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Abstract

Background: Biclustering aims at finding subgroups of genes that show highly correlated behaviors across a
subgroup of conditions. Biclustering is a very useful tool for mining microarray data and has various practical
applications. From a computational point of view, biclustering is a highly combinatorial search problem and can be
solved with optimization methods.

Results: We describe a stochastic pattern-driven neighborhood search algorithm for the biclustering problem.
Starting from an initial bicluster, the proposed method improves progressively the quality of the bicluster by
adjusting some genes and conditions. The adjustments are based on the quality of each gene and condition with
respect to the bicluster and the initial data matrix. The performance of the method was evaluated on two well-
known microarray datasets (Yeast cell cycle and Saccharomyces cerevisiae), showing that it is able to obtain
statistically and biologically significant biclusters. The proposed method was also compared with six reference
methods from the literature.

Conclusions: The proposed method is computationally fast and can be applied to discover significant biclusters.
It can also used to effectively improve the quality of existing biclusters provided by other biclustering methods.

Background
The DNA microarray technology permits to monitor and
to measure gene expression levels for 10s of 1000s of
genes simultaneously in a cell mixture in a single experi-
ment under diverse experimental conditions. DNA micro-
array data are typically represented by a large matrix
where each row contains the gene expression levels under
specific conditions (columns). Since its invention, this
technology has found many applications in biological and
medical research. For instance, it is being used in cancer
studies to better understand the biological mechanisms
underlying oncogenesis, to discover new targets and new
drugs, and to develop predictors for tailoring individua-
lized treatments [1-3].
Microarray data analysis is a critical step in practical

applications and often achieved with the help of data

mining techniques [4]. Microarray data analysis can be
performed according to at least two different and com-
plementary approaches [1-3]. The first approach is based
on supervised classification (also called class prediction
or class discrimination). This generally involves selecting
predictive genes to build a classifier that can be used to
predict the outcome of new samples based on their
expression profiles. Various methods based on this
approach have been proposed in the literature and exam-
ples can be found in [5-15].
Another general approach for microarray data analysis

relies on non-supervised classification (or clustering)
methods. These cluster analysis methods try to identify
groups of genes, or/and groups of conditions (samples),
that exhibit similar expression patterns [16-20]. In the
context of cluster analysis, biclustering is a particularly
interesting approach which aims to identify simulta-
neously groups of genes and conditions (called biclusters)
such that the genes of a bicluster show similar expression
patterns across the selected conditions [21-23]. Formally,
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given a gene expression data matrix M(I, J) with gene
index i Î I={1, 2,..., n} and condition index j Î J={1, 2,...,
m} (n >>m), a bicluster M(I’, J’) is a group of genes asso-
ciated with a group of conditions such that I’ ⊆ I and J’
⊆J. This paper focuses on finding meaningful biclusters
for a given microarray dataset.
From a computational point of view, the biclustering

problem is a highly combinatorial search problem and
known to be NP-hard [22,24]. A number of heuristic
search algorithms have been proposed and some recent
reviews can be found in [22,25,26]. Generally, existing
biclustering algorithms belong to one of the following
approaches.
1. Greedy iterative search approach: Greedy bicluster-

ing algorithms build a solution by starting from the
initial data matrix (or a transformed matrix) and itera-
tively remove bad genes/conditions according to a qual-
ity criterion. For instance, the algorithm presented in
[27] (called Maximum Similarity Biclusters) starts by
constructing a similarity matrix based on a reference
gene. A greedy strategy is then iteratively applied to
remove genes/conditions such that a maximum similar-
ity is achieved in the remaining matrix (bicluster).
Greedy algorithms can also proceed by extending gree-
dily an initially empty bicluster. Examples of greedy
biclustering algorithms can be found in [27-30]. They
differ essentially in the way genes/conditions are added/
removed. Greedy algorithms are computationally fast,
but the quality of the biclusters found may be mediocre.
2. Biclusters enumeration approach: This approach

