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Abstract

Background: Tree reconciliation problems have long been studied in phylogenetics. A particular variant of the
reconciliation problem for a gene tree T and a species tree S assumes that for each interior vertex x of T it is
known whether x represents a speciation or a duplication. This problem appears in the context of analyzing
orthology data.

Results: We show that S is a species tree for T if and only if S displays all rooted triples of T that have three
distinct species as their leaves and are rooted in a speciation vertex. A valid reconciliation map can then be found
in polynomial time. Simulated data shows that the event-labeled gene trees convey a large amount of information
on underlying species trees, even for a large percentage of losses.

Conclusions: The knowledge of event labels in a gene tree strongly constrains the possible species tree and, for a
given species tree, also the possible reconciliation maps. Nevertheless, many degrees of freedom remain in the
space of feasible solutions. In order to disambiguate the alternative solutions additional external constraints as well
as optimization criteria could be employed.

Background
The reconstruction of the evolutionary history of a gene
family is necessarily based on at least three interrelated
types of information. The true phylogeny of the investi-
gated species is required as a scaffold with which the
associated gene tree must be reconcilable. Orthology or
paralogy of genes found in different species determines
whether an internal vertex in the gene tree corresponds
to a duplication or a speciation event. Speciation events,
in turn, are reflected in the species tree.
The reconciliation of gene and species trees is a widely

studied problem [1-10]. In most practical applications,
however, neither the gene tree nor the species tree can
be determined unambiguously.
Although orthology information is often derived from

the reconciliation of a gene tree with a species tree (cf. e.g.
TreeFam [11], PhyOP [12], PHOG [13], EnsemblCompara

GeneTrees [14], and MetaPhOrs [15]), recent benchmarks
studies [16] have shown that orthology can also be
inferred at similar levels of accuracy without the need to
construct trees by means of clustering-based approaches
such as OrthoMCL [17], the algorithms underlying the
COG database [18,19], InParanoid [20], or ProteinOrtho
[21]. In [22] we have therefore addressed the question:
how much information about the gene tree, the species
tree, and their reconciliation is already contained in the
orthology relation between genes?
According to Fitch’s definition [23], two genes are (co-)

orthologous if their last common ancestor in the gene
tree represents a speciation event. Otherwise, i.e., when
their last common ancestor is a duplication event, they
are paralogs. The orthology relation on a set of genes is
therefore determined by the gene tree T and an “event
labeling” that identifies each interior vertex of T as either
a duplication or a speciation event. (We disregard here
additional types of events such as horizontal transfer and
refer to [22] for details on how such extensions might be
incorporated into the mathematical framework.) One of
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the main results of [22], which relies on the theory of
symbolic ultrametrics developed in [24], is the following:
a relation on a set of genes is an orthology relation (i.e., it
derives from some event-labeled gene tree) if and only if
it is a cograph (for several equivalent characterizations of
cographs see [25]). Note that the cograph does not con-
tain the full information on the event-labeled gene tree.
Instead the cograph is equivalent to the gene tree’s
homomorphic image obtained by collapsing adjacent
events of the same type [22]. The orthology relation thus
places strong and easily interpretable constraints on the
gene tree.
This observation suggests that a viable approach to

reconstructing histories of large gene families may start
from an empirically determined orthology relation, which
can be directly adjusted to conform to the requirement
of being a cograph. The result is then equivalent to an
(usually incompletely resolved) event-labeled gene tree,
which might be refined or used as constraint in the infer-
ence of a fully resolved gene tree. In this contribution we
are concerned with the next conceptual step: the deriva-
tion of a species tree from an event-labeled gene tree. As
we shall see below, this problem is much simpler than
the full tree reconciliation problem. Technically, we will
approach this problem by reducing the reconciliation
map from gene tree to species tree to rooted triples of
genes residing in three distinct species. This is related to
an approach that was developed in [26] for addressing
the full tree reconciliation problem.

