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Abstract

Metabolic network alignment is a system scale comparative analysis that discovers important similarities and
differences across different metabolisms and organisms. Although the problem of aligning metabolic networks has
been considered in the past, the computational complexity of the existing solutions has so far limited their use to
moderately sized networks. In this paper, we address the problem of aligning two metabolic networks, particularly
when both of them are too large to be dealt with using existing methods. We develop a generic framework that
can significantly improve the scale of the networks that can be aligned in practical time. Our framework has three
major phases, namely the compression phase, the alignment phase and the refinement phase. For the first phase, we
develop an algorithm which transforms the given networks to a compressed domain where they are summarized
using fewer nodes, termed supernodes, and interactions. In the second phase, we carry out the alignment in the
compressed domain using an existing network alignment method as our base algorithm. This alignment results in

supernode mappings in the compressed domain, each of which are smaller instances of network alignment
problem. In the third phase, we solve each of the instances using the base alignment algorithm to refine the
alignment results. We provide a user defined parameter to control the number of compression levels which
generally determines the tradeoff between the quality of the alignment versus how fast the algorithm runs. Our
experiments on the networks from KEGG pathway database demonstrate that the compression method we
propose reduces the sizes of metabolic networks by almost half at each compression level which provides an
expected speedup of more than an order of magnitude. We also observe that the alignments obtained by only
one level of compression capture the original alignment results with high accuracy. Together, these suggest that
our framework results in alignments that are comparable to existing algorithms and can do this with practical
resource utilization for large scale networks that existing algorithms could not handle. As an example of our
method’s performance in practice, the alignment of organism-wide metabolic networks of human (1615 reactions)
and mouse (1600 reactions) was performed under three minutes by only using a single level of compression.

Background

Biological networks provide a compact representation
of the roles of different biochemical entities and the inter-
actions between them. Depending on the types of entities
and interactions, these networks are segregated into differ-
ent types, where each network type encompasses a
particular set of biological processes. Protein-protein inter-
action (PPI) networks comprise binding relationships
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between two or more proteins to carry out specific cellular
functions such as signal transduction. Regulatory networks
consist of interactions between genes and gene products
to control the rates at which genes are transcribed. Meta-
bolic networks represent sets of chemical reactions that
are catalyzed by enzymes to transform a set of metabolites
into others to maintain the stability of a cell and to meet
its particular needs. Analysis of the connectivity properties
of these networks has proven to be crucial in uncovering
the details of the cell machinery and in revealing the func-
tional modules and complexes involved in this mechanism
[1-4].
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An essential type of network analysis is the compara-
tive analysis that aims at identifying functionally similar
elements or element sets shared among different organ-
isms which would not be possible if these elements were
only considered individually. This is often achieved
through alignment of the networks of these organisms.
Analogous to sequence alignment which identifies con-
served sequences, network alignment reveals connectivity
patterns that are conserved among two or more organ-
isms. A number of studies have been done to systemati-
cally align different types of biological networks [5-21].
For metabolic networks, Pinter et al. [20] devised an
algorithm that aligns query networks with specific topol-
ogies by using a graph theoretic approach. Recently,
some of us developed an algorithm that combines both
topological features and homological similarity of pair-
wise molecules to align metabolic networks [8]. We also
proposed a method, SubMAP [9,10], that incorporates
subnetwork mappings in metabolic network alignment. A
similar method, IsoRank [21], has been applied to find
the alignments of PPI networks. IsoRankN [11] extended
this algorithm to work for multiple networks and to
allow mappings of protein clusters.

Comparative analysis is important particulary for large
metabolic networks such as organism-wide networks.
Identification of the conserved patterns among metabolic
networks across species provide insights for metabolic
reconstruction of a newly sequenced genome [22],
orthology detection [21], drug target identification [23]
and identification of enzyme clusters and missing
enzymes [24,25]. However, aligning large scale networks
is a computationally challenging problem due to the
underlying subgraph isomorphism problem that has to
be solved to find the alignment that maximizes the simi-
larity between the query networks. The methods we
mentioned above either restrict the query topologies
and/or their sizes. Even under these conditions, the run-
ning times and memory utilization of these methods can
still be prohibitive for large query networks. For instance,
the method of Pinter et al. [20] takes around one minute
per alignment on a dataset with only small size networks
ranging from 2 to 41 nodes. Our earlier method, Sub-
MAP has no limitations on the query topologies and
allows mappings of node sets that are connected (i.e.,
subnetworks). However, allowing subnetworks comes at
a cost of increasing running time that is inherent due to
the fact that the number of all connected subnetworks up
to a given size can be exponential in the size of the net-
work. For a network of size 80 and subnetwork sizes up
to 3, SUubMAP takes around 6 minutes and 150 MBs of
memory on the average per alignment with a database of
networks of size 50 on the average. Therefore, improving
the running time and memory utilization of these meth-
ods is necessary to leverage the alignment of larger scale
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networks especially when subnetwork mappings are
allowed.

In this paper, we develop a framework that significantly
improves the scale of the networks that can be aligned
using existing algorithms. Our framework has three
major phases, namely the compression phase, the align-
ment phase and the refinement phase. For the first phase,
we develop a compression method that reduces the size
of the input metabolic networks by a desired rate. In
other words, we transform the query networks from their
original domains (see Figure 1(a)) to a compressed
domain (see Figure 1(d)). A single node in compressed
domain corresponds to a set of connected nodes and the
edges between them in the original domain. We call each
such node in the compressed network a supernode. For
instance, Figure 1(d) depicts the compressed networks of
the two input networks in Figure 1(a) when each super-
node is allowed to contain up to two nodes (i.e., only one
level of compression is allowed). In the second phase, we
carry out the alignment in the compressed domain by
using an existing network alignment algorithm, which is
SubMAP in this paper, as our base method. Once the
compressed networks are aligned, we next consider each
mapping of supernodes found by the first phase individu-
ally. Each such mapping suggests a smaller instance of
network alignment. Figure 1(f) demonstrates this where
two such instances exist. For each of these mappings, we
solve the alignment problem using the base algorithm. At
the end of this refinement phase, the final mappings of
reactions are extracted (see Figure 1(g)) transforming the
alignment back to the original domain.

We can best motivate the need for such a framework on
an example. Figure 1 illustrates the difference between
aligning two metabolic networks in compressed domain
versus aligning them in the original domain without com-
pression. If we use a base alignment algorithm such as
SubMAP or IsoRank, the time and space complexity of
the algorithm is determined by the size of a data structure,
named support matrix [10,21]. Conceptually, this data
structure governs the topological similarities between
every pair of reaction tuples. Each reaction tuple contains
one reaction from each of the two query metabolic net-
works. A detailed description of this matrix can be found
in previous articles describing IsoRank [21] and SubMAP
[10]. The size of this support matrix is quadratic in terms
of both # and m (i.e., O (n*>m?)) for IsoRank and for Sub-
MAP when only subnetworks of size one are allowed.
Figures 1(b) and 1(e) illustrate the support matrices
required for alignment starting from the networks shown
in Figure 1(a) and 1(d) respectively. As a result of com-
pression by only one level, the size of the matrix we need
to create, drops to 6x6 from 20x20 which translates into
more than an order of magnitude improvement in theore-
tical resource utilization compared to the base method.
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reaction mappings after refinement phase of our framework.

