
composite network has an edge between proteins u and
v if and only if there is a relationship between u and v
according to any of the data sources.

In our scoring scheme, the weight of a transition ri ®
ri+1 in a linear path depends on whether the pathways
(or species) that support ri also support ri+1 in that spe-
cific linear path. Thus, a topologically shorter linear
path may have a higher score (i.e., cost) than a longer
one. Moreover, the computation of the score is indepen-
dent between different linear paths, suggesting exhaus-
tive enumeration of linear paths as a method to find
and rank linear paths. Since most linear paths that are
useful usually do not exceed a certain topological length
and also because exhaustive enumeration can be slow,
we use bounded depth enumeration to speed up the
search process.
We construct a global metabolic bipartite graph anno-

tated with species/pathway information and exclude non-
main RPAIRs to avoid ‘currency’ compounds. We enu-
merate all possible paths up to a specified depth and
return the k lowest scoring linear paths based on our
scoring scheme. In this way, we guarantee that linear

Figure 5 Top 10 routes from glucose to pyruvate obtained using CMPF with constant penalties. Paths predicted using CMPF with static
penalty where the cost of a switch is set to 100. The native path is highlighted in red.
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paths generated by our method have the least number of
cross-pathway/species reactions and are always optimal
up to the depth to which we traverse the graph.

Framework Extensions
Edge Weights
Many other approaches have tried giving paths meaning
by defining meaningful edge weights. Our framework
allows us to reuse these ideas and incorporate these
weights. For example, Croes et al. use node connectivity
as edge weights so that ‘currency’ compounds are avoided
[2]; and Xia et al. use the inverse of organism frequency
that a reaction belongs to as edge weights so that reac-
tions that belong to more organisms are preferred [11].
In CMPF, we use g1 and g2 to denote these two scoring
strategies.
Penalty Scores
Native paths rarely involve a switch between pathways.
On the other hand, alternative paths might involve
such switching. The penalty given when a switch
occurs can be made more meaningful, since some

pathway crossing is preferable to others. Our frame-
work discussed thus far allows us to rank linear paths
by their pathway switching equivalence class. A path-
way switching equivalence class here refers to a group
of linear paths with the same number of pathway/
switches. However, the arbitration of linear paths
within the same pathway switching equivalence class is
random.
We can do better by defining a function which com-

putes the distance from one pathway to another. We de
ne the ‘metabolite closure’ M(x) of a pathway x to be
the set of metabolites that are generated within that
pathway. We hypothesize that pathways performing
similar function have similar metabolite closures
because the end product often determines intermediate
metabolites. Hence, a switch from pathway x to pathway
y would be preferred if their metabolite closures agree
well with each other.
Definition 3 The distance between two pathways x

and y is the average of the normalized size of the set dif-
ference of their metabolite closures M(x) and M(y).

Figure 6 Top 10 routes from glucose to pyruvate obtained using MRSD. (Native path not recovered).
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In addition, a switch can involve two sets of pathways.
In this case, we take the average distance of all possible
switchings.
Definition 4 Given a transition ri ® ri +1 in a linear

path j and Pj(ri) ∩ P(ri+1) is an emptyset, we define

δ1 =

∑
x∈Pφ(ri),y∈P(ri+1) δ′

1

(
x, y

)

|Pφ (ri) × P (ri+1) |

and δ1 = 0 if Pj (ri) ∩ P(ri+1) is non-empty.
Similarly, a switch between species is more likely to

happen if the two species are related. The distance
between two species can be similarly defined using their
metabolite closures. A more intuitive measure of species
similarity is one that is based on the taxonomy tree. In
this case, the path length from species x to y in the

taxonomy tree can be used to determine the distance
between them; we denote this distance by δ′

2

(
x, y

)
.

Definition 5 Given a transition ri ® ri+1 in a linear
path j and Sj (ri) ∩ S(ri+1) is an emptyset, we define

δ2 =

∑
x∈Sφ(ri),y∈S(ri+1) δ′

2

(
x, y

)

|Sφ (ri) × S (ri+1) | ,

which is the average taxonomic path length between
the two sets of species that support these two consecutive
reactions in the linear path j; δ2 = 0 if Sj (ri) ∩ S(ri+1) is
non-empty.
Combination of Scoring Functions
We modify Definition 1 to a weighted sum of scores
defined in the previous section.
Definition 6 The weight of a transition ri ® ri + 1 in a

linear path j = r1 ® ... ® rn is defined as

weightφ (ri → ri+1) = w1 ∗ γ1 + w2 ∗ γ2 + w3 ∗ δ1 + w4 ∗ δ2

Figure 7 Top 10 routes from glyucose to pyruvate obtained using MetaRoute. (Native path not recovered).
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where g1, g2, δ1, and δ2 are described earlier; and w1 +
w2 + w3 + w4 = 1.