Methods
Definitions and notation
Phylogenetic trees
A phylogenetic tree T (on L) is a rooted tree T = (V, E),
with leaf set L ⊆ V , set of directed edges E, and set of
interior vertices V0 = V\L that does not contain any ver-
tices with in- and outdegree one and whose root rT Î V
has indegree zero. In order to avoid uninteresting trivial
cases, we assume that |L| ≥ 3. The ancestor relation �T

on V is the partial order defined, for all x, y Î V , by
x�Ty whenever y lies on the path from x to the root. If
there is no danger of ambiguity, we will write x � y
rather than x�Ty. Furthermore, we write x ≺ y to mean
x � y and x ≠ y. For x Î V , we write L(x) := {y ∈ L|y � x}
for the set of leaves in the subtree T (x) of T rooted in x.
Thus, L(rT ) = L and T (rT ) = T . For x, y Î V such that
x and y are joined by an edge e Î E we write
e = [y, x] if x ≺ y. Two phylogenetic trees T = (V, E) and
T’ = (V’, E’) on L are said to be equivalent if there exists a
bijection from V to V’ that is the identity on L, maps rT
to rT’, and extends to a graph isomorphism between T
and T ’. A refinement of a phylogenetic tree T on L is a
phylogenetic tree T’ on L such that T can be obtained
from T’ by collapsing edges (see e.g. [27]). Suppose for

the remainder of this section that T = (V, E) is a phyloge-
netic tree on L with root rT . For a non-empty subset of
leaves A ⊆ L, we define lcaT (A), or the most recent com-
mon ancestor of A, to be the unique vertex in T that is
the greatest lower bound of A under the partial order�T.
In case A = {x, y}, we put lcaT (x, y) := lcaT ({x, y}) and if
A = {x, y, z}, we put lcaT (x, y, z) := lcaT ({x, y, z}). For
later reference, we have, for all x Î V , that x = lcaT (L
(x)). Let L’ ⊆ L be a subset of |L’| ≥ 2 leaves of T. We
denote by T (L’) = T (lcaT (L’)) the (rooted) subtree of T
with root lcaT (L’). Note that T(L’) may have leaves that
are not contained in L’. The restriction T|L′ of T to L’ is
the phylogenetic tree with leaf set L’ obtained from T by
first forming the minimal spanning tree in T with leaf set
L’ and then by suppressing all vertices of degree two with
the exception of rT if rT is a vertex of that tree. A phylo-
genetic tree T’ on some subset L’ ⊆ L is said to be dis-
played by T (or equivalently that T displays T ’) if T ’ is
equivalent with tree T|L′. A setT of phylogenetic trees T
each with leaf set LT is called consistent ifT = ∅ or there
is a phylogenetic tree T on L = ∪T∈T LT that displays T ,
that is, T displays every tree contained inT . Note that a
consistent set of phylogenetic trees is sometimes also
called compatible (see e.g. [27]).
It will be convenient for our discussion below to

extend the ancestor relation �T on V to the union of
the edge and vertex sets of T. More precisely, for the
directed edge e = [u, v] Î E we put x≺Te if and onfly if
x�Tv and e≺Tx if and only if u�Ex. For edges e = [u, v]
and f = [a, b] in T we put e � f if and only if v � b.
Rooted triples
Rooted triples are phylogenetic trees on three leaves
with precisely two interior vertices. Sometimes also
called rooted triplets [28] they constitute an important
concept in the context of supertree reconstruction
[27,29] and will also play a major role here. Suppose L =
{x, y, z}. Then we denote by ((x, y), z) the triple r with
leaf set L for which the path from x to y does not inter-
sect the path from z to the root rr and thus, having.
lcar(x, y) ≺ lcar(x, y, z) For T a phylogenetic tree, we
denote by �(T) the set of all triples that are displayed
by T .
Clearly, a set R of triples is consistent if there is a

phylogenetic tree T on X = ∪r∈RL(ρr) such that
R ⊆ R(T). Not all sets of triples are consistent of
course. Given a triple set R there is a polynomial-time
algorithm, referred to in [27] as BUILD, that either con-
structs a phylogenetic tree T that displays R or that
recognizes that R is inconsistent, that is, not consistent
[30]. Various practical implementations have been
described starting with [30], improved variants are dis-
cussed in [31,32].
The problem of determining a maximum consistent

subset R ′ of an inconsistent set of triples, on the other
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hand is NP-hard and also APX-hard, see [33,34] and the
references therein. We refer to [35] for an overview on
the available practical approaches and further theoretical
results.
The BUILD algorithm, furthermore, does not necessa-

rily generate for a given triple set R a minimal phyloge-
netic tree T that displays R, i.e., T may resolve
multifurcations in an arbitrary way that is not implied
by any of the triples in R. However, the tree generated
by BUILD is minor-minimal, i.e., if T’ is obtained from
T by contracting an edge, T’ does not display R any-
more. The trees produced by BUILD do not necessarily
have the minimum number of internal vertices. Thus,
depending on R, not all trees consistent with R can be
obtained from BUILD. Semple [36] gives an algorithm
that produces all minor-minimal trees consistent with
R. It requires only polynomial time for each of the pos-
sibly exponentially many minor-minimal trees. The pro-
blem of constructing a tree consistent with R and
minimizing the number of interior vertices is NP-hard
and hard to approximate [37].

