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Abstract

expressed genes.

Background: DNA microarrays are used for discovery of genes expressed differentially between various biological
conditions. In microarray experiments the number of analyzed samples is often much lower than the number of
genes (probe sets) which leads to many false discoveries. Multiple testing correction methods control the number
of false discoveries but decrease the sensitivity of discovering differentially expressed genes. Concerning this
problem, filtering methods for improving the power of detection of differentially expressed genes were proposed
in earlier papers. These techniques are two-step procedures, where in the first step some pool of non-informative
genes is removed and in the second step only the pool of the retained genes is used for searching for differentially

Results: A very important parameter to choose is the proportion between the sizes of the pools of removed and
retained genes. A new method, which we propose, allow to determine close to optimal threshold values for
sample means and sample variances for gene filtering. The method is adaptive and based on the decomposition of
the histogram of gene expression means or variances into mixture of Gaussian components.

Conclusions: By performing analyses of several publicly available datasets and simulated datasets we demonstrate

that our adaptive method increases sensitivity of finding differentially expressed genes compared to previous
methods of filtering microarray data based on using fixed threshold values.

Background

In DNA microarray experiments the expression pattern
of many thousands of genes is discovered, which gives
the possibility to reflect biological states of cells. The pri-
mary use of DNA microarrays is the identification of
genes expressed differentially between various condi-
tions. Differentially expressed genes (DEGs) can be iden-
tified on the basis of different criteria; most often they
are identified on the basis of p-values of statistical tests.
DEGs are important characteristics of experimental re-
sults; they are summed up in the so called gene signa-
tures and are further used in many contexts. The
efficiency of identification of DEGs can be further veri-
fied e.g., by conducting sample classification experiments
based on gene expression signatures selected from the
top differentially expressed genes. The problem of con-
struction of gene expression signatures for their use in
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molecular classifiers was studied in numerous papers;
the discussion of many useful ideas can be found in [1].

A challenge in identification of DEGs based on DNA
microarray data is a dimensionality problem; a small
number of samples versus tens of thousands of genes’
expressions measured in each sample. A large number
of statistical tests for finding DEGs result in the occur-
rence of many false discoveries among genes called dif-
ferentially expressed. This problem can further manifest
itself in the irreproducibility of results of different stud-
ies, e.g., a DEG discovered in one study is not found in
another one, or a molecular classifier designed in one
study does not properly predict sample status for analo-
gous data collected in another study. The proportion of
false discoveries among genes called differentially
expressed (false discovery rate, FDR) can be controlled
by using corrections for multiple testing [2,3]. However,
introducing limits on FDR leads to the decrease of sensi-
tivity of the procedure for discovering DEGs.

Concerning the above described problem, methods for
increasing the detection power for DNA microarray data,
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ie,, for improving sensitivity of the process of the discov-
ery of DEGs while keeping the FDR under control, have
been proposed in earlier papers [4-10]. These methods are
based on two-step procedures, where the first step is pre-
selection (filtering) aimed at removing some pool of non-
informative genes, and the second step is the discovery of
DEGs in the pool of retained genes. If the pool of genes
removed in the first step includes no or only few DEGs,
the detection power of the process of discovery of DEGs
becomes improved.

Methods for increasing the detection power for DEGs,
proposed in earlier papers, can be grouped according to
criteria used for filtering out non-informative genes. The
first group includes methods based on introducing thre-
sholds for means or variances of gene expression signals.
This approach was studied in several papers [4-10], and it
has been shown that for certain ranges of threshold values
for means or variances of gene expressions (or their base
two logarithms) filtering increases sensitivity of discovery
of DEGs. The second group includes methods based on
detection calls (labels) assigned to probe sets by the
Affymetrix MAS 5.0 signal pre-processing procedure.
These labels are aimed at indicating whether the specific
mRNA is detectable (perfect matches show a higher
hybridization signal than their corresponding mismatches)
based on rejecting the null hypothesis in the Wilcoxon
signed rank test. A method based on probe detection calls,
proposed in [4], removes all genes except the fraction
called ‘Present’ in at least one group of samples. Hackstadt
and Hess [7] compared detection call methods and
methods based on overall mean and variance filtering (in
log2 and original scale) on a probe set level in different
combinations with the two FDR control methods and
three pre-processing methods. They have discovered that
both filtering methods, by detection call and variance (on
the original scale) paired with either of the false discovery
rate multiple testing correction methods considered led to
an increase in the number of differentially expressed genes
identified. The third group includes methods based on
fitting statistical models to probe sets expression data
[5,6,10]. These models can be factor analysis models [6] or
principal component analysis (PCA) models [10], which
explore sources (components) of variation in the data and
allow the researchers to retain only the genes correspond-
ing to components with large enough variation. A me-
thod named “I/NI - calls”, proposed by Talloen et al. [6], is
based on approximating the probe intensity values by
products of unknown loadings and factors. The authors of
[6] assume normal priors for loadings and estimate probe
set signal variation by the variance of the hidden factor
(given data). They call a probe set informative if the vari-
ance of the hidden factor exceeds the assumed threshold.
Lu et al. [10] propose another, simpler strategy to filter
out non-informative genes (probe sets), which uses PCA
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analysis on the probe-level data. They call their method
PVAC (proportion of variation accounted by the first prin-
cipal component) and use variability captured by the first
principal component as a measure of consistency among
probes in a probe set and consequently as a threshold for
filtering out genes. The PVAC method shows sensitivity
comparable to the method reported by Talloen et al. [6]
but its use offers several advantages. It does not rely on
any distribution assumptions, no selection of informative
prior is required. The approach is also computationally
simpler and therefore more practical.