Figure 1 Aligning two metabolic networks with and without compression. Top figures (a-c) illustrate the steps of alignment without
compression. Bottom figures (d-g) demonstrate different phases of alignment with compression using our framework. (a) Two hypothetical
metabolic networks with 5 and 4 reactions respectively. Directed edges represent the neighborhood relations between the reactions. (b) Support
matrix of size 20x20 needed for the alignment if compression is not used. We only show the non-zero entries of a single row that corresponds
to topological support given by b - b” mapping to possible mappings of its backward and forward neighbors. Five such mappings supported
equally are denoted by L5 in the matrix, namely a - a’ mapping for the backward neighbors and ¢ - ¢, c - d’, d - ¢"and d - d’ mappings for the
forward neighbors. (c) The resulting reaction mappings of alignment without compression. (d) Query networks shown in (a) in compressed
domain after one level of compression. (e) Support matrix of size 6x6 needed for the alignment with compression. We only show the entries for
the mappings supported by the g, b - @', b" mapping. (f) The resulting mappings from the alignment in compressed domain. (g) The resulting

Notice that when we compress the network more (i.e.,
increase the number of compression levels), the com-
pressed network gets smaller in terms of its number of
nodes and edges. As a result, we can expect to align the
compressed networks faster. However, this comes at the
price of two drawbacks both due to the fact that each
supernode contains multiple nodes from the original
domain. First, once we find a mapping for the supernodes
in the compressed domain, we still need to align the
nodes of each supernode pair. For example, after map-
ping the supernodes (a, b) and (a’, ’) shown in Figure 1
(f), we need to align the two subnetworks induced by
these two supernodes. Thus as the size of the supernodes
grow (i.e., as we compress for more levels), the size of the
smaller problem instances grow as well and resource uti-
lization bottleneck shifts from the alignment phase to
refinement phase. Second, when we use compression the
resulting alignment may not be the same as the one
found by the original algorithm. For example, one out of
four mappings in Figure 1(g) (i.e., e - ¢’) is different than
the results of the base algorithm shown in Figure 1(c)
(i.e., e - €). This brings the need to define a measure of
consistency between the results of alignments with and
without compression which can be used as an indicator
of accuracy for the framework we propose here. We

calculate this accuracy as the correlation of the scores
calculated for each possible mapping found by our frame-
work in the compressed domain with the scores for these
mapping in the original domain found by the base
method. Bigger compression rates generally mean less
similarity between the results of the two methods (i.e.,
less accuracy).

Several key questions follow from these observations are:

1. How does compression affect the alignment accu-
racy with respect to the base network alignment
method?

2. How far is our compression method from an opti-
mal compression that produces the compressed net-
work with the minimum number of nodes?

3. When is it a good idea to do the alignment in
compressed domain taking into account the over-
head of compression and refinement phases?

4. What is the right amount of compression? That is,
when does compression minimize the running time
of our overall framework?

In the rest of the paper we address each of these ques-
tions in detail. At this point, it is important to notice the
potential for leveraging the alignment of larger scale
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networks by the framework we are proposing. The
actual performance gain for an alignment will depend
on the level of compression we use, the topologies of
the query networks and complexity of the base align-
ment method.

Results overview

Our experiments on metabolic networks extracted from
KEGG pathway database [26] demonstrate that our
compression method reduces the number of nodes and
edges by almost half at each level of compression. As a
result of this reduction, we observe significant amount
of improvement in running time and memory utilization
of our earlier alignment algorithm SubMAP. Lastly, we
analyze the accuracy of our framework as compared to
the base alignment algorithm. The results suggest that
the alignment obtained by only one level of compression
captures the original alignment results with very high
accuracy and the accuracy decreases with further levels
of compression.

Technical contributions
- We devise an efficient framework for the network
alignment problem that employs a scalable compres-
sion method which shrinks the given networks while
respecting their topology.
- We prove the optimality of our compression
method under certain conditions and provide a
bound on how much our compression results can
deviate from the optimal solution in the worst case.
- We provide a mathematical formulation that serves
as a guideline to select an optimal number of com-
pression levels depending on the input characteris-
tics of the alignment.
- We characterize the cases for which the proposed
framework is expected to provide significant
improvement in alignment performance.

In the next section, we report our experimental results
on a set of large scale metabolic networks that are con-
structed by combining networks from KEGG Pathway
database [26]. The details of the network compression
method we propose here and the other phases of our
framework are described in the methods section.

Results and discussion
In this section, we experimentally evaluate the perfor-
mance of our framework. First, we measure the com-
pression rates achieved for different levels of
compression with minimum degree selection (MDS)
method that we propose here.

Next, we further analyzed the changes in degree distri-
bution and large scale organization of organism-wide
metabolic networks with increasing compression levels.
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We, then, examine the gain in running time and memory
utilization achieved by our framework for different values
of compression level (¢) and subnetwork size (k) para-
meters. Last, we examine the accuracy of the alignments
we found by measuring the accuracy as the Pearson’s cor-
relation coefficient between the scores of mappings
calculated by our framework and the ones calculated by
the base algorithm we use.

Dataset

We use the metabolic networks from the KEGG path-
way database [26]. For our medium scale dataset, we
downloaded all metabolic networks with at least 10
reactions for 10 different organisms. This resulted in
620 metabolic networks in total with sizes ranging from
10 to 97.

In order to obtain our large scale dataset, we first
combined all the metabolic networks that belong to one
of the 9 different metabolism categories in KEGG data-
base to create a complete metabolism network for each
metabolism for 10 selected organisms (Homo sapiens
(human), Mus musculus (mouse), Rattus norvegicus
(rat), Drosophila melanogaster (fruit fly), Arabidopsis
thaliana (thale cress), Caenorhabditis elegans (nema-
tode), Saccharomyces cerevisiae (budding yeast), Staphy-
lococcus aureus COL (MRSA), Escherichia coli K-12
MG1655, Pseudomonas aeruginosa PAO1). We obtain
the organism-wide metabolic networks by combining all
the listed networks in KEGG for each of these organ-
isms. In total, we have 100 networks with sizes ranging
from 5 to 1615 (9 complete metabolism networks plus 1
organism-wide network for each of the 10 organisms).
Below is the list of metabolism categories we use.

. Carbohydrate Metabolism

. Energy Metabolism

. Lipid Metabolism

. Nucleotide Metabolism

. Amino Acid Metabolism

. Metabolism of Other Amino Acids

. Glycan Biosynthesis and Metabolism

. Metabolism of Cofactors and Vitamins

. All Amino Acids (Amino Acid + Other Amino
Acids)

O 00 NI O Ut WIN

Implementation and system details

We implemented our compression and alignment algo-
rithms in C,,. We ran all the experiments on a desktop
computer running Red Hat Enterprise Client 5.7 with 4
GB of RAM and two dual-core 2.40 GHz processors.
Evaluation of compression rates

The efficiency of our alignment framework depends on
how much the query metabolic networks can be
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compressed. For this reason, in this experiment, we
measure the number of nodes and edges of the meta-
bolic networks in our large scale dataset before and
after compression.

The minimum degree selection (MDS) method we
describe in this paper compresses the query metabolic
networks by selecting the first node among the list of
nodes with minimum degree at each intermediate step
and by compressing it with one of its neighbors. In order
to evaluate stability of this compression method, we
examined the effect of the node selection strategy on the
size of the resulting compressed networks. By randomiz-
ing the step at which we select a node among the set of
minimum degree nodes, we generated 100 different com-
pressed networks for each of the input metabolic net-
works. In the following, we examine how much
compression we achieve by the MDS method and also
analyze its stability with respect to compressions
achieved by randomization of node selection step.

Table 1 summarizes the compression rates achieved by
our method for networks of different sizes. We divide all
the metabolic networks in our dataset into bins according
to the number of their reactions (i.e., network size). The
first column in Table 1 lists the network size intervals we
used for each group. Notice that the gaps in the size
interval are due to the fact that organism-wide networks
are of size 850 and larger whereas the other combined
networks for nine different metabolism categories have
sizes below 400. Each row of this table shows the number
of nodes and edges averaged over all the networks in this
group before and after compression. The two columns
with ¢ = 0 correspond to the average number of nodes
and edges of the networks with no compression respec-
tively. For ¢ € {1, 2, 3}, we split each row corresponding
to an interval into two. The upper part denotes the
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average node and edge numbers for the compressed net-
work if the MDS method is used as originally described
(i.e., the first among the list of minimum degree nodes is
selected and combined with its first neighbor at each
compression step). The lower part in bold represents the
numbers gathered when we introduce randomization in
this node selection. Each value in bold in Table 1 denotes
the average of the corresponding value over these 100
different runs of compression.