tries to enumerate (implicitly) all the biclusters. The enu-
meration process is often represented by a search tree.
During the construction of the search tree, some nodes
are closed as soon as some pruning conditions are ful-
filled. For instance, in [31], the authors propose the CE-
Tree algorithm which builds its tree of biclusters by
applying a special local breadth-first within a global
depth-first search strategy in combination of exploring
Maximum Dimension Sets for each pair of conditions.
Representative examples of algorithms adopting this enu-
meration approach are given in [23,29,32-34]. This
approach has the advantage of achieving high quality
solutions. However, algorithms using this approach are
expensive in computing time and memory space.
3. Stochastic search approach: This approach can be

further divided into neighborhood search and evolutionary
search. For neighborhood search, one begins with an
initial candidate solution (bicluster) and improves itera-
tively its quality by replacing the bicluster with a neighbor-
ing bicluster. The neighboring bicluster is typically
obtained by replacing a gene/condition by a better one.
Cheng and Church [24] are probably the first to apply this
approach to the biclustering problem. They employ the
Mean Squared Residue (MSR) to measure the goodness of

genes and conditions and to decide which genes/condi-
tions are to be removed/added. Other biclustering algo-
rithms based on local search are presented in [24,35-38].
Population-based evolutionary search generalizes neigh-
borhood search by operating on a pool of candidate solu-
tions. Candidate solutions are improved with operators
like crossover and mutation. Examples of evolutionary
biclustering algorithms can be found in [39-42].
In this paper we introduce a stochastic neighborhood

search algorithm called Pattern-Driven Neighborhood
Search (PDNS) for the biclustering problem. PDNS is
based on a solution representation encoded as a behavior
matrix and a dedicated neighborhood taking into account
various patterns information. It also employs fast greedy
algorithms to generate diversified initial biclusters of rea-
sonable quality and a randomized perturbation strategy.

Method
Preprocessing of gene expression matrix
Prior to the search by PDNS, our method first applies a
preprocessing step to transform the input data matrix M
to a Behavior Matrix M’. This preprocessing step aims to
highlight the trajectory patterns of genes. Indeed, accord-
ing to [43-45], in microarray data analysis, genes are con-
sidered to be in the same cluster if their trajectory
patterns of expression levels are similar across a set of
conditions. Within the transformed matrix M’, each row
represents the trajectory pattern of a gene across all the
combined conditions while each column represents the
trajectory pattern of all the genes under a pair of particu-
lar conditions in the data matrix M. The whole matrix M’
provides thus useful information for the identification of
relevant biclusters and the definition of a meaningful
neighborhood of a local search algorithm.
Formally, the behavior matrix M’ is constructed pro-

gressively by merging a pair of columns (conditions)
from the input data matrix M. Since M has n rows and
m columns, there is m(m−1)/2 distinct combinations
between columns, represented by J’’. So, M’ has n rows
and m(m−1)/2 columns. M’ is defined as follows:

M′[i, l] =

⎧⎪⎨
⎪⎩

1 if M[i, k] < M[i, q]

0 if M[i, k] = M[i, q]

−1 if M[i, k] > M[i, q]

(1)

with i Î [1..n], l Î [1..J’’], k Î [1..m- 1], q Î [2..m] and
q ≥ k + 1.
Figure 1 shows an illustrative example. We can observe,

by considering each row of M’, the trajectory (or beha-
vior) pattern of each gene through all the combined con-
ditions, i.e., up (1), down (-1) and no change (0), of all
rows (genes) over combined columns (combined condi-
tions). Similarly, the combinations of all the paired condi-
tions give useful information since a bicluster may be
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composed of a subset of non contiguous conditions. Our
PDNS algorithm uses M’ to define its search space as
well as its neighborhood that is critical for the search
process.

