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Abstract

homologous structures in the database.

Background: Many of solved tertiary structures of unknown functions do not have global sequence and structural
similarities to proteins of known function. Often functional clues of unknown proteins can be obtained by
predicting small ligand molecules that bind to the proteins.

Methods: In our previous work, we have developed an alignment free local surface-based pocket comparison method,
named Patch-Surfer, which predicts ligand molecules that are likely to bind to a protein of interest. Given a query
pocket in a protein, Patch-Surfer searches a database of known pockets and finds similar ones to the query. Here, we
have extended the database of ligand binding pockets for Patch-Surfer to cover diverse types of binding ligands.

Results and conclusion: We selected 9393 representative pockets with 2707 different ligand types from the
Protein Data Bank. We tested Patch-Surfer on the extended pocket database to predict binding ligand of 75 non-
homologous proteins that bind one of seven different ligands. Patch-Surfer achieved the average enrichment
factor at 0.1 percent of over 20.0. The results did not depend on the sequence similarity of the query protein to
proteins in the database, indicating that Patch-Surfer can identify correct pockets even in the absence of known

Background

An increasing number of protein structures of uncharac-
terized proteins have been solved by structural genomics
projects. As of June, 2011, there are 3321 structures of
unknown function in the Protein Data Bank (PDB).
Elucidating function of these proteins is an importation
task for bioinformatics. To predict protein function
from structure, we have recently developed an alignment
free local pocket surface comparison method for pre-
dicting the type of ligand that is likely to bind to a
query protein [1]. The algorithm, named Patch-Surfer,
represents a binding pocket as a combination of seg-
mented surface patches, each of which is characterized
by its shape, the electrostatic potential, the hydrophobi-
city, and the concaveness. A query pocket, represented
as a group of patches, is compared with a database of
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pockets of known binding ligand molecules, and binding
ligand prediction is made by summarizing similar pock-
ets retrieved from the database. Representing a pocket
by a set of patches was shown to be effective in tolerat-
ing difference in global pocket shape while capturing
local similarity of pockets. The shape and the physico-
chemical property of surface patches are represented
using the 3D Zernike descriptor (3DZD), a series expan-
sion of mathematical 3D function. In this work, we con-
structed a large database of ligand binding pockets,
which contains a diverse set of pockets. We evaluated
the performance of Patch-Surfer on the database in
terms of the enrichment factor of correct ligand binding
pockets retrieved from the database for query pockets.

Methods

The Patch-Surfer method for binding ligand prediction
Here we briefly describe Patch-Surfer algorithm. Please
refer to the original paper for more details [1]. Given a
query protein structure, the surface is computed and a
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pocket region is extracted. If the binding pocket of the
protein is not known, we can predict it using a protein
pocket detection algorithm, such as Visgrid [2]. The
pocket is segmented to surface patches where four fea-
tures of each patch, geometrical shape, the surface elec-
trostatic potential, the hydrophobicity, and the
concaveness [2], are encoded with 3DZD for efficient
storage and comparison. Thus, a pocket is represented
by a set of surface patches [1,3]. The 3DZD is a series
expansion of a 3D function, which allows compact and
rotationally invariant representation of a 3D object (i.e.
a 3D function) [4]. To compute the 3DZD for a patch, a
patch is mapped on a 3D grid and grid points that over-
lap with the patch are marked with either 1 (for indicat-
ing the geometrical shape) or physicochemical values to
represent. The assigned values in the 3D grid are con-
sidered as a 3D function, f{x), which is expanded into a
series in terms of Zernike-Canterakis basis defined as
follows:

Zu(r 0, ¢) = Ru(r)Y;" (9, ¢) 1)

where -l < m <l, 0 <[ < n, and (n-I) even. Y|"(9, ¢)
are the spherical harmonics and R,,(7) is the radial func-
tion constructed in a way that Z(r, 9, ¢) can be con-
verted to polynomials in the Cartesian coordinates,
Zn(x). To obtain the 3DZD of f(x), first 3D Zernike
moments are computed:

-0 [ ez ®
Ix|<1

Then, the 3DZD, F,;, is computed as norms of vectors
Q,;. The norm gives rotational invariance to the
descriptor:

m=I
Fnl = Z (91211)2 (3)
m=—1

n defines the range of / and a 3DZD is a series of
invariants (Eqn. 3) for each pair of n and [/, where n
ranges from O to the specified order. We use order »n =
15 (72 invariants) in the local surface patch comparison.
The shape and the concaveness are represented by a
vector of 72 invariant values while vectors for the elec-
trostatic potential and the hydrophobicity have 144
invariants.