One conclusion that can be drawn from Table 1 is that
independent of the network size, our compression
method performs well in practice. On the average, with
only one level of compression we achieve network sizes
that are 57-64%, 64-71% and 77-80% of the network sizes
in the previous compression level for ¢ = 1, 2 and 3
respectively. In other words, our method compresses the
entire dataset down to approximately 60%, 40% and 30%
of the sizes of original networks for ¢ = 1, 2 and 3 respec-
tively. These rates suggest that our framework has great
potential in scaling the network alignment to large meta-
bolic networks by compression. As an example, consider
the row corresponding to interval [850,1250] in Table 1.
We see that instead of aligning networks with 1080
nodes and 3727 edges on the average, we can apply two
levels of compression first and do the alignment with sig-
nificantly smaller networks that have only 407 nodes and
1733 edges on the average. Another observation is that,
we get the most of the reduction in network size after the
first compression level. That is, our method compresses
the networks aggressively for ¢ = 1 and achieves 57% to
64% compression rate which is close to the half of the
size of the networks. As we go up in the levels of com-
pression, the actual rate of compression achieved at one
level reduces. Considering the fact that having an input
network which can lead to the best possible compression

Table 1 Summary of compression rates for all the networks in our large scale dataset

Network size intervals Average number of nodes

Average number of edges

c=0 c=1 c=2 c=3 c=0 c=1 c=2 c=3
[0, 100) 415 26.5 19.1 15 83.5 55.2 36.3 236
26.5 19.1 14.8 55.5 36.5 235
[100, 200) 154.8 924 61.3 486 3101 174.9 116.5 96.3
92.2 61.5 48.6 174 118.1 94.6
[200, 300) 240.5 139.1 89.2 694 508.1 296.5 2305 187.8
139.4 89.1 69.7 298.4 228.4 188.1
[300, 400] 3449 207.3 133.1 103 585.7 3729 302.7 2616
207.6 133.8 104.5 373.5 300.4 259.9
[850, 1250] 1080.5 623.2 406.8 3113 3727 2269 1732.7 1584.8
623.7 407.9 311.9 2280.6 1733.8 1587.5
[1500, 1615] 1576.5 909 582 4478 4740 2955.2 22835 21288
910 583 444.6 2964.3 2279.3 2129.6

We create six intervals according to number of reactions in these networks. Each row, corresponding to one such interval, shows the average number of nodes
and edges before compression (i.e., ¢ = 0) and after compression of different levels (i.e., c € {1, 2, 3}). For each row, top entries correspond to numbers obtained
with the M D S method which selects the first node from the list of nodes with minimum degree at each intermediate step and compresses it with its first
neighbor from the list of its neighbors. The bottom entries that are in bold correspond to the averages of 100 different compressions which are gathered by
randomizing the step at which a node is selected among the set of minimum degree nodes.
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(i.e., reducing its size from n down to size m] (i.e., 50%)
at each level of compression) is a rare event, the observed
compression rates suggest that our method provides an
efficient compression for metabolic networks in practice.

This experimental setup also suggests that the MDS
method is stable with respect to the choice of the node to
compress as long as that node is selected among the
nodes with minimum degree. Among the six rows and
three columns (18 entries) of Table 1 for the average
number of nodes after the compression, only one of
them have difference larger than two between the origi-
nal size and the randomized average.

The results of this experiment suggest that our com-
pression method, MDS, serves as an efficient and stable
first phase for our alignment framework by achieving
good compression rates on a large dataset of metabolic
networks.

Changes in degree distributions with compression

Even though the compression rates we achieve with MDS
as described above suggest significant reduction in the
problem size, we observe that there is a noticeable differ-
ence between the compression rates achieved by going
from one compression level to the next. For instance, on
the average we get 57% to 64% reduction in the size of
the networks going from ¢ = 0 to ¢ = 1 whereas we only
get 76% to 80% reduction if we go from ¢ = 2 to ¢ = 3.
This suggests that the large scale organization of the net-
works change with increasing levels of compression.
Even though a change in the network structure can be
expected as a result of our compression, it is not obvious
how to quantify this change and whether the change is
consistent among different metabolic networks.

In order to understand the reason behind different com-
pression rates for different compression levels, we exam-
ined the degree distributions of the ten organism-wide
networks we have in our dataset. For each of these net-
works, we plotted the histogram of out-degree distribu-
tions for different levels of compression. Figure 2 plots the
frequencies of each out-degree in the range [2,40] for each
ce {0, 1, 2, 3, 4} for these networks. We observe that for
each of these plots the degree distributions for ¢ = 0 and
¢ = 1 are very similar and they follow power-law distribu-
tion which is an indicator of scale-free network topology.
This is not surprising since the scale-free topology has
been observed in numerous articles in the literature as a
common signature for different metabolic networks
[27-29]. The similarity between the degree distributions of
the original networks (¢ = 0) and the networks compressed
by only one level (¢ = 1) signifies that the networks still
conserve their scale-freeness after the first level of
compression.

A more interesting observation is that there is a con-
sistent shift from the power-law degree distribution to
uniform distribution with increasing ¢ values for each of
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the ten networks we have. It is important to clarify that
our claim is not that the degree distribution becomes
uniform for large ¢ values but rather the degree distribu-
tions for large ¢ values are more similar to uniform dis-
tribution (also less similar to power-law distribution)
compared to ones obtained with smaller ¢ values. To
quantify this on an example, we look at one of the most
discernable characteristics of scale-free networks, hence
the power-law distribution, which is the small number
of hub nodes with large degrees. If we consider the
organism-wide network of Homo sapiens (Figure 2(e)),
which is the largest network in our dataset, and focus
on the percentage of nodes with out-degree greater than
15, we get percentages of 3%, 4%, 6.5%, 11.5% and
12.4% for c values of 0, 1, 2, 3 and 4 respectively. This
indicates that the number of nodes that can be consid-
ered as hubs increase significantly with increasing levels
of compression. This increase deteriorates the scale-free-
ness of the Homo sapiens network which in turn
decreases the achieved compression rates. Similar trend
is observed for each of the other nine organism-wide
networks which are plotted separately in Figure 2.

The results of this experiment show that there is a con-
sistent change in the network topology when multiple
levels of compression is used. This difference we observe
here between the first level of compression and later
levels of compression is likely to be one of the main rea-
sons of the significant differences in both the performance
and the accuracy of our framework which will be dis-
cussed next in the remaining of the results section.
Evaluation of running time and memory utilization
In order to understand the capabilities and limitations of
our framework, we examine its performance in terms of
its running time and memory utilization on a set of
large scale networks we constructed as described in the
dataset section. We have ten networks for each of the
ten organisms in our dataset. For each organism, nine of
these networks constitute different metabolism cate-
gories and the tenth network is the organism-wide
metabolic network. In total, we have 100 networks with
sizes ranging from 5 to 1615. For each parameter setting
(different combinations of k € {1, 2} and c € {0, 1, 2, 3},
we aligned each of these 100 networks with each other
network (including itself) resulting in a total of 5500
alignment queries. When the value of ¢ is equal to zero,
the alignment is carried out completely by a single
application of SubMAP without any compression. This
provides us a mechanism to measure how much perfor-
mance gain is achieved by our compression based fra-
mework with respect to SubMAP.

Figure 3(a) illustrates the average query running times
in a log-log plot where x-axis is the size of the query
measured as the product of the number of reactions of
the metabolic networks that are aligned. We grouped
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Figure 2 Shift of out-degree distributions from power law to uniform. Changes in the out-degree distributions of ten organism-wide
metabolic networks with increasing levels of compression. We calculate the frequencies of each out-degree in the range [240] force {0, 1, 2, 3,
4} and plot them together for each of the ten organisms in our dataset. Out-degree distributions for organism-wide metabolic networks of (a)
Arabidopsis thaliana (thale cress), (b) Caenorhabditis elegans (nematode), (c) Drosophila melanogaster (fruit fly), (d) Escherichia coli K-12 MG1655,

(e) Homo sapiens (human), (f) Mus musculus (mouse), (g) Pseudomonas aeruginosa PAOI, (h) Rattus norvegicus (rat), (i) Staphylococcus aureus COL
(MRSA), (j) Saccharomyces cerevisiae (budding yeast).
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queries into logarithmic bins according to the query
sizes. The first bin contains all the queries of size less
than or equal to 64. The next bins contain the queries
of size in the interval [2°*°, 2/*®] where i = 2, 3, ..., 17.
For each parameter setting we display the average run-
ning time of all the queries in each bin. For both k = 1
and k = 2, we plot all the results for all four different
compression values and also draw the fitting curves to
better illustrate the trend in the increase of running
time.

For k = 1, we can immediately observe that each addi-
tional compression level improves the running time over
the previous one for all query sizes. We obtain the lar-
gest fold change in running time by only one level of
compression for the first level. This is expected consid-
ering that the first level of compression achieved the lar-
gest compression rate as shown in Table 1. The second
compression level improves the running time by a smal-
ler factor compared to the first and by a larger factor
compared to the third level. For k = 1 we were able to
plot all the points for all ¢ values as the running time
for even the largest query (i.e., human organism-wide
network vs itself which has size 1615*1615) with no-
compression (i.e., ¢ = 0) is still practical, around 12 min-
utes (with ¢ = 3 this drops to <40 seconds).