Pattern-driven neighborhood search for biclustering -
general procedure
Our proposed PDNS method can be considered as an
Iterated Local Search procedure [46]. It alternates
between two basic components: a descent-based
improvement procedure and a perturbation operator.
PDNS uses the descent procedure to discover locally
optimal solutions and the perturbation operator to dis-
place the search to a new starting point in an unex-
plored search region.
The key originality of PDNS concerns the use of biclus-

ter pattern both in its search space and neighborhood
definition. The bicluster pattern is a characteristic repre-
sentation of a bicluster. It is used to evaluate genes/con-
ditions of bicluster. This representation is defined by the
behavior matrix of the bicluster, i.e., the trajectory pat-
terns of the genes under all combined conditions of the
bicluster. This representation is important because it is
well recognized that in microarray data, genes are consid-
ered to belong to the same cluster if they have similar
trajectory patterns of expression levels [43-45,47].
Starting from an initial bicluster (call it current solu-

tion s), PDNS uses the descent strategy to explore the

pattern-based neighborhood and moves to an improving
neighboring solution at each iteration. By using the
bicluster pattern, we define a set of rules which allow us
to qualify the goodness (or badness) of a gene and con-
dition. Using these rules (explained in a later section
“Neighborhood and its exploration”), PDNS iteratively
replaces within the current bicluster bad genes/condi-
tions by good ones, thus progressively improves the
quality of the bicluster under consideration. This itera-
tive improvement procedure stops when the last biclus-
ter attains a fixed quality threshold according to the
ASR evaluation function (see next section) or when a
fixed number Y of iterations is reached. At this point,
PDNS triggers a perturbation phase by replacing ran-
domly 10% of genes and conditions of the recorded best
bicluster found so far. This perturbed bicluster is used
as a new starting point for the next round of the des-
cent search.
The whole PDNS algorithm stops when the best

bicluster is not updated for a fixed number Z of pertur-
bations. The general PDNS procedure is described in
Figure 2. We describe in the following sections the
ingredients of PDNS.

The ASR evaluation function
Many functions exist for bicluster evaluation. One of the
most popular evaluation functions is the Mean Squared
Residue (MSR) [24]. It has been used by several biclustering

Figure 1 Construction of bicluster pattern.
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algorithms [33,38,42,48-51]. However, MSR is deficient to
assess correctly the quality of certain types of biclusters like
multiplicative models [30,33,52,53].
In this paper, we use the Average Spearman’s Rho

(ASR) function which avoids the drawback of MSR [54].
Let (I’, J’) be a bicluster in a data matrix M(I, J), the
ASR evaluation function is then defined by:

ASR(I′, J′) = 2max

⎧⎪⎨
⎪⎩

∑
iεI′

∑
jεJ′
j≥i+1

ρij

|I′|(|I′| − 1)
,

∑
kεJ′

∑
lεJ′
l≥k+1

ρkl

|J′|(|J′| − 1)

⎫⎪⎬
⎪⎭
(2)

where rij (i ≠ j) is the Spearman’s rank correlation
[55] associated with the row indices i and j in the
bicluster (I’, J’), rkl (k ≠ l) is the Spearman’s rank corre-
lation associated with the column indices k and l in the
bicluster (I’, J’). According to this definition, ASR(I’, J’)
Î[-1..1].
A high (resp. low) ASR value, close to 1 (resp. close to

-1), indicates that the genes/conditions of the bicluster
are strongly (resp. weakly) correlated.
Let us notice that the existing evaluation functions can

roughly be classified into two families: numerical mea-
sures and qualitative measures. Numerical measures,
like Pearson’s correlation or Euclidean distance, are easy
to compute but they are quite sensitive toward outliers

and noise. Qualitative measures, like measures that con-
sider only ups, downs and no change of conditions, are
very sensitive to precise the values of changes. As ASR
is based on Spearman’s rank correlation it can be con-
sidered as a good compromise between numerical and
qualitative measures.