Results
Constant Penalty
We compare CMPF using standard reference metabolic
pathways as defined in [12] against MRSD [11], MetaR-
oute [1] and a pathfinding method in the NEAT software
package described in [2]. MRSD and MetaRoute use
compound transform graph to model the metabolic net-
work and use species support and node connectivity
respectively to score paths. NEAT model the metabolic
network using RPAIRs and the score of a path is a com-
bination of the node connectivity and a score given for
each type of RPAIR. Our framework can easily model

these approaches. For example, we can easily emulate
MRSD by setting w1 = w3 = w4 = 0 in Definition 3. It can
also easily emulate MetaRoute by setting w2 = w3 = w4 =
0. At the same time, we can avoid pathway/species
switches while emulating these previous approaches. We
define weightj(ri ® ri+1) as w1 * g1 + w2 * g2 + δ. We use
g1 (node connectivity) and g2 (species support) defined in
section 3.1 and set δ to be 100, to avoid penalizing long
routes with no switching. We set w1 and w2 to be 0.5 so
that g1 and g2 have equal contribution to the edge weight.
For example, a route without switching will only be
ranked lower than a switching path if its topological
length is greater than 100. The top 20 paths for each
method is obtained and the number of pathway switches
in every path measured. For each reference case, we

Figure 8 Top 10 routes from glucose to pyruvate obtained using NEAT. (Native path not recovered). Paths predicted using MRSD,
Metaroute and NEAT do not recover the native route. Alternative paths also do not align well with the native path.
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computed the average number of switches; see table 1.
We observe that most paths returned by other methods
incur many pathway switches.

Dynamic Penalty
We also used weights and penalty scores in sections 3.1
and 3.2 so that switching penalties reflected how differ-
ent the switched species/pathways are. We set w1 =
0.33, w2 = 0.33 and w3 = 0.33, so that g1, g2 and δ1 con-
tributes equally to an edge weight. The routes obtained
from assigning dynamic penalties in CMPF aligned bet-
ter to native pathways and alternative routes are only a
slight deviation from native pathways, suggesting that
such routes are more likely to happen in real biological
systems. In contrast there is little alignment observed
for other methods. For example, the glucose to pyruvate
route with native path in red is shown in Figure 4, 5, 6,
7, 8.
A linear path can be also represented by tracing which

pathways are used at each reaction step. This pathway

trace intuitively tells us the transitions between path-
ways in a linear path (See Figure 9). Native paths have a
short pathway trace because they often do not cross
pathways since reactions in the same pathway perform a
biologically efficient function. Our results show that
paths produced by other methods not only deviate from
the native path, they also have longer pathway traces.
We chose glucose and pyruvate as source and target
respectively because it is a well-studied metabolic pro-
cess breaking down the carbon backbone in the glycoly-
sis pathway.
There are two consequences to long pathway traces.

The first is that pathway transitions ‘hop’ from one path-
way to another. The number of consecutive reactions in
the same pathway is small. We believe this that such
transitions activates many different biological functions
without achieving any specific purpose. For example,
one of NEAT’s predicted paths is shown in Figure 9b.
The dotted lines represent additional reaction steps in
the same pathway not shown in the figure. The width of

Figure 9 (a) Path extracted from MRSD, (b) Path extracted from NEAT, (c) Path extracted from CMPFdynamic. The dotted edge represents
additional reactions not shown in the same pathway. The width of the edge represents the number of reactions within the same pathway. A
pathway trace is a sequence of pathways activated in a linear metabolic path represented by colored boxes.
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the dotted edge represents the number of consecutive
reaction steps in the same pathway. It starts by breaking
down glucose (glycolysis pathway) and transits to con-
verting and breaking down of lactose, half way through
the process, the intermediate metabolite is converted
back to a glucose analog, switching back to glycolysis fol-
lowed by a transition to the pentose phosphate pathway.
In contrast, CMPF prefers to stick to the same pathway
until a switch is permissible, as indicated by the thicker
dotted lines (See Figure 9c).
The second consequence is that a transition might be