Event labeling, species labeling, and reconciliation map
A gene tree T arises through a series of events along a
species tree S. We consider both T and S as phyloge-
netic trees with leaf sets L (the set of genes) and B (the
set of species), respectively. We assume that |L| ≥ 3 and
|B| ≥ 1. We consider only gene duplications and gene
losses, which take place between speciation events, i.e.,
along the edges of S. Speciation events are modeled by
transmitting the gene content of an ancestral lineage to
each of its daughter lineages.
The true evolutionary history of a single ancestral gene

thus can be thought of as a scenario such as the one
depicted in Figure 1. Since we do not consider horizontal
gene transfer or lineage sorting in this contribution, an
evolutionary scenario consists of four components: (1) A
true gene tree T̂, (2) a true species tree Ŝ, (3) an assign-
ment of an event type (i.e., speciation •, duplication □,
loss ⊗, or observable (extant) gene ⊙) to each interior
vertex and leaf of T̂, and (4) a map µ assigning every ver-
tex of T̂ to a vertex or edge of Ŝ in such a way that (a) the
ancestor order of T̂ is preserved, (b) a vertex of T̂ is
mapped to an interior vertex of Ŝ if and only if it is of
type speciation, (c) extant genes of T̂ are mapped to
leaves of S. Alternatively, one could define T̂ and Ŝ to be
metric graphs (i.e., comprising edges that are real inter-
vals glued together at the vertices) with a distance func-
tion that measures evolutionary time. In this picture, μ̂ is
a continuous map that preserves the temporal order and
satisfied conditions (b) and (c).
In order to allow μ̂ to map duplication vertices to a

time point before the last common ancestor of all spe-
cies in Ŝ, we need to extend our definition of a species

tree by adding an extra vertex and an extra edge
“above” the last common ancestor of all species. Note
that strictly speaking Ŝ is not a phylogenetic tree any-
more. In case there is no danger of confusion, we will
from now on refer to a phylogenetic tree on B with this
extra edge and vertex added as a species tree on B and
to rB as the root of B. Also, we canonically extend our
notions of a triple, displaying, etc. to this new type of
species tree.
The true gene tree T̂ represents all extant as well as all

extinct genes, all duplication, and all speciation events.
Not all of these events are observable from extant genes
data, however. In particular, extinct genes cannot be
observed. The observable part T = T (V, E) of T̂ is the
restriction of T̂ to the leaf set L of extant genes, i.e.,
T = T̂|L.
Furthermore, we can observe a map s: L ® B that

assigns to each extant gene the species in which it resides.
Of course, for x Î L we have σ (x) = μ̂(x). Here B is the
leaf set of the extant species tree, i.e., B = s(L). For ease of
readability, we also put s(T’) = {s(x): x Î L(y)} for any sub-
tree T’ of T with T’ = T (y) where y Î V°. Alternatively, we
will sometimes also write s(y) instead of s(T (y)). Last but
not least, for Y ⊆ L, we put s(Y ) = {s(y): y Î Y}.
The observable part of the species tree S = (W H) is

the restriction Ŝ|B of Ŝ to B. In order to account for
duplication events that occurred before the first specia-
tion event, the additional vertex rS Î W and the addi-
tional edge [rs, lcasB] Î H must be part of S.
The evolutionary scenario also implies an event labeling

map t : V → {•,� , 
} that assigns to each interior vertex
v of T a value t(v) indicating whether v is a speciation
event (·) or a duplication event (□). It is convenient to use
the special label ⊙ for the leaves x of T . We write (T,t) for
the event-labeled tree. We remark that t was introduced as
“symbolic dating map” in [24]. It is called discriminating if,
for all edges {u, v} Î E, we have t(u) ≠ t(v) in which case
(T,t) is known to be in 1-1-correspondence to a cograph
[22]. Note that we will in general not require that t is dis-
criminating in this contribution. For T = (V, E) a gene tree
on L, B a set of species, and maps t and s as specified
above, we require however that µ and s must satisfy the
following compatibility property:
(C) Let z Î V be a speciation vertex, i.e., t(z) = ·, and

let T’ and T” be subtrees of T rooted in two distinct
children of z. Then s (T’) ∩ s (T”) = ∅.
Note the we do not require the converse, i.e., from the

disjointness of the species sets s (T’) and s(T”) we do
not conclude that their last common ancestor is a spe-
ciation vertex.
For x, y Î L and z = lcaT (x, y) it immediately follows

from condition (C) that if t(lcaT (x, y)) = • then s(x) ≠
s(y) since, by assumption, x and y are leaves in distinct
subtrees below z. Equivalently, two distinct genes x ≠ y