Two-step procedures for DEGs discovery should be
constructed in such a way that the first step of gene fil-
tering is nonspecific (blind on class labels), i.e., informa-
tion on the samples’ class labels is ignored. Otherwise
the control of FDR becomes lost. In a recent paper by
Bourgon et al. [8], they derive a more restrictive and pre-
cise “marginal independence” condition, which states
that the criterion for gene filtering in the first step and
test statistics for DEGs discovery in the second step
should be independent under the null hypothesis. A vio-
lation of this condition can again lead to the loss of FDR
control. A group of two-step procedures for DEGs dis-
covery constructed in such a way that the first step is
based on setting thresholds on sample means or vari-
ances and the test statistics in the second step is given
by the t distribution was proven in [8] to satisfy the mar-
ginal independence condition. Therefore these methods
are of special interest, due to the reliability of the esti-
mated values of sensitivities and FDRs.

A basic parameter in these methods is the size of the
pool of genes to be filtered out. The choice of this par-
ameter is of crucial importance since filtering out too
few genes does not improve the sensitivity enough, while
filtering out too many genes can lead to the removal of
DEGs together with non-informative genes. Papers [7]
and [10] address the problem of the choice of the size of
the pool of genes to be filtered out. In [7] two methods
for specifying this number are considered. In the first
method, the number of genes to be filtered out is esti-
mated on the basis of the number of probe sets labeled
“Absent” by the Affymetrix MAS 5.0 signal pre-processing
procedure. Authors of [7] also recommend another, sim-
pler method of filtering out 50% of probe sets. Lu et al.
[10] also use this recommendation for filtering by overall
mean or variance. However, different datasets may contain
different numbers of non-informative genes, so using a
fixed proportion (50% or some other value) of filtered out
genes may lead to the loss of efficiency of the filtration
method. Therefore, in the paper we address the problem
of adaptive choice of the size of the pool of genes to be fil-
tered out. By adaptive choice we mean the approach with
the threshold level for filtering depending on the probabil-
ity distribution of the analyzed signal (sample mean or
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variance). We propose a method based on the decompos-
ition of the probability density function into a mixture of
Gaussian components and on the hypothesis that the gene
content of the Gaussian components is meaningful with
respect to informative versus non-informative status of
genes. We use the maximum likelihood method with the
EM algorithm to obtain decompositions computationally.
We also compare results of our adaptive filtering method
to results obtained in references [7] and [10].

Methods

Analogously to [7] and [10] we consider gene filters
based on sample mean and sample variance in either
log2 or original scales. We use the following abbrevia-
tions for naming different filtering methods: NF — no filter,
S — signal mean-intensity-based filter, V — variance-based
filter, LV — variance-based filter calculated on the log2
scale data. The letter “A” as a prefix corresponds to adap-
tive version of the filter, underscore with a given number
P as a suffix corresponds to the fixed percentage P of
genes filtered out. For example, ALV represents (our)
adaptive method used for variance calculated on the log2
scale expressions, while V_50 represents the method of
filtering out 50% genes based on setting a threshold for
variance calculated on the original scale.

Data

For testing performance of different filtering methods, we
use four datasets previously analyzed in the referenced pa-
pers: an artificially created dataset, a spike-in dataset, a rat
diabetes dataset and a leukemia dataset.