Next, the query pocket is compared to known pockets
stored in the database. In the database, each pocket is
also represented as a set of surface patches. For exam-
ple, ATP binding pockets are represented with, on aver-
age, 29.5 patches. Given the query pocket and a pocket
in the database, the pocket comparison process first
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identifies similar patches between the two pockets using
a modified bipartite matching algorithm. Two options
were tested for the matching stage: the first approach
matches all patches while the other approach matches
only patches that are more similar than the predefined
distance threshold value. The similarity of the two pock-
ets is measured with linearly combined scoring terms
between the matched patches.

Constructing database of representative ligand binding
pockets

Representative pockets are selected as follows. A list of
5,438 non-redundant protein structures complexed with
ligand molecules extracted from PDB was obtained from
the Protein-Small-Molecule DataBase http://compbio.cs.
toronto.edu/psmdb/downloads/CPLX_25_0.85_7HA list
[5]. From this list, first, we removed all ligands that con-
sist of less than 7 heavy atoms. Then, two ligands which
bind to the same protein were grouped together if a pair
of atoms, one from each ligand, are closer than 4.0 A.
We further filtered out ligands that are closer than 1.4
A to the protein, because they bind covalently to pro-
teins. Also, ligand molecules that are more distant than
3.5 A to any of the protein heavy atoms were removed,
as they are not physically interacting with the protein.
Finally, we obtained 9,393 pockets structures which bind
2707 different types of ligand molecules.

Obtaining weighting factors for scoring function
The distance between patch A in the query pocket and
patch B in a pocket in the database is defined as:

pdist (A, B) = >

wf xL2 (3dzd(A, t), 3dzd(B, 1)), @)
te{shape,hyd,ele,conc}

where L2 is the L2 norm (the Euclidian distance)
between the 3DZDs of patch A and B in terms of the
surface property ¢, which is either the geometrical
shape, hydrophobicity, the surface electrostatic potential,
or the concaveness [2] of the patch. w,” is the weighting
factor for the property ¢, which depend on the patch B
from the database. These weights for each patch in each
ligand molecules were computed using the average (avg)
and the standard deviation (std) of the Euclidian dis-
tance of the patches at the equivalent position (i.e.
patches whose closest ligand atom are the same) in the
same ligand binding pockets in the database. Weight of
a patch P for surface property t € {shape, hyd, ele, con}
is defined as follows:

1
ws? = N(avg: ' 2sid;)
ae{shape,hyd,ele,con) / (avgu + 2stdu)
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The average and the standard deviation are used to
normalize the difference in the distribution of the four
properties.

Test dataset

We tested the performance of Patch-Surfer using a test
dataset that consists of 75 protein pockets, each of
which binds to one of the following seven ligands: ade-
nosine monophosphate (AMP) (9 pockets), adenosine-
5’-triphosphate (ATP) (14 pockets), flavin adenine dinu-
cleotide (FAD) (10 pockets), flavin mononucleotide
(FMN) (6 pockets), alpha- or beta-d-glucose (GLC) (5
pockets), heme (HEM) (16 pockets), and nicotinamide
adenine dinucleotide (NAD) (15 pockets).

Enrichment factor

We used the enrichment factor to evaluate how well
Patch-Surfer retrieves binding pockets of the same bind-
ing ligand for query pockets. The enrichment factor
(EF) describes the ratio of correctly retrieved pockets
relative to the percentage of the database entries
scanned:

o = () (7).

where Tp is the total number of pockets that bind the
ligand type P in the database of the size Tpp, N"p is the
number of pocket for the ligand type P ranked within
the top x percent by the database search method
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(Patch-Surfer) and N, is the total number of retrieved
pockets ranked in the top x percent of the database.