Similar trend of improved running times with increas-
ing c is also observed for queries up to a certain size for
k = 2. For only one level of compression (¢ = 1) we
observe significant improvement in running times for
queries of all different sizes. However, starting from the
bin [2'%, 2'*] compressing the networks more than only

one level (¢ >1) shows a consistent adverse effect on the
running time. This implies when both query networks
have sizes around 150 or larger and k >1 is used, the
idea of compressing the networks more than one level
and then performing the alignment suffers from the
explosion in the number of possible subnetworks in the
compressed domain with size at most k. We explore
this in more detail later on in the paper (see Figure 4
and its discussion).

An important aspect of our framework is that it makes
possible to align networks that could not be aligned
with our base method. For k = 2, we observed that in
the original domain (¢ = 0) a significant portion of the
large queries did not finish in less than the cutoff time
which we set as one hour. For instance, among 252 pos-
sible queries with sizes in the interval 217, 218], 96 did
not complete successfully for ¢ = 0 whereas with ¢ =1
all of them were completed. For the next bin, 45 out of
223 possible queries were completed for ¢ = 0 and for
¢ = 1 this number increased to 185. These results indi-
cate that by using the correct amount of compression,
we can align larger networks than the base alignment
method SubMAP. We believe this is an important step
in leveraging organism-wide network alignments with
subnetwork mappings for they provide a more complete
picture of functional similarities and evolutionary differ-
ences between the metabolic networks of two or more
organisms.

Figure 3(b) presents results for the estimated memory
required for the support matrix, which is the memory
bottleneck of the algorithm, that is needed to perform
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Figure 4 Gain/Loss in running time. Gain/Loss in running time of alignment by using our framework with respect to the base alignment
method (x-axis) versus the ratio of the number of all possible subnetwork mappings in compressed domain to this number in the original
domain. The blue vertical line shows when the two methods take exact same amount of time or when both methods take very short amount
of time in the case of small query networks. Points on the right (left) handside of this line means gain (loss) in the running time. The dashed
line is our decision criteria for predicting whether there will be gain or loss before doing the alignment.

the alignment. For this figure, we use the same query set
as Figure 3(a), hence the same x-axis. On the average the
memory required for alignment with ¢ = 1 is around 30%
of that needed for alignment with no compression using
the SUbMAP method for both k=1 and k= 2. For k =1,
the memory utilization decreases by each additional com-
pression level (on the average around 45% of the memory
required for ¢ = 1 is used when c is increased to 2 and
around 65% of the memory required for ¢ = 2 is used
when c is increased to 3). For k = 2, concordance with
the running time results, only one level of compression
provides better memory utilization for all network sizes
whereas compressing more than one level has an adverse
effect for medium and large scale queries.

These results suggest that our framework demonstrates
a great potential to provide significant improvement in

both the running time and the memory utilization of the
base alignment method. This allows us to align large
networks that could not be aligned by existing methods
by utilizing the same hardware.

Accuracy of the alignment results

We conclude our experimental results by answering the
first question introduced earlier in the paper, that is
“How does compression affect the alignment accuracy?”.
In order to answer this, we calculate the correlation
between the scores of each possible mapping in com-
pressed domain and the scores that we obtain for these
mappings from the original SubMAP method. We con-
sider the scores of each possible subnetwork mapping of
compressed nodes found by our framework. Since the
mappings found by SubMAP are not of the same form
with the mappings in compressed domain, we calculate
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a score value for each mapping in compressed domain
by using the scores of the mappings found by SubMAP
in the original domain. This way, we get two sets of
score values one from SubMAP one from our frame-
work for the same set of mappings. We calculate the
Pearson’s correlation coefficient between these two sets
of scores as an indicator of the similarity between the
results of the two methods.

Before looking at the correlation values we found, it is
important to describe how we calculate the score for a
mapping in compressed domain from the mappings of
SubMAP. Let P! and p! denote the one level com-
pressed forms of two metabolic networks. Let
(v1- {11, 72}) denote a mapping in compressed domain
where v, is a subnetwork of P; and {v;,7,} is a subnet-
work of pl Also, let v{ = {ry, ry}, 11 = {1, 7} and
v, = {r3}. We know the edge that maps these two sub-
networks has a mapping score in the compressed
domain and let us denote it by |e'} for ¢ = 1. We want
to compute a mapping score, say |e|, for (v1 - {V1,12})
from the mappings in original domain that is compar-
able to |e'|. This subnetwork mapping in compressed
domain contains six possible mappings in the original,
namely (Tl, 7_”1), (7'1, 7'2), (Tl, 7’3), (TQ_, 7'1), (Tz, 7'2) and
(r2, 73). Let us denote the scores of these mappings in
the original domain by |e;| for i = 1, 2, ..., 6 respective
to their ordering. Then, we compute the mapping score
le| as é ZL e;. It is important to note that, this score is
a conservative choice among other possible scoring
options. This is because the average can include map-
ping scores of subnetworks with very low similarities
from the original domain of SubMAP. This can under-
estimate the correct mapping score of |e| and hence
degrade the correlation of compressed domain and ori-
ginal domain mapping scores. Overall, for each mapping
in compressed domain with a score |e°| and we calculate
the corresponding score |e| in the original domain using
this average score.

Table 2 summarizes the correlation values found from
a set of 3600 alignments (400 alignments for each para-
meter combination of k € {1, 2, 3} and c € {1, 2, 3}).
We calculate the correlation of each query with the
alignment that has the same k value but is in the origi-
nal domain (i.e., ¢ = 0). Table 2 shows the average cor-
relation values of these 400 alignments for each k value,
¢ value combination. The first column indicates that the
alignment found by using only one compression level is
highly similar to the alignment found by directly using
the base method. Combining this with the running time
gain in Figure 3(a) for ¢ = 1, we can strongly argue that
compression by one level not only provides significant
improvement in running time but also accurately cap-
tures very high percentage of the original alignment
results which makes it very useful for practical purposes.
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Table 2 Correlation of the mapping scores found with
and without compression

k/c 1 2 3
1 0.89 0.56 0.53
2 0.85 0.58 0.50
3 0.84 0.57 049

We calculate the Pearson’s correlation coefficient between the two sets of
score values one from SubMAP (without compression) one from our
framework (with compression) and report it as an indicator of the accuracy of
alignment results of our framework for different parameter settings.

The accuracy measured in terms of correlation drops to
0.57 on the average when we perform the second level
of compression and to 0.51 for the third level.

These results suggest that we can almost always use
one level of compression to benefit from a high perfor-
mance gain without losing much accuracy in terms of
the alignment results. For ¢ = 2 and ¢ = 3, even though
the accuracy of the results are significantly better than
random, such compression levels should be used with
caution if the accuracy of the alignment is the main
concern.

Conclusions

In this paper, we considered the problem of aligning two
metabolic networks particularly when both of them are
too large to be dealt with using existing methods. To solve
this problem, we developed a framework that scales the
size of the metabolic networks that existing methods can
align significantly. Our framework is generic as it can be
used to improve the scalability of any existing network
alignment method. It has three major phases, namely the
compression phase, the alignment phase and the refine-
ment phase. For the first phase, we developed an algorithm
which transforms the given metabolic networks to a com-
pressed domain where they are summarized using much
fewer nodes, termed supernodes, and interactions. In the
second phase, we carried out the alignment in the com-
pressed domain using an existing method, SubMAP, as
the base alignment algorithm. In the refinement phase, we
considered each individual mapping of supernodes one by
one. Each such mapping corresponds to a smaller instance
of network alignment problem. For each of these map-
pings, we solved the alignment problem using SubMAP as
our base method. Our experiments on the metabolic net-
works extracted from the KEGG pathway database
demonstrate that our compression method reduces the
number of reactions by almost half at each level of com-
pression. As a result of this compression, we observe that
SubMAP coupled with our framework can align twice or
more as large networks as its original version can with
the same amount of resources. Our results also suggested
that the alignment obtained by only one level of compres-
sion benefits from a significant performance gain while
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capturing the original alignment results with very high
accuracy. We believe that this paper takes an important
step in scaling the metabolic network alignment with sub-
network mappings to organism-wide networks, and thus,
can have great impact on making the existing network
alignment methods more useful for domain scientists.