Configuration representation
PDNS uses a solution representation based on the beha-
vior matrix M’ obtained from the preprocessing step
described previously. More precisely, given a bicluster
B = (I’, J’), we encode the bicluster by its behaviour
matrix s = (I’,K) which is the sub-matrix of M’ including
only the set of genes in I’ and all the combinations of
paired conditions in J’ (see example of Figure 1). It is
clear that s has the same rows as B, its number K of col-
umns is equal to |J’|(|J’| - 1). In the rest of this paper, s
is called a configuration (or solution). As it is shown
below in Section “Neighborhood and its exploration”,
such a configuration representation enables the defini-
tion of dedicated move operators to improve progres-
sively the quality of the generated biclusters.

Initial solution
Our algorithm needs an initial bicluster to start its
search. The initial bicluster can be provided by any

Figure 2 General PDNS procedure.
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means. For instance, this can be done randomly with a
risk of starting with an initial solution of bad quality. A
more interesting strategy is to employ a fast greedy algo-
rithm to obtain rapidly a bicluster of reasonable quality.
We use this strategy in this work and adopt two well-
known algorithms: one is presented by Cheng and
Church [24] and the other is called OPSM which is
introduced in [29]. As explained above, each initial
bicluster is encoded into its behavior matrix before
being improved by PDNS.

Neighborhood and its exploration
The neighborhood is one of the most critical elements of
any local search algorithm. The neighborhood can be
defined by a move operator. Given a solution s, let mv be
the move operator that can be applied to s. Then each
application of mv transforms s into a new solution s’.
This is typically denoted by s’ ¬ s ⊕mv.
In this paper, we devise two specially designed move

operators operating respectively on rows (genes) and col-
umns (combinations of pairwise conditions) of a given
solution. Both operators are based on the general drop/
add operation which removes some elements and adds
new elements in the given solution. The critical issue
here is the criterion that is employed to determine the
elements to be removed and added. In our case, this deci-
sion is based on the “behavior pattern”.
Our first move operator, denoted by mvg, performs

changes by removing a number of rows (genes) of the
bicluster and adding other genes in order to obtain more
coherent biclusters. Let s = (I’, K) be a solution, we first
extract from the behavior matrix M’ the associated sub-
matrix M̄′ . Let R and C denote respectively the index set
of rows and columns of M̄′ . From M̄′ we build the
bicluster pattern P of s which is defined by a vector
indexed by C. P[j], j Î C, takes the dominating value k Î
{1, 0, -1} such that k has the highest appearances in the
column i of M̄′ (see example of Figure 3).
Now for each gene gi, i Î R of the solution s, we

define the quality of gi as the percentage of concor-
dances between the behavior pattern of g and the beha-
vior pattern P of bicluster s. Let a be a fixed quality
threshold of genes. Let D denote the set of bad genes of
s such that their quality does not reach the quality
threshold fixed by a. Let G denote the set of good genes
missing from s such that their quality surpasses the
quality threshold a. Then our first move operator mvg
removes from s all the bad genes of D and adds a num-
ber of genes selected from G.
Figure 3 shows an example where one bad gene (g4) is

deleted and one good gene (g10) is added. g4 is bad
because its behavior pattern has a low concordance with
the bicluster behavior pattern (only 50% which is infer-
ior than the quality threshold a = 70%). Similarly, g10 is

good because its quality (83%) is higher than a. This
replacement increases thus the coherence of the result-
ing bicluster. In the general case, the number of deleted
gene may differ from the number of added genes.
Notice that this move operator does not change the col-
umns of the solution.
Our second move operator, denoted by mvc, performs

changes by removing a number of columns (combined
conditions) and adding other columns in order to obtain
more coherent biclusters. Similar to the first move
operator, mvc uses a quality threshold b for each col-
umn. The quality of each column is defined as the per-
centage of concordances between the column pattern
and the value of this column in the bicluster pattern.
Then, when our second move operator mvc detects a