Results and discussion

Pocket retrieval results

Patch-Surfer was run with six different settings: using all
the four properties or using only the shape information
combined with three different distance thresholds for
matching patches, 0.2, 0.3, and no threshold for the
patch distance (Eqn. 4). Using the threshold value of
0.2, only similar surface patches with the distance closer
than 0.2 are matched while the no threshold option
matches the maximum number of pairs between two
pockets regardless of their distance (i.e. all the patches
in the smaller pocket are matched to patches in the lar-
ger pocket). The results (Figure 1A) show that first,
using all the four properties showed better EF than just
using the shape information, and second, using the
threshold value of 0.2 performed best among the three
choices tested for the distance threshold. The best
retrieval was observed when all the patch properties and
the threshold of 0.2 were used. Figure 1B shows the EF
of each ligand types using Patch-Surfer with the thresh-
old distance of 0.2 and all the four properties. The HEM
and the FAD showed very high EF values of over 30 at
early ranks. Patch-Surfer performed relatively poorly for
GLC. The reason for this is that there are twenty other
ligands that are similar to GLC in the database, accord-
ing to the Tanimoto coefficient (higher than 0.85).
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Figure 1 Enrichment factor calculated for different percentiles. A, the average EF of 75 query pockets using different combinations of the
distance threshold and the surface properties. t0.2, t0.3 shows results using the threshold distance of 0.2 and 0.3, respectively; “no t" shows the
result when no threshold is used. Two surface property combinations are used: all four properties, the shape, hydrophobicity, the electrostatic
potential, and the visibility, and only using the shape information. B, EF for each of the ligand types in the test dataset using the distance
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Figure 2 Effect of the sequence similarity in retrieval performance. The sequence identity against the enrichment factor is plotted for all 75
test pockets. The dots in the center of bars show the average sequence identity between a query protein and the proteins that bind the same
ligand molecule as the query protein. The boundary of the bars shows the standard deviation of the sequence identity for each query protein.
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Figure 3 Examples of retrieved binding pockets. The proteins shown on the top at each panel are the query protein and the bottom row
shows the proteins that were retrieved at the top rank by Patch-Surfer from the database. A, a pair of AMP binding proteins and their binding
pockets, 1khtB and 3kd6A. B, FAD binding proteins, 3grsA and 2gqu. C, NAD binding proteins, TmewA and 2i65A. The color of the patches
shows corresponding matched patches from the two pockets.
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Effect of the sequence identity to the enrichment factor
In Figure 2 we show the EF (at 1.0%) of each of the 75
query proteins relative to the sequence identity between
the query proteins to the proteins in the database that
bind to the same ligand molecules. The correlation coef-
ficient between the average sequence identity to their EF
values is 0.05. The plot clearly shows that there is no
dependency between the sequence identity and the EF
values. Patch-Surfer can retrieve binding pockets of the
same ligand type even without having highly similar
proteins in the database.

Binding ligand prediction examples

Figure 3 shows three examples of the query and data-
base protein pairs that were ranked at the 1° in the
retrieval by Patch-Surfer. The three pairs bind AMP,
FAD, and NAD, respectively. The sequence identity
between the AMP binding proteins (Figure 3A) is
only15.8%, FAD binding proteins (Figure 3B) has the
sequence identity of 16.8%, and NAD binding protein
pairs (Figure 3C) has the sequence identity of 15.3%.
The pairs of proteins have different overall backbone
structure, thus methods that compare global protein
structure or the global pocket shape would not capture
their similarity.

Conclusions

We constructed a large database of representative ligand
binding pockets for Patch-Surfer. The sufficiently high
EF achieved by Patch-Surfer shows that the method is
able to retrieve pockets of the same binding ligand from
the large database even in absence of homologous pro-
teins in the database. We are currently building a web
server for easy access to Patch-Surfer.
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