Hernandez-Rosales et al. BMC Bioinformatics 2012, 13(Suppl 19):S6
http://www.biomedcentral.com/1471-2105/13/S19/S6

Page 3 of 11



in L for which s(x) = s(y) holds, that is, they are con-
tained in the same species of B, must have originated
from a duplication event, i.e., t(lcaT (x, y)) = □. Thus we
can regard s as a proper vertex coloring of the cograph
corresponding to (T, t).
Let us now consider the properties of the restriction of μ̂

to the observable parts T of T̂ and S of Ŝ. Consider a spe-
ciation vertex x in T̂. If x has two children y’ and y“ so that
L(y’) and L(y”) are both non-empty then x = lcaT̂(z

′, z′′)
for all z’ Î L(y’) and z” Î L(y”) and hence, x = lcaT
(L(y’)∪(L(y“)). In particular, x is an observable vertex in T.
Furthermore, we know that σ (L(y′)) ∩ σ (L(y′′)) = ∅, and
therefore,μ̂(x) = 1caS(σ (L(y′) ∪ L(y′′)). Considering all
pairs of children with this property this can be rephrased
as μ̂(x) = 1caŜ(σ (L(x))). On the other hand, if x does not
have at least two children with this property, and hence
the corresponding speciation vertex cannot be viewed as
most recent common ancestor of the set of its descendants
in S, then x is not a vertex in the restriction T = T̂|L of T̂ to
the set L of the extant genes. The restriction µ of μ̂ to the
observable tree T therefore satisfies the properties used
below to define reconciliation maps.
Definition 1. Suppose that B is a set of species, that S =

(W, H) is a phylogenetic tree on B, that T = (V, E) is a gene

tree with leaf set L and that s : L ® B and
t : V → {•, �, 
} are the maps described above. Then we
say that S is a species tree for (T,t, s) if there is a map µ :
V ® W ∪ H such that, for all x Î V:
(i) If t(x) = 
 then µ (x) = s (x).
(ii) If t(x) = • then µ (x) ÎW \ B.
(iii) If t(x) = □ then µ(x) Î H.
(iv) Let x, y Î V with x≺Ty. We distinguish two cases:

1. If t(x) = t(y) = □ then μ(x)�Sμ(y) in S.
2. If t(x) = t(y) = • or t(x) ≠ t(y) then μ(x)≺Sμ(y) in S.

(v) If t(x) = • then µ(x) = lcaS(s(L(x)))
We call µ the reconciliation map from (T,t, s ) to S.
We note that µ-1(rS) = ∅ holds as an immediate con-

sequence of property (v), which implies that no specia-
tion node can be mapped above lcaS(B), the unique
child of rS.
We illustrate this definition by means of an example

in Figure 2 and remark that it is consistent with the
definition of reconciliation maps for the case when the
event labeling t on T is not known [38]. Continuing
with our notation from Definition 1 for the remainder
of this section, we easily derive their axiom set as

Figure 1 Gene trees. Left: Example of an evolutionary scenario showing the evolution of a gene family. The corresponding true gene tree T̂
appears embedded in the true species tree Ŝ. The map μ̂ is implicitly given by drawing the species tree superimposed on the gene tree. In
particular, the speciation vertices in the gene tree (red circuits) are mapped to the vertices of the species tree (gray ovals) and the duplication
vertices (blue squares) to the edges of the species tree. Gene losses are represented with “⊗” (mapping to edges in Ŝ). The observable species a
b,..., f are the leaves of the species tree (green ovals) and extant genes therein are labeled with “⊙”. Right: The corresponding gene tree T with
observed events from the left tree. Leaves are labeled with the corresponding species.
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Lemma 2. If µ is a reconciliation map from (T,t, s) to
S and L is the leaf set of T then, for all x Î V.
(D1) x Î L implies µ (x) = s (x).
(D2.a) µ(x) Î W implies µ (x) = lcaS(s (L(x))).
(D2.b) µ (x) Î H implies lcaS(σ (L(x)))≺Sμ(x).
(D3) Suppose x, y Î V such that x≺Ty. If µ (x), µ (y) Î

H then μ(x)�Sμ(y); otherwise μ(x)≺Sμ(y).
Proof. Suppose x Î V. Then (D1) is equivalent to (i)

and the fact that t(x) = 
 if and only if x Î L. Condi-
tions (ii) and (v) together imply (D2.a). If µ (x) Î H
then x is duplication vertex of T. From condition (iv) we
conclude that lcaS(σ (L(x)))�Sμ(x). Since lcaS(s(L(x)))
Î W, equality cannot hold and so (D2.b) follows. (D3) is
an immediate consequence of (iv). □
For T a gene tree, B a set of species and maps s and t

as above, our goal is now to characterize (1) those (T,t,
s) for which a species tree on B exists and (2) species
trees on B that are species trees for (T,t, s).