bad condition from the current bicluster, we test if the
dominating value of each condition of the current biclus-
ter has the same value with the corresponding value in
the bicluster pattern. If it is different, this condition is
considered bad (and removed from the current bicluster).
To add a good condition from the current bicluster, we
select a condition under the same subset of genes from
the “behavior matrix” M’ which has a dominating value
higher than a fixed threshold b. Notice that this move
operator does not change the rows of the solution (see
example of Figure 4). In the general case, the number of
deleted columns may differ from the number of added
columns at each application of this move operator.
For a given solution, our PDNS algorithm applies these

two move operators to reach a local optimum s (with an
ASR value higher than the fixed threshold_ASR thresh-
old). This local optimum solution s is composed of a
group of genes and columns, each column representing
the trajectory pattern of two conditions across the group
of genes. Among the combinations of conditions in s,
some conditions may be combined with only a few other
conditions. These conditions are in fact insignificant con-
ditions for the extracted bicluster. For this reason, during
the decoding process (transforming s into a bicluster B),
we retain only conditions which are combined with at
least 50% other selected conditions. For instance, if we
have s = {(g1, g2, g3, g4); (c1c2, c1c3, c1c4, c2c3)}, condition
c4 will not be kept in the final bicluster because it is not
combined at least with 50% of the other conditions, i.e.,
c2 and c3. The bicluster obtained is thus B = {(g1, g2, g3,
g4); (c1, c2, c3)}.

Results and discussion
Experimental protocol
We perform statistical and biological validations of the
obtained biclusters and we evaluate our PDNS algorithm
against the results of some prominent biclustering algo-
rithms used by the community, namely, CC [24], OPSM
[29], ISA [56] and Bimax [57]. For these reference
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methods, we use Biclustering Analysis Toolbox (BicAT)
which is a recent software platform for clustering-based
data analysis that integrates all these biclustering algo-
rithms [58]. We also compare our method with two
additional methods (Samba [23] and RMSBE [27]).
For the experiments, we empirically fix a, b and

threshold_ASR of the PDNS algorithm as follows. We
experiment a number of combinations (typically several
tens) and for each combination, we compute the p-
values of the obtained biclusters. We pick the combina-
tion with the lowest p-value for the final experiment.
For CC, OPSM, ISA and Bimax, the default values used
in [27] are adopted for the Yeast Cell-Cycle dataset. For
all the other experiments, we report the results of the
compared algorithms from their original papers. The
PDNS algorithm was implemented in Java and run on a
PC Intel Core 2 Duo T6400 with 2.0GHz CPU and
3.5Gb RAM.

Datasets and results
Saccharomyces Cerevisiae dataset
The Saccharomyces Cerevisiae dataset (available at http://
www.tik.ethz.ch/sop/bimax/) [59] contains the expression
levels of 2993 genes under 173 experimental conditions.
For this experiment, the parameters of PDNS are experi-
mentally set as follows: a = 0.8, b = 0.8, threshold_ASR =

0.7, Y =100 and Z=50. The average running time of PDNS
to improve a bicluster was about 4 minutes.
The results of PDNS are compared against the

reported scores of RMSBE, Bimax, OPSM, ISA, Samba
and CC from [27,57]. In order to evaluate the statistical
significance of a bicluster, we determine whether the set
of genes contained in the bicluster shows significant
enrichment with respect to a specific Gene Ontology
(GO). We use the webtool FuncAssociate (available at
http://llama.mshri.on.ca/funcassociate/) [60] for this pur-
pose. FuncAssociate computes the adjusted significance
scores for each bicluster, i.e., adjusted p-values (p = 5%,
1%, 0.5%, 0.1% and 0.001%) which is the one-sided p-
value of the association between attribute and query
resulting from Fisher’s Exact Test. The best biclusters
have an adjusted p-value less than 0.001%.
Figure 5 presents different significant scores p for each

algorithm over the percentage of total extracted biclus-
ters. On the one hand, PDNS and RMSBE seem to out-
perform other algorithms. PDNS (resp. RMSBE) results
show that 100% (resp. 98%) of discovered biclusters are
statistically significant with p < 0.001%. On the other
hand, apart from CC, other algorithms have reasonably
good performance. In particular, the best of the other
compared algorithms, OPSM, 87% of its biclusters has p
< 0.001%. CC under-performs because it is unable to