Methods

In this section, we describe the method we develop to
compress the query networks and the overall framework
for aligning networks in this compressed domain. Before
going into detail, it is important to state that we are
using a reaction-based model for representing metabolic
networks throughout this paper. Formally, we represent
a metabolic network with P = (V, E) where V is the set
of all reactions of the network and E is the set of direc-
ted edges between them. An edge e; € E exists if and
only if the reaction vi has at least one output compound
which is an input for the reaction v;. In the following,
we first describe our compression method. We use the
shorthand notation MDS (minimum degree selection) to
refer to this method in the rest of the paper. We, then,
prove the optimality of MDS under certain conditions
and provide an upper bound for the number of com-
pressions that can be missed by this method with
respect to the optimal compression. Next, we give a
brief overview of the base alignment method that we
use in this paper and explain in detail the two remaining
phases of our alignment framework. We provide our
analysis on the computational complexity of the overall
method and conclude the methods section by answering
two questions related to performance characteristics of
this method.

Minimum degree selection (MDS) method

Let P = (V, E) be the reaction-based representation of a
metabolic network and ¢ denote the user specified para-
meter for the desired level of compression. For x = 1, ..., ¢,
we denote the compressed form of P after x compression
levels with P* = (V' *, E¥). To simplify our notation, we
assume that P° = P. We construct P* from P* " * for each
x=1,.,c Eachve V%is either a node from V* ! ora
supernode that contains two nodes of V* !, In summary,
we construct V* from V* " ! in a number of consecutive
steps. At each step, we choose a pair of connected nodes
in V* " ! that are not compressed in earlier steps of the
current compression level. We then merge this node pair
into a supernode and add it to V'*. We repeat these steps
until there is no such node pair in V* ~ !, Assume that the
number of such steps is ¢ for compression level x. We
denote the state of the network after the ith step during
the xth level of compression as P{ = (V7, EY) Figure 5 (b)).
Note that, Vi = V*and Vf C V¥ U V*foreachi=1, .., ¢
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as the nodes of V¥ are either singleton nodes from V* !
or supernodes from V'*.

We are now ready to discuss how we compress P* ~ !
to get P*. We define the degree of a non-compressed
node v in a given network as deg(v) = indeg(v) + outdeg
(v), where indeg(v) (outdeg(v)) denotes the number of
incoming edges from (out-going edges to) non-com-
pressed nodes in the network. We say that two nodes in
a network are neighbors if they are connected by at
least one edge. We denote the set of neighbors of a
node v with N(v). We start the compression by initializ-
ing V§ = V*-1 EX, E*1. Then, while there exists a non-
compressed node with degree greater than zero at the
current state of the network, say Pf_,, we apply the next
step, the ith step, of compression to obtain P} from P} ;.
Figure 5 depicts the states of an example network before
(Figure 5(a)) and after (Figure 5(b)) the ith step of com-
pression. We start the ith step by selecting a node with
minimum positive degree among the nodes in VI ;. If
there are more than one such node, we select the first
one among them. In our example in Figure 5(a), the
node with minimum degree is unique and is shown by
v,. We use the term minimum degree as a shorthand
for minimum positive degree to exclude singleton
nodes. This way we ensure that deg(v,) >0 and N (v,) is
non-empty. We select one such neighbor from N(v,),
say V5. The only node in N (v,) in Figure 5(a) is denoted
with v,. We, then, merge v, with v, to form the super-
node v,;, = {v,, vp}. Figure 5(b) illustrates this newly cre-
ated node v,;. This is the only compression to be done
at the ith compression step. Next, we create the new
node set as VI = VI | U{vaw} — {vs, 1p}. For creating the
edge set Ej, we initialize it to E{ ; and remove all the
incoming and out-going edges of v, and v, from it.
Then, we insert an incoming edge to v,, from each
node in VI | — {v,, 1}, which has an out-going edge to
either v, or v, in the previous edge set Ef ;. We insert
out-going edges from v,, to other nodes in a similar
manner. Figure 5 illustrates the changes in the edge set
after creating v,;,. Notice that for each i = 1, .., £, the set
V¥ contains a mixture of nodes and supernodes. After
each such step, the size of the network decreases by one
and the number of edges of the new network decreases
at least by one. For instance in Figure 5, the number of
nodes dropped from five to four and the number of
edges dropped from six to five. The compression of P**
to get P* continues by applying another compression
step until there are no more non-compressed nodes
with positive degree.

The discussion above describes the intermediate com-
pression steps of the MDS method to perform a single
level of compression on a given network. Given a com-
pression level ¢, for each level x = 1, ..., ¢, we apply the
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(a) (b)

Figure 5 One compression step of the MDS method. Small circles represent reactions and big circles represent supernodes that result from
earlier steps of compression. A solid arrow represents an edge between two non-compressed nodes in the current compression level. A dashed
arrow denotes an edge between a supernode and another node in the network. While calculating the degrees of the non-compressed nodes,
only the solid arrows are taken into account. (a) The state of network P during compression level x before the ith intermediate step (e, Pffl).
The node with the minimum degree is denoted with v, and its first neighbor is denoted with v,,. (b) The state of this network after the ith
compression step (ie, P?), We denote the node resulted from the compression at this step with v,p.

same compression steps on P* ~ ' = (V* "1 E* " 1) by
initially treating P* ~ ' as a non-compressed network
with no supernodes. As a result of this process, after fin-
ishing the xth level of compression, the actual number
of reactions that each node of V' * can contain is assure
to be in the interval [1, 2*]. The limitation on the num-
ber of reactions in each node allows the MDS method
to respect and highly preserve the initial topology of the
query networks. This is very important for the align-
ment as it makes significant use of the network topolo-
gies. Additionally, the bound on the number of
reactions in each supernode translates to a uniform
compression for both networks which limits the sizes of
the smaller alignment problems we can encounter in the
refinement phase. This allows us to keep under control
the complexity and the running time of the refinement
phase of our alignment framework.

Optimality analysis for MDS

In the previous section, we described in detail the com-
pression method (MDS) we use in our framework. Ideally,
it is preferable to compress the given network as much as
possible at each compression level. This is because smaller
network size often implies smaller time and memory
usage for the alignment. We say that a compression is
optimal if the resulting compressed network contains the
smallest number of nodes among all possible compres-
sions with the restriction that each non-compressed node
can be merged with at most one other non-compressed
node at each compression level. We name the hypothetical
optimal compression method that can achieve the best

possible compression rate as OPT. In the rest of this sec-
tion, we analyze the optimality of our MDS method under
different conditions. We first consider each connected
component of the input network that will be compressed
separately and then integrate their results to generalize
our analysis for networks with arbitrary topologies.

We start by introducing the notation we use in this
section to handle networks with more than one con-
nected component. Let P be a metabolic network with r
connected components. We denote these components
bY Cl = (\,\/1, El), Cz = (Vz,ﬁz), ey Cr = (\A/T, Er)) such
that P = (U, Vi U E)). Let C = (V, E) be an arbitrary
component of P and ** represent the compressed form
of C after x levels of compression using either the MDS
method or OPT that achieves the optimal compression.
We use * (star) as a generic symbol to avoid introducing
new symbols for each compressed component in places
where only their sizes are of relevance. We use MDS(C,
*), OPT(C, **) to denote the total number of compres-
sion steps performed to transform C into its compressed
form after x levels of compression by using the corre-
sponding methods. Recall that each compression step
reduces the network size by one. Thus, the bigger these
values (MDS(C, **) and OPT(C, **)) the better they are
in terms of compression rate. The first and second argu-
ments in this notation can be any state of a connected
component or a network at any point during the com-
pression. For instance, OPT(C}, #*) denotes the number
of compression steps taken by OPT starting from (i + 1)
th intermediate step of the xth level until the xth level
of compression is completed.
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In the following, we first prove that the MDS method
makes an optimal choice in terms of which two nodes to
compress at each compression step if there exists a node
with degree one in the current state for a given compo-
nent. We, then, show that if no node with degree one
exists at a compression step taken by MDS can increase
the size of the compressed component by at most one as
compared to the one found by OPT. Finally, by aggregat-
ing the results from each component, for a given meta-
bolic network P and a compression level ¢, we develop an
upper bound on the size of the compressed networks
obtained by MDS with respect to the size of network that
can be obtained by the optimal method.

Lemma 1 Let C = (V, E) denote a connected compo-
nent of a given metabolic network P. Let C} = (Vf, I:Zf)
denote the state of C after the ith step of the xth com-
pression level. If there exists a node in Vl" with degree
one, then the compression step taken by the MDS

method to create the next state C},, is optimal. Formally,

OPT(C!, %) = 1+ OPT(CY,, +Y) 1)

Proof 1 We prove (1) by contradiction in two parts:

Part 1. OPT(C}, **) £ 1+ OPT(CY,, *¥)

Part 2. OPT(C}, %*) # 1+ OPT(C},,, %)

The first part (i.e., £) is trivial. The number of compres-
sion steps of OPT after performing one step of compression
cannot be larger than the number before performing this
step, otherwise the solution of OPT(C}, %) cannot be opti-
mal. This leads to a contradiction, hence proves Part 1.