Results and discussion
Results
Unless stated otherwise, we continue with our assump-
tions on B, (T,t, s), and S as stated in Definition 1. We
start with the simple observation that a reconciliation
map from (T,t, s) to S preserves the ancestor order of T
and hence T imposes a strong constraint on the rela-
tionship of most recent common ancestors in S:
Lemma 3. Let µ : V ® W ∪ H be a reconciliation map

from (T,t, s) to S. Then

1caS(μ(x),μ(y))�Sμ(1caT(x, y)) (1)

holds for all x, y Î V.
Proof. Assume that x and y are distinct vertices of T.

Consider the unique path P connecting x with y. P is
uniquely subdivided into a path P’ from x to lcaT (x, y)
and a path P“ from lcaT (x, y) to y. Condition (iv)
implies that the images of the vertices of P’ and P“

Figure 2 Mapping μ. Example of the mapping μ of nodes of the gene tree T to the species tree S. Speciation nodes in the gene tree (red
circles) are mapped to nodes in the species tree, duplication nodes (blue squares) are mapped to edges in the species tree. s is shown as
dashed green arrows. For clarity of exposition, we have identified the leaves of the gene tree on the left with the species they reside in via the
map s.
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under µ, resp., are ordered in S with regards to �S and
hence are contained in the intervalsQ′’ andQ′′ that con-
nect µ(lcaT (x, y)) with µ(x) and µ(y), respectively. In
particular µ(lcaT (x, y)) is the largest element (w.r.t.�S)
in the union ofQ′ ∪ Q′′ which contains the unique path
from µ(x) to µ(y) and hence also lcaS(µ(x), µ(y)). □
Equation (1) is well known to hold for gene tree/spe-

cies reconciliation in the absence of a prescribed event
labeling in T.
Since a phylogenetic tree (in the original sense) T is

uniquely determined by its induced triple set �(T), it
is reasonable to expect that all the information on the
species tree(s) for (T,t, s) is contained in the images
of the triples in �(T) (or more precisely their leaves)
under s. However, this is not the case in general as
the situation is complicated by the fact that not all
triples in �(T) are informative about a species tree
that displays T. The reason is that duplications may
generate distinct paralogs long before the divergence
of the species in which they eventually appear. To
address this problem, we associate to (T,t, s) the set
of triples

G = G(T, t, σ ) = {r ∈ �(T)|t(lcaT(r)) = • and σ (x) �= σ (y), for all x, y ∈ L(r) pairwise distinct}. (2)

As we shall see below, G (T, t, σ ) contains all the
information on a species tree for (T,t, s) that can be
gleaned from (T,t, s).
Lemma 4. If µ is a reconciliation map from (T,t, s) to

S and ((x, y), z) ∈ G(T, t, σ ) then S displays ((s(x), s
(y)), s(z)).
Proof. Put G = G(T, t, σ ) and recall that L denotes the

leaf set of T. Let {x, y, z} ∈ (L3) and assume w.l.o.g. that
((x, y), z) ∈ G. First consider the case that t(lcaT (x, y)) =
•. From condition (v) we conclude that µ(lcaT (x, y)) =
lcaS(s(x), s(y)) and µ(lcaT (x, y, z)) = lcaS(s(x), s(y),
s(z)). Since, by assumption, lcaT(x, y) ≺ lcaT(x, y, z), we
have as a consequence of condition (iv) that
μ (lcaT(x, y)) ≺ μ(lcaT(x, y, z)). From lcaT (x, z) = lcaT
(y, z) = lcaT (x, y, z) we conclude that S must display ((s
(x), s(y)), s(z)) as S is assumed to be a species tree for
(T,t, s).
Now suppose that t(lcaT (x, y)) = □ and therefore, µ

(lcaT (x, y)) Î H. Moreover, µ (lcaT (x, y, z)) Î W holds.
Hence, Lemma 3 and property (iv) together imply that
lcaS(σ (x), σ (y))≺Sμ(lcaT(x, y))≺Sμ(lcaT(x, y, z)). Thus,
we again obtain that the triple ((s(x), s(y)), s(z)) is dis-
played by S. □
It is important to note that a similar argument cannot

be made for triples in �(T) rooted in a duplication ver-
tex of T as such triplets are in general not displayed by
a species tree for (T,t, s). We present the generic coun-
terexample in Figure 3. To state our main result (Theo-
rem 6), we require a further definition.