The artificially created dataset is produced by using
the same method as that described in [7]. All distribu-
tion parameters are set to the same values. Two scenar-
ios for simulations are (i) expression signals independent
between genes and (ii) the signal values between genes
follow a “clumpy dependence” [7,11]. The simulated data
include two groups of five samples with signal values
generated for 50,000 genes for each sample. The number
of true equally expressed genes (EEGs) varies from 70%
to 95%. In both scenarios, the simulation is repeated 50
times.

The spike-in dataset (Gene Expression Omnibus (GEO)
database accession number GSE21344) consists of 18
Affymetrix Drosophila Genome 2.0 microarrays (with
18,952 probe sets) representing two different conditions,
each of which contains 5,749 identical cRNAs at different
relative concentrations. For each condition, the total
amount of cRNA is the same, and there are similar num-
bers of up- and down-regulated cRNAs: 1,146 individual
RNAs are up- and 947 are down-regulated, with known
fold changes varying between 1.2 and 4, and 3,643 RNAs
are identical in abundance between the two conditions.
The amount of RNA hybridized to the arrays in the
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current experiment is calibrated such that the gene inten-
sities fell within the range commonly seen in experiments
stored in GEO [12].

The rat diabetes dataset (GEO accession number
GSE5606) was obtained in an experiment conducted to
detail global changes that occur in gene expression in the
left ventricular of rat hearts related to streptozotocin-
induced diabetes [13]. Expression profiles were recorded
sixteen weeks after induction. Samples obtained from
seven animals from each of the groups (case and control)
were hybridized to an Affymetrix Rat Genome 230 2.0
GeneChip (with 31,099 probe sets).

The leukemia dataset comes from a microarray experi-
ment on the Affymetrix HG-U95Av2 platform (12,625
probe sets) done on the pretreatment leukemia samples
from bone marrow and/or peripheral blood. Molecular
diagnostic studies confirmed the presence of BCR/ABL
gene rearrangements in 37 patients. Forty six cases did
not harbor any major molecular abnormality [14].

All datasets used in this study were previously published
and are publicly available either in the GEO database or
on the author’s web site. Researches involving human
participants [14] and animals [13] fulfilled requirements
concerning informed consents of participants and ethical
approval by appropriate institutions.

Microarray normalization procedure

Microarray normalization is done by using the robust
multichip average algorithm RMA [15] that includes
background correction, quantile normalization and sum-
marization by the median polish approach. The RMA
procedure includes log2 transformation. If necessary, in
order to obtain the original scale we perform the inverse
transformation — the base 2 power function.

Gaussian mixture decomposition

The analyzed signal, denoted by x, assigned to each probe
set of the microarray chip corresponds to the mean or
variance of gene expressions computed over the samples.
In the case when x corresponds to the sample mean
(S - method) the expression signal is log2 transformed. In
the case when x corresponds to the sample variance, two
further possibilities are considered, (i) the expression sig-
nal is log2 transformed and then x is computed as the
logarithm of the sample variance (LV - method), (ii) the
original expression signal is used and then x is computed
as the logarithm of the sample variance (V - method). The
logarithm transformation is aimed at reducing skewness
of distributions of sample variances. Genes/probe sets on
the microarray chip are numbered 1,2 ... N. N is the total
number of genes/probe set on the microarray chip. The
value of the signal x corresponding to gene/probe set
no. 7 is denoted by x,.
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Let f{x) denote the probability density function corre-
sponding to the analyzed signal x. The Gaussian mixture
decomposition model (GMM) of f{x) is:

K
Z(){k =1.
k=1

In the above expression K stands for the number of
Gaussian components, a; are non-negative component
weights, f; is the probability density function of the k-th
Gaussian component:

K

f(x) = Zakﬁ((x7/’{k7ak)7

k=1

File oy 50) = ——— exp )
e oxV2m 20}
and py, o are k-th Gaussian component parameters —

mean and standard deviation.

The Gaussian mixture model is fitted to the experimen-
tal expression mean intensity or variance by using the
method of maximization of the log-likelihood function:

N K
logl = Z lnz arfx (x,,,/,tk, ok)
1

n=1 k=

The expectation maximization (EM) algorithm [16] for
recursive maximization of the likelihood function is ap-
plied. The initial values for decomposition parameters
are randomly generated.