Figure 3 Row move operator mvg. A bad gene (g4) is deleted since its quality (50%) is inferior to a = 70%; A good g10 is selected and added
which has a quality (83%) superior to a = 70%.
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Figure 4 Columns move operator mvc. Column c2c3 has a dominating value different to the column c2c3 in P and thus removed from s; c2c5
with a quality superior to b = 70% in the same subset of genes is selected and added into s.

Figure 5 Proportions of biclusters significantly enriched by GO on Saccharomyces Cerevisiae dataset.
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find coherent biclusters and its lack of robustness
against noise.

Yeast Cell-Cycle dataset
The Yeast Cell-Cycle dataset (available at http://arep.
med.harvard.edu/biclustering/) is described in [61]. This
dataset is processed in [24] and publicly available from
[62]. It contains the expression profiles of more than
6000 yeast genes measured at 17 conditions over two
complete cell cycles. In our experiments we use 2884
genes selected by [24].
For this dataset, two criteria are used. First, we evaluate

the statistical relevance of the extracted biclusters by com-
puting the adjusted p-value like as for the Saccharomyces
Cerevisiae dataset. Second, we identify the biological anno-
tations for the obtained biclusters. For this experiment, the
parameters a, b, threshold_ASR, Y and Z of PDNS are set
as follows: a=0.5, b =0.7, threshold_ASR =0.5, Y =100 and
Z=50. The average running time of PDNS to improve a
bicluster was about 2 minutes.
Statistical relevance
To evaluate the statistical relevance of PDNS, we use
again the p-values and apply the web-tool FuncAssociate
[60]. The results of PDNS are compared against CC, ISA,
Bimax and OPSM. Figure 6 shows, for each significant
score p (p = 5%, 1%, 0.5%, 0.1% and 0.001%) and for each
compared algorithm, the percentage of the statistically
significant biclusters extracted by the algorithm with the
indicated p-value. We observe that PDNS outperforms
the other algorithms on this dataset. 100% of discovered
biclusters of PDNS are statistically significant with p <
0.001%. However, the best of the compared algorithm
(Bimax) has only a percentage of 64% for p < 0.001%.

Analysis of biological annotation enrichment of biclusters
To evaluate the biological significance of the obtained
biclusters in terms of the associated biological processes,
molecular functions and cellular components respec-
tively, we use the Gene Ontology (GO) term finder
GOTermFinder (available at http://db.yeastgenome.org/
cgi-bin/GO/goTermFinder). Indeed, the GO project pro-
vides a controlled vocabulary to describe gene and gene
product attributes in any organism, and it is a collabora-
tive effort to address the need for consistent descrip-
tions of gene products in different databases (cited from
http://www.geneontology.org). GOTermFinder can find
the significant shared GO terms for genes within the
same bicluster.
Table 1 and Table 2 report the top GO terms shared by

the biclusters of CC (id2CC, id9CC) and OPSM (id7OPSM,
id10OPSM), and their improvement by PDNS (id2PDNS,
id9PDNS, id7PDNS, id10PDNS), in terms of biological pro-
cess, molecular function and cellular component. For
each GO, we list only the most significant shared term
with the smallest p-value.
For the bicluster labeled id9PDNS (Table 1), the genes

YCR005C, YHR037W, YLR304C, YNL037C, YNR001C
and YOR136W are together involved in the glutamate
biosynthetic process. Each GO term is associated with a
tuple, for example glutamate biosynthetic process (10.2%,
8.62e-08) indicates the cluster frequency and the statisti-
cal significance. The cluster frequency (10.2%) shows that
out of 59 genes in the first bicluster 6 genes take part to
this process, and the statistical significance is provided by
a p-value of 8.62e-08. Furthermore, PDNS can improve
all the biclusters of CC (resp. OPSM) and find biologi-
cally meaningful biclusters.