Definition 5. For (T,t, s), we define the set

S = S(T, t, σ ) = {((a, b), c)|∃((x, y), z) ∈ G(T, t, σ )with σ (x) = a, σ (y) = b, and σ (z) = c} (3)

As an immediate consequence of Lemma 4,
S(T, t, σ ) must be displayed by any species tree for (T,
t, s) with leaf set B.
Theorem 6. Let S be a species tree with leaf set B.

Then there exists a reconciliation map µ from (T,t, s) to
S whenever S displays all triples in S(T, t, σ ).
Proof. Recall that L is the leaf set of T = (V, E). Put S

= (W, H) and S = S(T, t, σ ). We first consider the
subset G := {x ∈ V|t(x) ∈ {•, 
}} of V comprising of the
leaves and speciation vertices of T.
We explicitly construct the map µ : G ® W as fol-

lows. For all x Î V , we put
(Ml) μ(x) = σ (x) if t(x) = 
,
(M2) µ(x) = lcaS(s(L(x))) if t(x) = •.
Note that alternative (M1) ensures that µ satisfies Con-

dition (i). Also note that in view of the simple conse-
quence following the statement of Condition (C) we have
for all x Î V with t(x) = • that there are leaves y’, y“ Î L(x)
with s(y’) ≠ s(y“). Thus lcaS(µ(L(x)) Î W \ B, i.e. µ satisfies
Condition (ii). Also note that, by definition, alternative
(M2) ensures that µ satisfies Condition (v).
Claim: If x, y Î G with x≺Ty then μ(x)≺Sμ(y).
Since y cannot be a leaf of T as x≺Ty we have t(y) = •.

There are two cases to consider, either t(x) = • or
t(x) = 
. In the latter case µ(x) = s(x) Î B while µ(y) Î
W \ B as argued above. Since x Î L(y) we have
μ(x)≺Sμ(y), as desired.
Now suppose t(x) = •. Again by the simple conse-

quence following Condition (C), there are leaves x’, x“ Î
L(x) with a = s(x’) ≠ s(x“) = b. Since x≺Ty and t(y) = •,
by Condition (C), we conclude that c = s(y’) ∉ s(L(x))
holds for all y’ Î L(y) \ L(x). Thus,((a, b), c) ∈ S. But
then ((a, b), c) is displayed by S and therefore
lcaS(a, b)≺SlcaS(a, b, c).. Since this holds for all triples
((x!, x′′), y′) ∈ G with x’, x“ Î L(x) and y’ Î L(y) \ L(x)
we conclude μ(x) = 1caS(σ (L(x)))≺SlcaS(σ (L(x)) ∪ σ (L(y)\L(x))) = 1caS(σ (L(y))) = μ(y),

establishing the claim. It follows immediately that µ also
satisfies Condition (iv.2) if x and y are contained in G.
Next, we extend the map µ to the entire vertex set V

of T using the following observation. Let x Î V with t
(x) = □. We know by Lemma 3 that µ(x) is an edge [u,
v] Î H so that lcaS(σ (L(x)))�Sv. Such an edge exists
for v = lcaS(s(L(x))) by construction. Every speciation
vertex y Î V with x≺Ty therefore necessarily maps
above this edge, i.e., u�Sμ(y)must hold. Thus we set
(M3) µ(x) = [u, lcaS(s(L(x)))] if t(x) = □.
which now makes μ a map from V to W ∪ H.
By construction, Conditions (iii), (iv.2) and (v) are thus

satisfied by μ. On the other hand, if there is a speciation
vertex y between two duplication vertices x and x’ of T ,

Hernandez-Rosales et al. BMC Bioinformatics 2012, 13(Suppl 19):S6
http://www.biomedcentral.com/1471-2105/13/S19/S6