For the cases of analyses of the spike-in dataset, the
rat diabetes dataset and the leukemia dataset we esti-
mate the number of components K in the mixture distri-
bution by launching EM recursions many times with
different K, and using the Bayesian information criterion
(BIC) [17] evaluated using values of parameters found in
EM procedure:

BIC = —2* logL + (3 * K — 1) *log(N)

The estimated value of the number of components K
corresponds to the smallest value of BIC, searched over
the range from 1 to 15. For large N, the BIC criterion
leads to quite reliable estimates of the numbers of com-
ponents [17]. After the decomposition of the probability
density function, each gene is assigned to one of the
Gaussian components by using the maximum a pos-
teriori (MAP) rule [16]. In other words, if x,, is the signal
value corresponding to the gene #, then this gene is
assigned to component number k if a,f(x,, i, 0,) takes
the maximal value for y = k.

In the case of simulated data we take two approaches.
In the first approach we assume that estimating the
number of Gaussian components by using the BIC cri-
terion is not necessary since the scenario of the simula-
tion experiment imposes existence of two groups of
genes. We therefore decompose the distribution of the
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signal x into a fixed number of 2 Gaussian components.
In the second approach we use the same method of esti-
mating number of components K as the one described
in the previous paragraph. It should be noted that, in
the second approach, in each of multiple repetitions of
simulation experiment, the estimated number of compo-
nents K can be different.

Gene filtering

Our method for gene filtering involves removing genes
belonging to components, which we expect to contain
mostly non-informative genes. It is known that genes
corresponding to either low values of mean expression
or to low values of variance of expression are more likely
to be non-informative [4-10]. The same property should
pertain to Gaussian components. When we decompose
the sample means or sample variances into Gaussian
components, we can order the components with res-
pect to their location parameter (mean of the Gaussian
component). Then we remove genes which belong to
components located at the left hand side of the signal
scale, i.e., with the lowest values of this parameter. We
assume that their inclusion into the further analysis
would lead rather to false discoveries than to detection
of true DEGs.

The problem is how many components corresponding
to low values of x should be removed. We propose and
analyze two methods for choosing the number of com-
ponents to remove. The first one is based on the “top
three” rule (in the further text denoted by using abbrevi-
ation “top3”). More specifically, we assume that three
components with highest values for parameter of loca-
tion, called high-level expressed genes, medium-level
expressed genes and low-level expressed genes, are in-
formative and we retain genes corresponding to these
components. Other genes are removed. The second me-
thod is to use a clustering procedure, which classifies esti-
mated Gaussian components into two groups. We have
chosen k-means clustering in three dimensional space with
coordinates given by means, standard deviations and
weights of Gaussian components. The K-means algorithm
minimizes the within-cluster sums of squared Euclidean
distances from each point to the center of the cluster. The
number of clusters is assumed equal to 2. Two three di-
mensional clusters are ordered with respect to their loca-
tion along the “mean of Gaussian component” coordinate.
Then the cluster which location along this coordinate cor-
responds to a smaller value is considered non-informative.
Consequently, genes that belong to the Gaussian compo-
nents within this cluster are removed.

In certain situations we have to use adjustments of the
filtering methods described above depending on K
Namely, if the number of components is K=2 or K= 3,
which can result from estimation, then the top3 method



Marczyk et al. BVIC Bioinformatics 2013, 14:101
http://www.biomedcentral.com/1471-2105/14/101

is considered as equivalent to NF. The clustering
method works properly in all situations where K > 2. In
all computations we have never encountered the situ-
ation where K=1. However, if encountered, both
methods top3 and k-means would be equivalent to NF.

Discovery of DEGs, correction for multiple testing

For discovery of DEGs we use the two-sample ¢-test with
equal variances, as in other studies [7,10]. For multiple
testing correction we use the procedure for controlling
FDR introduced by Storey and Tibshirani, called further
g-value FDR correction [3]. The FDR constraint equal to
0.05 is used.

Assessment of the detection power of methods for
discovery of DEGs

For the artificially created dataset and the spike-in data-
set true differential expression status of each probe set is
known, so in experiments with a various t-statistics
threshold for these data sets we can always figure out
which of the detected DEGs are true and which are false.
We illustrate and compare detection powers achieved by
investigated methods by using the following indexes:
receiver operating characteristic curve (ROC) [18] plot-
ted in the coordinate system sensitivity versus FDR, area
under the ROC curve (AUC) and the F1 measure de-
fined as the harmonic mean of 1-FDR and sensitivity.

2 * (1 — FDR) * Sensitivity
1 — FDR + Sensitivity

F1=

Larger values of F1 measure suggest better perform-
ance of the method. It takes the maximum value 1 for
sensitivity equal to 1 and FDR equal to 0.