To prove the second part (i.e., ), it is important to
recall how the MDS method progresses given the state C}
at which there exists at least one node v, with deg(v,) =
1. This method picks v,. The node v, has exactly one
non-compressed neighbor, say vy Thus, MDS merges
them to create the supernode v, (see Figure 5). We com-
plete the proof by considering two cases. In the first case
the OPT method merges v, and v, while compressing C}
. In this case, we can assume that OPT takes this step as
its next step in compressing C; , since a fixed compressed
network can be obtained by arbitrarily shuffling the
order of intermediate steps. Therefore, if v, and v, are
compressed at any point in the optimal method, then the
optimal solution for C},,, which is created by applying
the MDS method on C' has exactly OPT(C}, #*) —1
compressions. Hence, OPT(C}, ¥*) =1 + OPT(C},, *¥)
and OPT(C}, ¥*) # 1+ OPT(Ci,,, ")

In the second case v, and v, are not merged together
in the optimal solution. This case implies v, is left as a
singleton at the end of the xth level as deg(v,) = 1. Then,
the network that results after removing v, and all the
edges connected to it can have at most OPT(C}, +*)
compressions until the end of the xth level since other-
wise it contradicts with the optimality of MDS. This
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shows that the number of compressions that can
be achieved when v, is left as a singleton cannot be

greater than one plus OPT(C},, **). Thus,
OPT(C}, ¥*) # 1+OPT(C},,, ¥*) and combining it
with  the  first part (ie, €) we get
OPT(CY, %) =1 + OPT(CY,,, #). O

Lemma 2 Let C = (\7, I:Z) denote a connected component
of a given metabolic network P. Let C¥ = (V¥, E¥) denote
the state of C after the ith step of the xth compression level.
If the node with minimum degree in \A/lx has degree greater
than one, then the compression step taken by MDS to cre-
ate the next state C;, | can lead to a network that has size
at most one larger than the compressed network that is
obtained from the state C{ by OPT. Formally,

OPT(C, %) <2+ OPT(C,,, *) ©)

i+17

Proof 2 Let v, be the first node in the list of minimum
degree nodes in le . From the assumption we know deg
(va) >1 and hence it has at least one non-compressed
neighbor node of v, that also has deg(vy) >1. Without
loss of generality assume that the MDS method merges
v, and v, to create the supernode v, at the compression
step from C7 to Ci,, . This step can prevent at most one
neighbor of v, say v, and at most one neighbor of vy,
say vy to be merged with the corresponding node in later
steps. Notice that v, and v, are not necessarily distinct.
The MDS algorithm can also merge v, and v, in the
next steps if they are also neighbors though we do not
know it for sure at this point. This results in either one
compression or two compressions using only the four
nodes v,, vy, v, and vy by the MDS method. Next, we
calculate the number of compression steps that the OPT
method can take for compressing these four nodes. There
are three cases to consider:

Case 1. The OPT method merges v, with vb at any point
during the xth level of compression. This case is equivalent
to merging v, with v, in the next step by MDS and then
compressing the rest of the network by O PT. In other
words, MDS already takes the optimal compression step.
Hence, OPT(C}, ¥*) =1 + OPT(C},,, ¥) <2+ OPT(C},,, +*).

Case 2. The O PT method merges v, with v, at any
point during the xth level of compression. The worst
case scenario for the MDS method in this case is when v,
is not connected to vy and the OPT method merges v,
with v, in a later step. This way the OPT method opti-
mally compresses four nodes down to two supernodes,
namely v,. and vy, On the other hand the MDS method
creates a single supernode, v, and the nodes v, and v,
remain as singleton However, even for this worst case,
the MDS method prevents only one compression step to
take place with respect to O PT. Hence,
OPT(C}, ¥°)) <2+ OPT(CY,, +°).
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Case 3. The O PT method merges v, with v, at any
point during the xth level of compression. We can prove
this similar to Case 2 by the symmetry.

[m}

Using lemmas 1 and 2, Theorem 1 develops an upper
bound on the number of compression that can be
missed by MDS with respect to the optimal
compression.

Theorem 1 (OPTIMALITY BOUND FOR MDS) Let
P be a metabolic network with r connected components
Cy =V, E), ..., C=(V,E) such that P=J_, C
and c be a positive integer given as the desired number
of compression levels. Let C = (V, E) denote an arbitrary
connected component of P. Also, let s represent the num-
ber of intermediate steps for which no non-compressed
nodes with degree one is found during the compression
from P to P° by the MDS method.

Then, each of the following statements hold:

LOPT(C* ', *) <2MDS(C* L, *) for x = 1, .., c.
2. 0 PT (P, *) < s + MDS (P, *°)
3.0 PT (P, *) < min{2 MDS (P, *), s + MDS (P, *)}.

Proof 3 1. This part follows from Lemma 1 and 2.
Lemma 1 states the case when MDS method is equivalent
to OPT. Lemma 2 gives an upper bound on the number of
compression steps that MDS can miss. The worst case is
when the boundary condition of Lemma 2 holds for each
step of the xth compression level for C* ~ . In this case,
the number of steps taken by the OPT method while com-
pressing C* = ' is two times the number for the MDS
method.

2. This part also follows from Lemma 1 and 2. Through-
out the compression of the entire network P by c levels,
each step of the M DS method that satisfies the condition in
Lemma 2 can decrease the number of possible merge
operations by one with respect to OPT. By simply counting
these steps, at the end of the execution of the MDS method
we can give the upper bound s+ MDS (P, *) on the number
of optimal compressions O PT (P, *°).

3. Part 2 shows that O PT(P, *°) < s+ MDS (P, *°). It is
only necessary to show O PT(P, *) < 2 MDS (P, *°). Part 1
proves this result for a single connected component C
for the xth compression level. P is given as U;T=1 Cj before
the first level of compression. We know by Part 1 that O PT
(C, *Y) < 2 MDS(C, **). Summing this up for all j from 1 to
r, we get OPT(P, *1y < 2 MDS(P, **). This equation holds
for each compression level x from 1 to c. Summation over x
gives > . (OPT(P*!, %)) < Y o, MDS(P*!, +%).
Hence, we prove OPT(P, *) < 2 MDS(P, *).

o

Another way of interpreting Theorem 1 is to trans-
form it to an upper bound on the size of the
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compressed network generated by MDS in terms of the
one that can be obtained by OPT. By carrying out this
transformation, we answer the question we pointed out
in the introduction which is “How far is our compres-
sion method from the optimal compression?”. We do
this as follows. Let P be a network of size n. Given com-
pression level ¢, let us represent the number of com-
pressions steps of the O PT method with 8 = O PT (P,
*9), Also, let np pr and nyps denote the sizes of the
compressed networks obtained by the OPT and MDS
methods respectively. By the bound given in Theorem 1,
we know that MDS(P, x¢) >= |—‘2’-| Therefore, we can
write ng pr = n - 0. and nyps <n-— [31 Also, we
know by definition that 6 <> ¢ ;| 2| Using this
inequality, we get:

nopr = n—i L;JrnMDS =n-— {i L?_ZlJ—‘ 3)

x=1 x=1

. . [ S S
If we examine the ratio "MP* MDs < 3

nopes for ¢ =1 we get "0 < 5
for arbitrary n (details omitted). This demonstrates that
after one level of compression, the size of the com-
pressed network found by our method is at most 1.5
times the size of the optimal network. For x = 1, 2, ..., ¢,
this ratio is proportional with (1.5)*. We can also use
the bound on number of compression steps given in the
second statement of Theorem 1 to gather a similar
upper bound on the size of the compressed network
found by MDS. The tighter of these two upper bounds
on the network size can be calculated during the execu-
tion of the MDS method and reported as an indicator of
how much room is left for improving the compression.