Page 6 of 11



i.e., x≺Ty≺Tx′, then μ(x)≺Sμ(x′). Thus μ also satisfies
Condition (iv.1).
It follows that μ is a reconciliation map from (T,t, s)

to S. □
Corollary 7. Suppose that S is a species tree for (T,t,

s) and that L and B are the leaf sets of T and S, respec-
tively. Then a reconciliation map μ from (T,t, s) to S
can be constructed in O(|L||B|).
Proof. In order to find the image of an interior vertex

x of T under μ, it suffices to determine s (L(x)) (which
can be done for all x simultaneously, e.g. by bottom up
transversal of T in O(|L||B|) time) and lcaS(s(L(x))). The
latter task can be solved in linear time using the idea
presented in [39] to calculate the lowest common ances-
tor for a group of nodes in the species tree. □
We remark that given a species tree S on B that dis-

plays all triples in S(T, t, σ ), there is no freedom in the
construction of a reconciliation map on the set
{x ∈ V|t(x) ∈ {•,
}}. The duplication vertices of T, how-
ever, can be placed differently, resulting in possibly expo-
nentially many reconciliation maps from (T,t, s) to S.
Lemma 4 implies that consistency of the triple set

S(T, t, σ ) is necessary for the existence of a reconcilia-
tion map from (T,t, s) to a species tree on B. Theorem
6, on the other hand, establishes that this is also suffi-
cient. Thus, we have
Theorem 8. There is a species tree on B for (T,t, s) if

and only if the triple set S(T, t, σ ) is consistent.
We remark that a related result is proven in [26, The-

orem.5] for the full tree reconciliation problem starting
from a forest of gene trees.
It may be surprising that there are no strong restric-

tions on the set S(T, t, σ ) of triples that are implied by
the fact that they are derived from a gene tree (T,t, s).

Theorem 9. For every set –x of triples on some finite set
B of size at least one there is a gen e tree T = (V, E)
with leaf set L together with an event map
t : V → {•,�,
} and a map s : L ® B that assigns to
every leaf of T the species in B it resides in, such that
–x = S(T, t, σ ).
Proof. Irrespective of whether –x is consistent or not we

construct the components of the required 3-tuple (T,t,
s) as follows: To each triple rk = ((xk1, xk2), xk3) ∈ –x we
associate a triple Tk = ((ak1, ak2), ak3) via a map
σk : Lk = {ak1, ak2, ak3} → {xk1, xk2, xk3} with σ (aki) = xki
for i = 1, 2, 3 where we assume that for any two distinct
triples rk, rl ∈ –x we have that sk(Lk) ∩ sl(Ll ) = � 0. Then
we obtain T = (V, E) by first adding a single new vertex
rT to the union of the vertex sets of the triples Tk and
then connecting rT to the root rk of each of the triples
Tk. Clearly, T is a phylogenetic tree on L = ∪rk∈–xL(ρk).
Next, we define the map t : V → {•,�,
} by putting t
(rT ) = □, t(a) = 
 for all a Î L and t(a) = • for all a Î
V − (L ∪ {r T }). Finally, we define the map s : L ® B
by putting, for all a Î L, s(a) = sk (a) where a Î Lk.
Clearly S(T, t, σ ) = –x . □
We remark that the gene tree constructed in the proof

of Theorem 9 can be made into a binary tree by split-
ting the root rT into a series of duplication and loss
events so that each subtree is the descendant of a differ-
ent paralog. Since by Theorem. 9 there are no restric-
tions on the possible triple sets S(T, t, σ ), it is clear that
S will in general not be unique. An example is shown in
Figure 4.
Results for simulated gene trees
In order to determine empirically how much informa-
tion on the species tree we can hope to find in event
labeled gene trees, we simulated species trees together

Figure 3 Triples with duplication event at the root. Triples from T whose root is a duplication event are in general not displayed from the
species tree S. (a) Triple with duplication event at the root obtained from the true evolutionary history of T shown in panel (b). Panel (c) is the
true species tree. In the triple (a) the species y appears as the outgroup even though the x is the outgroup in the true species tree.
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with corresponding event-labeled gene trees with differ-
ent duplication and loss rates. Approximately 150 spe-
cies trees with 10 to 100 species were generated
according to the “age model” [40]. These trees are
balanced and the edge lengths are normalized so that
the total length of the path from the root to each leaf is
1. For each species tree, we then simulated a gene tree
as described in [41], with duplication and loss rate para-
meters r Î 0[1] sampled uniformly. Events are modeled
by a Poisson distribution with parameter r · ℓ, where ℓ

is the length of an edge as generated by the age model.
Losses were additionally constrained to retain at least
one copy in each species, i.e., s(L) = B is enforced. After
determining the triple set S(T, t, σ ) according to Theo-
rem 6, we used BUILD [27] (see also [42]) to compute
the species tree. In all cases BUILD returns a tree that is
a homomorphic contraction of the simulated species
tree. The difference between the original and the recon-
structed species tree is thus conveniently quantified as
the difference in the number of interior vertices. Note
that in our situation this is the same as the split metric
[27].
The results are summarized in Figure 5. Not surpris-

ingly, the recoverable information decreases in particular
with the rate of gene loss. Nevertheless, at least 50% of the
splits in the species tree are recoverable even at very high

loss rates. For moderate loss rates, in particular when gene
losses are less frequent than gene duplications, nearly the
complete information on the species tree is preserved. It is
interesting to note that BUILD does not incorporate splits
that are not present in the input tree, although this is not
mathematically guaranteed.