For the artificially created dataset, we additionally
change the structure of the simulated data by assuming
different proportions between EEGs and DEGs, and we
study their influence on the detection power of different
methods. For experimental datasets, where the true differ-
ential expression status of probe sets is not known, for
comparing different filtering methods we use the index
proposed in [8], defined by the number of null hypotheses
which can be rejected in the set of genes remaining after
filtering under a given constraint on FDR.

Computational environment, developed scripts

All calculations and analyses were done in MATLAB 7.11
environment by MathWorks. All script files are available
on request from the authors (Joanna.Polanska@polsl.pl).

Results

In this section, we present the results of using decomposi-
tions of distributions of sample means and variances into
Gaussian components for gene filtering. We also compare
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these results to results obtained with gene filtering methods
reported in [7] and [10].

Gaussian mixture decompositions of sample means and
variances

In Figure 1, we present histograms of sample means and
variances of the expression data and their Gaussian mix-
ture decompositions obtained by using EM iterations and
the BIC criterion. The numbers of Gaussian components
obtained in each of these computational experiments are
reported as entries of Table 1, where in parentheses, we
also give the numbers of Gaussian components corre-
sponding to high levels of signal x, retained as informative
using the k-means method. The rationale for declaring
Gaussian components informative or non-informative is
described in the Methods section. For simulated data we
did not apply the LV method because the scenario of their
generation already implies the expression values range
corresponding to the logarithmic scale. Computing the
logarithm (again) creates data unsuitable for rational inter-
pretation. In [7] the same approach was used.

Comparisons of detection powers of algorithms with
different filtration methods

The artificially created dataset contains 10 artificial sam-
ples (5 cases and 5 controls) created by using the simu-
lation algorithm described in [7]. For two scenarios
considered, the scenario of expressions simulated inde-
pendently for each gene and the scenario of the “clumpy
dependence” between expressions of different genes, the
results of analyses and comparisons are rather similar.
One difference is that dispersions of both sensitivities
and FDRs obtained across 50 simulations are higher in
the dataset with “clumpy dependence”. Therefore, we re-
port only results concerning the “clumpy dependence”
simulation model. In Figure 2 we present comparisons
of efficiencies of detection of DEGs in the simulated
dataset for two approaches, fixed 50% filtering threshold
on sample means and variances proposed in [7] and our
adaptive approach based on Gaussian mixture decompo-
sitions into a fixed number of 2 Gaussian components.
In the upper panel of Figure 2, we show ROC curves (FDR
versus sensitivity, computed by averaging over the 50 simu-
lations) corresponding to different filtration methods (S_50,
V_50, AS, AV), obtained for the case where the proportion
between informative and non-informative genes was set to
85% EEGs versus 15% DEGs. We also plot a ROC curve
corresponding to the case where no filtering step is applied
(NF). We have also studied the influence of the proportion
between DEGs and EEGs in the dataset on the median sen-
sitivity (computed over 50 simulations) achieved by differ-
ent filtering methods at 5% FDR. We present median
sensitivities versus the percent of EEGs in the lower panel
(B) of Figure 2. Results of applying adaptive filtration based
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Figure 1 Histograms of gene expression means and variances for analyzed datasets and their Gaussian mixture models. Rows
correspond to datasets, first row (A, D, G) — spike in dataset, second row (B, E, H) — rat diabetes dataset, third row (C, F, I) - leukemia dataset.
Columns correspond to signals, first column — sample mean signal (S — method), second column — sample variance in the original scale signal
(V = method), third column - sample variance in the log2 scale (LV -method). Probability density functions corresponding to separate Gaussian
components are drawn with the use of different line styles, red color corresponds to components assigned to removal and green color - to
components assigned to retain. Removal or retaining is decided by using the k-means method (explanations in the text). Plots of probability
density function of mixture models given by sums of probability density functions of components are drawn in blue.

on the Gaussian decomposition method with the estimated
number of components are reported in Table 2.