made to a non-relevant pathway. For example, one of
MRSD’s predicted paths is shown in Figure 9a. The
reaction starts from breaking down glucose to producing
fructose followed by a diversion to the glycine protein

pathway before finally producing pyruvate. We think
this is biologically not meaningful because breaking
down of glucose into pyruvate is a simple function that
does not involve anabolism or catabolism of amino-
acids. While it is technically possible to obtain pyruvate
from glucose by going through the protein pathway, it
might make more sense to produce amino acids after
transiting to the protein pathway rather than coming
back to break down glucose. Instead, whenever a switch
is permissible, CMPF prefers to switch to the most simi-
lar pathway based on our dynamic scoring function.
Our method is also flexible to find non-native paths (if

required) while incurring minimal pathway switches at
the same time. For example, one can simply remove gly-
colysis from the set P j(r1) so that future reactions will

Figure 10 Non native routes obtained using CMPF by avoiding the glycolysis pathway.
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avoid switching to the glycolysis pathway. The switching
minimized path from glucose to pyruvate without using
the glycolysis pathway is shown in Figure 10. One of the
paths can be achieved within the nucleotide sugar meta-
bolism pathway. While paths that do not align well to

native pathways might be spurious, alternative paths do
give biological insights to the processes within the cell.
Amongst these paths, those that have lesser switching
might be more likely to be interesting as they circumvent
the two biological consequences discussed above.

Figure 11 A screenshot of CMPF. Our software package includes a visualization tool. Paths are drawn with their molecular structure shown to
allow users to visualize the change in chemical structure.

Lim and Wong BMC Bioinformatics 2012, 13(Suppl 17):S17
http://www.biomedcentral.com/1471-2105/13/S17/S17

Page 12 of 14



Implementation
We build a compound-RPAIR bipartite ‘super’ graph
representing the all reactions in the metabolic network
from all species and pathways as described previously.
The RPAIR database from KEGG is categorized into
‘main’, ‘trans’, ‘cofac’, ‘ligase’ and ‘leave’ depending on
their roles in a chemical reaction [7]. To avoid currency
compounds, we used main RPAIRs to construct the
‘super’ graph. This allows us to enumerate paths in a
reasonable time since many irrelevant edges are
excluded from the ‘super’ graph. However, we note that
some ‘trans’ RPAIRs are present in native paths, sug-
gesting that some ‘trans’ RPAIRs are important for
pathfinding.
On the other hand, permitting edges from ‘trans’

RPAIRs make the exhaustive search significantly slower.
To allow a more comprehensive search to run within
reasonable time, we permitted ‘trans’ RPAIRs edges if
they do not increase the graph branching factor by too
much. To do this, we measure the increase in node con-
nectivity after adding ‘trans’ RPAIR edges. The ‘trans’
RPAIR edges would be added only if they lie within one
standard deviation from the median. This is a heuristic
approach and thus may miss informative paths that
include ‘trans’ RPAIRs.
We developed a software package to exhaustively tra-

verse the graph up to a user specified depth threshold
[see Additional file 1]. The user specifies the starting and
final product as well as the weights for scoring paths.
The paths are displayed using a well known graph visuali-
zation tool, GraphViz [13]. The software also allows users
to highlight paths by their score ranking.

Conclusion
The problem of predicting source target routes in a bio-
logical pathway depends on the users’ searching criteria.
We have shown in this paper that our proposed path
scoring scheme gives users the alternative to find paths
that minimizes class crossing and also allows users to
evaluate predicted paths. Our scoring scheme is also
sufficiently flexible to allow us to find routes with mini-
mal switching between species or any other class that a
reaction can participate in. We evaluate our method
against other graph-based methods and demonstrate
that paths ranked by our scoring scheme align better to
native paths. This suggests that alternative paths pre-
dicted by our method might be more likely to occur in
real biological systems.

Availability and Requirements
Project name: CMPF
Project homepage: http://compbio.ddns.comp.nus.

edu.sg:8080/cmpf/

Operating System(s): Platform independent. Win-
dows system is tested
Programming language: Java
Other requirements: Java runtime environment 1.6

and above, at least 1GB of free RAM.
License: No

Additional material

Additional file 1: Software package for CMPF.
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