Alignment framework

We described the first phase, namely the compression
phase in detail in previous sections. Here, we first sum-
marize the base alignment method, SubMAP [10], we use
in our framework. Then, we explain the two remaining
phases of our framework, namely the alignment phase and
the refinement phase. The alignment phase follows the
compression phase and utilizes the base method to find an
alignment in compressed domain. The refinement phase
applies the base method on the mappings found in pre-
vious phase to further refine the alignment results. After
describing all the phases, we analyze the complexity of
each phase and combine them to obtain the complexity of
the entire framework. Then, we examine the characteris-
tics of the queries to determine which are likely to benefit
from compression during the alignment to answer the
question of “When should we compress?” Last, we provide
a guideline for selecting the compression level that is
expected to give the best performance gain reached by our
framework with respect to the base alignment method.
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Overview of SubMAP

Here, we take a small detour and explain SubMAP, a
recent method for aligning metabolic networks when they
are not compressed. We pick SubMAP method for its
high accuracy and biological relevance as it considers sub-
networks of the given networks during the alignment. A
subnetwork of a network is a subset of the reactions of
that network such that the induced undirected graph of
this subset is connected. Given two metabolic networks
P=(V,E)and P = (V, E) and a positive integer k, SUbMAP
aims to find a set of mappings between the reactions of P
and p with the largest similarity score, such that: (i) Each
reaction in P (P) can map to a subnetwork of P (P) with
at most k reactions (ii) Each reaction of P and p can
appear in at most one mapping.

The first step of SUbMAP is to create the set of all
possible subnetworks of size at most k for each query
network. We denote the number of these subnetworks
for P and p with Ny and M, respectively. The second
step of SUbMAP is to calculate pairwise similarities
between each pair of these subnetworks one from P and
one from p. Each subnetwork consists of reactions and
each reaction is defined by its input and output com-
pounds (i.e., substrates and products) and the enzymes
that catalyze it. Therefore, we measure the pairwise
similarities between subnetworks using reaction similari-
ties which in turn are defined by the similarities of the
components of these reactions. For more details of this
similarity score we refer the reader to Ay et al. [10].

The step that dominates the time and space complex-
ity of SubMARP is the third step. The aim of this step is
to create a similarity score that combines pairwise simi-
larities with the topological similarity of the networks. A
data structure named the support matrix is created for
this purpose. The size of this matrix is quadratic in
terms of the number of subnetworks of both query net-
works. In other words, the support matrix requires O
(N2 M%) space. This complexity is very important as it
is the dominating factor in the overall time and space
complexity of SubMAP. The next two steps of the algo-
rithm are to combine topological similarity with pairwise
node similarities and to extract the alignment as a set of
subnetwork mappings of P and p.

Alignment phase

The SubMAP method described above aligns the net-
works P = (V, E) and P = (V, E) in their original form.
Our framework first compresses each of these networks
to reduce their sizes and then aligns the compressed
networks instead of P and p. In this section, we explain
how we align the compressed networks P° and pc that
are in the compressed domain of level ¢ using SubMAP
with a given parameter k.

Page 15 of 19

Let us first consider P° = (V ¢, E°). Each node v, in V “ is
a supernode of the reactions in V. Also, by the working of
our compression method, we know that each supernode
v, contains at most 2° reactions. An edge from the node
v, to the node v, exists in E° if and only if at least one
reaction in v, has an edge to one reaction in v, in E. The
same arguments hold for the other network pc as well. To
align these compressed networks, we consider their nodes,
which are supernodes of reactions, as if they are the reac-
tions of the metabolic networks P° and pe. This way, we
can directly apply SubMARP to align these networks. As far
as the operation of the SubMAP method is concerned,
this is no different than aligning two networks that are
identical to these networks but are in the original domain.
The difference is in the interpretation of the intermediate
steps and the form of the mappings found by the align-
ment. For instance, for the first step of SUbMAP, we enu-
merate the reaction subnetworks of size at most k in the
original domain, whereas in the compressed domain we
enumerate the subnetworks of supernodes where each
supernode can contain more than one reaction and the
number of such supernodes in one subnetwork is at most
k. Similarly, we calculate the pairwise similarity, the sup-
port matrix and the conflict graph for the subnetworks of
supernodes (i.e., nodes of V ) instead of subnetworks of
reactions (i.e., nodes of V). The resulting alignment gives
us a set of mappings between the subnetworks of P° and
pc. We can think of these mappings as a high level view of
the alignment between the networks P and p. For instance,
from Figure 1(f) one can immediately see that the resulting
alignment will map node a either to node a’ or node b’
and that these are the only options for node 4 which is
imposed by the higher level supernode mapping (a, b -
a’b’). In the next phase, we consider each of these super-
node mappings as smaller instances of the alignment pro-
blem and solve them to obtain a more refined alignment
of P and p.

Refinement phase

Each mapping found by the alignment phase is a subnet-
work pair where one is from P° and the other is from pe.
The mappings found by SubMAP can have up to k nodes
in one subnetwork and only one node in the other. If we
denote a subnetwork of P° with R{ and a subnetwork of
pc with I_?]?, the resulting mappings of the alignment phase
will be in the form (Rj, R;). We can assume, without loss
of generality, for this specific pair that R contains up to k
nodes of P° and R]? contains a single node of pc. Each
node contained in either of these subnetworks is a super-
node that contains either one node or two nodes and an
edge between them in the previous level of compression,
namely the (c - 1)th level. For both R{ and R;, we decom-
press their nodes by one level by retrieving the
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connectivity between these nodes in the (¢ - 1)th com-
pression level that was encapsulated in the cth level. This
decompression results in at most 2k nodes from (c - 1)th
level for R} and at most 2 nodes from (c - 1)th level for
Rf. We then recursively align these smaller networks gen-
erated from Rj and R by using SubMAP until the original
domain (i.e., ¢ = 0) is reached. At the (¢ - x)th recursive
step, the sizes of two networks to be aligned can be at
most k 2* for one network and 2* for the other.

Figure 1(f) illustrates this on a concrete example. The
network on the left has two supernodes (i.e., (2, b) and
(e, d)) each containing two nodes with an edge between
them and one supernode (i.e., (¢)) which contains only
one node from the previous level of compression. The
one on the right has two supernodes with two nodes in
each. To understand how decompression by one level
works, we can focus on the supernode mapping (e, d) -
(¢’, d) which is found in compression level one. We can
think of decompression as removing the circles that sur-
round these supernodes to get back the connectivity
within their nodes in the previous compression level. In
our case, this leads to the small networks d — e and ¢’
— d’. We align these small networks recursively using
SubMAP and report their final alignment in only one
recursive call since the compression level is only one for
this case. Also, since k = 1 is used for the ease of this
example, the sizes of the networks, in terms of the
nodes in original domain, on each side are at most 2 for
the recursive call from ¢ = 1 as can be seen from Figure
1(f) e, k2°=2°=2fork=c = 1).

Complexity analysis

Having finished the discussion of all the three phases,
now we can analyze the overall complexity of our fra-
mework. We start from the first phase which is com-
pression of the input networks P and p by ¢ levels. We
first calculate the complexity of the first compression
level for the network P with size n. At each compression
step, MDS first searches for a minimum degree node.
Once it finds this node, it picks one of its neighbor
nodes and merges these two nodes. After this merging,
it updates the degrees of all the neighbors of each of the
merged nodes. The first two of these operations take O
(log n) time if proper data structures are used and the
last one can take O (n) in the worst case. Since the size
of network P is n, there can be at most BJ compression
steps during the first level of compression. Hence, the
complexity of the compression for the first level is O
(n%). Since the input sizes of this level is larger than all
the next levels, we can safely assume that each of these
next levels also take O(1%) and the complexity of com-
pression by c levels is therefore O (c#n®). Even though
this is not a tight bound, it is sufficient at this point for
the complexity of the next two phases will dominate it.
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Since we compress both networks, the overall complex-
ity for the compression phase is:

O(c(n? + m?)). (4)

For the analysis of the next phases, we make two
assumptions both of which are supported by experimen-
tal evidence on the topological properties of metabolic
networks. Our first assumption is that at each level of
compression our method reduces the network size by
half. In other words, if the sizes of our query networks
are n and m, then the sizes of the compressed networks
after ¢ levels by the MDS method are nyps = Hﬂ and
MymDs = [;"—| respectively. This is mainly because meta-
bolic networks contain many nodes with low degrees
[27]. Our experiments on a large dataset of networks
summarized in Table 1 supports this as well. The sec-
ond assumption is that the number of subnetworks is a
constant multiple of the network size for small k values.
In other words, Nyps = o (k) n and Myps = B (k) m
where o (k) and f (k) are functions of k but are inde-
pendent of # and m respectively. Our earlier analysis in
Ay et al. [10] demonstrated that the number of subnet-
works for k = 3, which is the largest k value we use
here, is in the order of 5|V | for a large set of metabolic
networks.