Figure 6 Proportions of biclusters significantly enriched by GO on Yeast Cell-Cycle dataset.
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For the worst (resp. the best) biclusters obtained from
CC, i.e, id9CC (resp. id2CC) and OPSM, i.e., id7OPSM

(resp. id10OPSM), we verify whether the PDNS algorithm
can improve these biclusters to obtain biclusters of more
relevant biological significance. We observe that PDNS
does improve the worst and the best biclusters of CC and
OPSM. For the worst biclusters which have no biological
significant ("unknown”), i.e., id9CC and id7OPSM, the
improved biclusters obtained by PDNS (id9PDNS and
id7PDNS) tend to be more statistically and biologically sig-
nificant. Indeed, when a bicluster has a bad quality,
PDNS can improve it by replacing the bad genes/condi-
tions by the good ones. For the best biclusters, i.e., id2CC
and id10OPSM, PDNS can also improve them (id2PDNS

and id10PDNS) by improving the respective p-value.

Conclusions
We have presented the pattern-driven neighborhood
search for the biclustering problem of microarray data.
PDNS alternates between a descent-based intensification
phase and a perturbation phase. By using a behavior
matrix representation of solutions, the descent search
procedure is guided by a pattern-based neighbourhood
which is defined by two move operators. These opera-
tors change respectively the rows and columns of the
current solution according to the pattern information
related to each row and each column of the current
solution as well as the initial matrix. Perturbation is rea-
lized by changing randomly a percentage of rows and
columns of the best recorded solution (an option would
be to constraint the changes to some critical rows and
columns).

The proposed algorithm has been assessed using two
well-known microarray datasets (Yeast Cell-Cycle and
Saccharomyces Cerevisiae). The experimental study
showed competitive results of PDNS in comparison with
other popular biclustering algorithms by providing sta-
tistically and biologically significant biclusters. PDNS is
a computationally effective method and can also be used
to improve biclusters obtained by other methods.
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Table 1 Most significant shared GO terms (process, function, component) of CC and PDNS for biclusters on Yeast Cell-
Cycle dataset

Bic. Algo. Biological process Molecular function Cellular component

id9CC
id9PDNS

CC
PDNS

unknown
glutamate biosynthetic process
(10.2%, 8.62e-08)

unknown
isocitrate dehydrogenase (NAD+) activity
(18.6%, 0.00300)

unknown
mitochondrion part
(48.3%, 5.19e-07)

id2CC
id2PDNS

CC
PDNS

translation
(46.6%, 1.72e-22)
translation
(58.1%, 8.71e-37)

structural constituent of ribosome (38.8%, 1.05e-36)
structural constituent of ribosome (51.3%, 4.48e-59)

cytosolic ribosome
(38.8%, 1.10e-41)
cytosolic ribosome
(53.00%, 5.97e-70)

Table 2 Most significant shared GO terms (process, function, component) of OPSM and PDNS for biclusters on Yeast
Cell-Cycle dataset

Bic. Algo. Biological process Molecular function Cellular component

id7OPSM
id7PDNS

OPSM
PDNS

unknown
ribosome biogenesis
(32.1%, 2.02e-07)

unknown
snoRNA binding
(5.3%, 5.84e-06)

unknown
nucleolus
(32.1%, 6.22e-10)

id10OPSM
id10PDNS

OPSM
PDNS

sister chromatid
segregation (24.7%, 0.00337)
nucleic acid metabolic
process (34.0%, 2.45e-11)

unknown
phosphatase regulator
activity (1.7%, 0.00041)

spindle
(14.1%, 0.00196)
nucleus
(44.8%, 3.46e-15)
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