Discussion
Event-labeled gene trees can be obtained by combining
the reconstruction of gene phylogenies with methods for
orthology detection. Orthology alone already encapsu-
lates partial information on the gene tree. More pre-
cisely, the orthology relation is equivalent to a
homomorphic image of the gene tree in which adjacent
vertices denote different types of events. We discussed
here the properties of reconciliation maps μ from a gene
tree T along with an event labelling map t and a gene to
species assignment map s to a species tree S. We show
that (T,t) event labeled gene trees for which a species
tree exists can be characterized in terms of the set s of
triples that is easily constructed from a subset of triples
of T. Simulated data shows, furthermore, that such trees
convey a large amount of information on the underlying
species tree, even if the gene loss rate is high.
It can be expected that for real-life data the tree T

contains errors so that S := S(T, t, σ ) may not be

Figure 4 Inferred species trees. The set S(T, t, σ ) inferred from the event labeled gene tree (T,t, s) does not necessarily define a unique
species tree. For clarity of exposition, we have identified, via the map s, the leaves of the gene tree and of the set of triplesS(T, t, σ ) with
the species they reside in.
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consistent. In this case, an approximation to the species
tree could be obtained e.g. from a maximum consistent
subset of S. Although (the decision version of) this pro-
blem is NP-complete [43,44], there is a wide variety of
practically applicable algorithms for this task, see
[35,45]. Even if S is consistent, the species tree is
usually not uniquely determined. Algorithms to list all
trees consistent with S can be found e.g. in [46,47]. A
characterization of triple sets that determine a unique
tree can be found in [48]. Since our main interest is to
determine the constraints imposed by (T,t, s) on the
species tree S, we are interested in a least resolved tree
S that displays all triples in S. The BUILD algorithm
and its relatives in general produce minor-minimal
trees, but these are not guaranteed to have the minimal
number of interior nodes. Finding a species tree with a
minimal number of interior nodes is again a hard pro-
blem [37]. At least, the vertex minimal trees are among
the possibly exponentially many minor minimal trees
enumerated by Semple’s algorithms [36].
For a given species tree S, it is rather easy to find a

reconciliation map μ from (T,t, s) to S. A simple solu-
tion μ is closely related to the so-called LCA reconcila-
tion: every node x of T is mapped to the last common
ancestor of the species below it, lcaS(s(L(x))) or to the
edge immediately above it, depending on whether x is
speciation or a duplication node. While this solution is
unique for the speciation nodes, alternative mappings
are possible for the duplication nodes. The set of

possible reconciliation maps can still be very large
despite the specified event labels. If the event labeling t
is unknown, there is a reconciliation from any gene tree
T to any species tree S, realized in particular by the
LCA reconciliation, see e.g. [26,38]. The reconciliation
then defines the event types. Typically, a parsimony rule
is then employed to choose a reconciliation map in
which the number of duplications and losses is mini-
mized, see e.g. [1,4,5,9]. In our setting, on the other
hand, the event types are prescribed. This restricts the
possible reconciliation maps so that the gene tree can-
not be reconciled with an arbitrary species tree any
more. Since the observable events on the gene tree are
fixed, the possible reconciliations cannot differ in the
number of duplications. Still, one may be interested in
reconciliation maps that minimize the number of loss
events. An alternative is to maximize the number of
duplication events that map to the same edge in S to
account for whole genome and chromosomal duplica-
tion events [9].

Conclusions
Our approach to the reconciliation problem via event-
labeled gene trees opens up some interesting new ave-
nues to understanding orthology. In particular, the
results in this contribution combined with those in [22]
concerning cographs should ultimately lead to a method
for automatically generating orthology relations that
takes into account species relationships without having

Figure 5 Recovered splits in species trees. Left: Heat map that represents the percentage of recovered splits in the inferred species tree from
triples obtained from simulated event-labeled gene trees with different loss and duplication rates. Right: Scattergram that shows the average of
losses and duplications in the generated data and the accuracy of the inferred species tree.
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to explicitly compute gene trees. This is potentially very
useful since gene tree estimation is one of the weak
points of most current approaches to orthology analysis.
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