We are now ready to analyze the complexity of the
second phase which is the alignment phase. By the first
assumption, we know that the sizes of P and pc are
NMDS = [2”—| and myps = [;"—| respectively. By the sec-
ond, we have the number of subnetworks of these net-
works as Nyps = o (k) n and Myps = B (k) m for a
given k. Also, we know that the complexity of SubMAP
is quadratic in terms of Ny;ps and My ps. Therefore, the
complexity of the second phase is:

a(k)?B(k)*n*m?

O( 246

)- (5)

The complexity of the refinement phase has two fac-
tors in it. The first one is the number of mappings
found by the alignment phase. Since we know that Sub-
MAP allows each node of both networks to be reported
in at most one mapping, we have a trivial upper bound
on the number of possible mappings in terms of n and
m. The biggest number of mappings is reported when
all the subnetworks of both networks are singletons. In
this case, the number of reported mappings is the mini-
mum of # and m. We can assume without loss of gener-
ality that #n < m and hence this number is O (n). The
second factor is the sizes of each of these O(n) smaller
alignment problems that needs to be solved by SubMAP
again to refine the mapping results. As we discussed in
the refinement phase, the sizes of the networks created
by decompressing the mapped subnetworks by one level
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are at most k 2° on one side and at most 2° on the
other. The number of subnetworks that can be created
from these networks are o (k) k 2° and 8 (k) 2° for the
corresponding sides. Therefore, each mapping can be
refined by decompressing and applying SubMAP which
is O (a (k)* I* 2°° B (k)* 2°°). We do this refinement for
O (n) times in the worst case, hence the complexity of
the refinement phase is:

O(au(l)2 B (k)2 nk?2%). 6)

Combining the results of Equations 4, 5 and 6, we can
see that the overall complexity of our method is deter-
mined by the second or the third phase depending on
the value of c. For small values of ¢ and k such as 1, 2
and 3, the second phase dominates the overall complex-
ity. Larger values of c results in a costlier refinement
phase and a less expensive alignment phase. Very large
values of k imply exponentially many subnetworks in
which case the above complexity analysis would not
hold and the alignment problem may become intract-
able with or without compression.

When should we compress?
We discussed the potential of our framework improving
the scalability of existing network alignment methods.
However, there can be cases when the compression
results in such network topologies which would enforce
the alignment method to reach its worst case perfor-
mance. In this section, we want to analyze when per-
forming the alignment in compressed domain is the
better alternative. For this purpose, we devise a criterion
that is inspired by the results of a large number of net-
work alignments that are done by both of the methods.
We find that the gain/loss in running time is highly
dependent on the number of all possible subnetworks of
compressed and non-compressed networks. The num-
bers of these subnetworks can be determined in advance
to the alignment. By formulating a criterion in terms of
these numbers, we can make a decision between the
two algorithms before actually performing an alignment.
Figure 4 illustrates the results for 3600 alignments
performed by both of the methods on a wide range of
network sizes with all possible combinations of k and ¢
values. The x-axis show the running time of SubMAP
minus the running time of our framework. The bigger
this value is the better improvement we get from our
NiMi \here
NiMp
Ny, M denote the numbers of all subnetwork of P and
p and Nj, Mj, denote the numbers of all subnetwork of
the compressed networks P° and pc. The dashed line
passing from y = 0.5 visualizes our criterion. If the
above ratio is below 0.5, then the number of all possible
subnetworks generated by the compressed alignment is

framework. The y-axis shows the ratio y =
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less than the half of this number for the original align-
ment. Very large portion of the alignments (97%) satisfy-
ing this criterion shows improvement in running time if
compression is used. For the upper part of 0.5, only a
small portion of these alignments (10%) shows improve-
ment. Considering the overhead of refinement phase
and the compression phase, this result is expected.
These results strongly suggest that the answer to the
question “When should we compress?” is “when
N, = 05"

How much should we compress?

In this section, we provide a guideline for selecting a
value for compression level ¢ that results in the mini-
mum expected running time, among other possible
values, for our framework to align the query networks
with for a given k. We make extensive use of the com-
putational complexity results we discussed before in the
proof of the below theorem which formulates the opti-
mal ¢ for a given k value and the two query networks
with sizes #n and m. This theorem answers the question
“What is the right amount of compression that we need
to use in order to minimize the running time of our
framework?”.

Theorem 2 (OPTIMAL LEVEL OF COMPRESSION)
Let P = (V, E), P=(V,E) be two metabolic networks
with sizes n and m respectively, and k be a given positive
integer. Assume without loss of generality that n < m.
Then, the compression level ¢ that gives the optimal com-
pression is:

21,2
‘- logz(n;n k ). @)

Proof 4 Given P and p, we want to find c value such
that the difference between the complexity of applying
SubMAP to align these networks in their original domain
for a given k and the complexity of using our framework
that aligns P with D in compressed domain for the same
k value is maximum. We omit the constant factors and
use the algorithmic complexity as the cost of alignment.
Under this assumption, the cost of aligning two networks
with sizes n and m with SubMAP in the original domain
for a given k value is:

a(k)?B(k)2n>m? 8)

For our framework, this cost can be determined from the
complexities of three different phases given by the Equa-
tions (4), (5) and (6) (see main article for these equations).
As discussed, the dominating factors in the complexity are
the last two phases (i.e., Equation (5) and Equation (6)).
Therefore, we write the total cost of aligning P with p in
the compressed domain c, for a given k value as:
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a(k)?B(k)*n>m?
4c

N +a(k)2B(k)2nk? 2% )

Our aim is to maximize (8) - (9) with respect to c. We
know that this difference is negative (i.e., alignment in
compressed domain is costlier) when ¢ > n (assuming
n < m as stated in the Theorem) or when ¢ = 0 due to
the overhead of compression and/or refinement phases.
We also know that, for ¢ = 1 this difference is positive as
compression by one level always results in less costlier
alignments compared to no compression. Therefore, if
there is an extrema of (8) - (9) with respect to c for ¢ €
(0, n), then this extrema is a maxima meaning that the
difference (8) - (9) is maximum at that point. We calcu-
late this maxima by derivation of (8) - (9) with respect
to ¢ and setting it to zero as:

(1) - () _

ac
o (k)* (k) n*m? — (k) (k) n*m? 27 — ar(k)? B (k) nl? 2%} _
4log(2)2 "“a(k)zﬁ(k)znazcmz — 4log(2)2%a(k)2 (k) nk? = 0
27%nm? — 2% = 0

2% = nm?k 2

0

(10)

e log, (nm?k~2)
N 8

O

The value obtained from the above discussion is not
necessarily an integer. We suggest using the nearest
integer to this value as the number of compression
levels in our alignment. Next, we want to give a few
examples for to see what Theorem 2 implies in practice.
Assume we have two networks with sizes n = 100, m =
100 and we want to align them using our framework for
k = 2. Plugging these number in Equation 7, we get:

log,(250000)  17.93
C = =
8

=224

If we round this to the nearest integer, the Equation 7
suggests that we use two levels of compression for this
alignment problem to be able to get the largest gain in
running time. We can carry the calculations similarly
for a bigger set of inputs #n = m = 1000 and k = 3 which
gives around 3.34, suggesting three levels of compres-
sion is likely to provide the best running time improve-
ment for this instance.

However, it is important to note that depending on how
much of a tradeoff is desired between the running time
gain and the alignment accuracy, the user can always use
smaller (or bigger) c values than the ones suggested here.
Also, the above calculated values are only expected to pro-
vide the best running time improvement with respect to
the original alignments running time. If the size of the
query is orders of magnitude bigger than the original algo-
rithm can handle, then it is likely that the framework we
propose here to also fail to perform the alignment.
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List of abbreviations

P =(V, F), P =(V E): Query metabolic networks; V, V: Sets of all reactions of
the query networks; r; € V, rje V': Reactions of the query networks; n = |V/|,
m:\v_|: Sizes of the query networks; ¢, 2% Compression level and
compression rate; P~ = (V <, £9: P after ¢ levels of compression; Ci=(V AiEi): A
connected component of network P; N(v,), deg(v,,): The set of neighbors and
degree of node v,; |v,4|: Number of reactions that are contained in vg; Vg : A
supernode containing the nodes v, and vy; k: Parameter for the largest
subnetwork size; 2k, Zk: Sets of all subnetworks of size at most k; Ri R j:
Subnetworks of the query networks; Ny, My: Numbers of all subnetworks of
size at most k.
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