In the first step of the analysis of the spike-in dataset,
we compare the results of gene filtering methods with
the percentage of genes to filter out recommended in [7]
(S_50, V_50, LV_50) to our adaptive methods based on
GMM (AS, AV, ALV). As a reference, we also show the
results of DEGs discovery for the case where no filtering
step is applied (NF). Comparisons between different

Table 1 Numbers of Gaussian components obtained
using the BIC criterion

Dataset S \' LV
Spike-in 73) 6 (4) 6(3)
Diabetes 6(2) 4(2) 2
Leukemia 5(1) 5() 2(M

Entries in the table present the number of Gaussian components in the
estimated mixture distributions. Additionally, in parentheses, the number of
Gaussian components retained as informative based on the k-means method,
are given.

methods concern ROC curves (FDR versus sensitivity),
which are shown in the upper plot (A) of Figure 3 and
F1 measures shown in the lower plot (B) of Figure 3.
The adaptive filtration methods AS, AV, ALV used for pro-
ducing the ROC curves in the upper plot (A) of Figure 3
are all based on the k-means method. In the lower plot (B),
circles and x-signs mark points defined by values of DEGs
resulting from applying thresholds following from our
adaptive Gaussian mixture algorithms (top3 corresponds
to circles and k-means corresponds to the x sign).

In Table 3, we additionally present comparisons of dif-
ferent gene filtration methods, on the basis of two in-
dexes describing the power of DEGs detection, the area
under the ROC curve (AUC) and the sensitivity of DEGs
search at the 10% FDR level.

In the second step of the analysis of the spike-in data-
set we compare the results of applying ALV and AV fil-
tering methods to the PVAC method proposed by Lu
et al. [10]. In Figure 4 we present (in purple) a ROC
curve corresponding to PVAC filtering method and, for
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Figure 2 Comparison of different filtering methods for
simulated data. Upper panel (A): ROC curves (computed by
averaging over the 50 simulations) corresponding to different
filtering methods in the simulated dataset. The proportion between
informative and non-informative genes was set to 85% EEGs versus
15% DEGs. Lower panel (B): Change of median sensitivity at 5% FDR
calculated across 50 iterations, resulting from the change of
proportions between EEGs and DEGs from 70% to 95% in the
simulated dataset. Different colors correspond to different filtering
types of filters: red color is assigned to the filtration in sample
variance domain, blue — sample mean, and black — no filtration.
Different line styles correspond to different methods: solid line
shows the results for adaptive filtering, dashed line — fixed
threshold filtering.
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comparison, by using different colors, ROC curves cor-
responding to ALV and AV filtering methods, and LV fil-
tering methods with two different thresholds. Here ALV
and AV filtering methods are based on k-means method.
The application of the PVAC method results in the re-
moval of genes except those which belong to the first
principal component. In different datasets, the propor-
tions between filtered out (removed) and retained genes
are therefore different. In Figure 4 (along with other ROC
curves) we also plot ROC curves corresponding to LV
methods with percentages of removed genes equal to
those obtained when using the PVAC method (LV_76).

The assessment of the power of different methods to
discover DEGs in the rat diabetes dataset and the leu-
kemia dataset is based on the method proposed in [8] of
counting numbers of null hypotheses, which can be
rejected under a given constraint on FDR, assumed equal
to 5%. In Figure 5 in the upper panel (A) we pre-
sent the plots of the numbers of genes called DEGs versus
percentages of genes filtered out for the diabetes dataset
and in the lower panel (B) analogous plots for the
leukemia dataset. Genes are called DEGs based on the ¢-
test with g-value correction method for FDR. Three differ-
ent curves correspond to filtrations based on sample
means, variances and variances calculated on the expres-
sion values in log2 scale. Circles and x-signs mark points
defined by the values of DEGs resulting from applying
thresholds following from our adaptive Gaussian mixture
algorithms (top3 corresponds to circles and k-means cor-
responds to the x sign). The black vertical line represents
the threshold proposed in [7] on the basis of registration
of “Absent” calls returned by the Affymetrix MAS 5.0 sig-
nal pre-processing procedure. If the PVAC filtering
method is used in the first step of DEGs discovery then, in
the second step, for diabetes data 1,002 null hypotheses
can be rejected under a 5% constraint on FDR and for
leukemia data the analogous number is 290. These num-
bers are marked by horizontal dashed lines.

Discussion

Comments to comparisons

For the artificially created dataset, we see from the plots
in Figure 2 that in the analyzed range of FDR, all of the
filtering methods increase median the sensitivity of
DEGs search compared to the situation with no filtering.
The increase of the proportion of EEGs (Figure 2, lower
panel (B)) leads to the decrease of sensitivity of all
methods. Based on the comparisons of plots in Figure 2
we conclude that AS is the best filter for the simulated
dataset. One can notice that adaptive filtering by signal
performs best in terms of sensitivity versus FDR because
the method simulation of the expression signal values
meets the assumptions of the S method more closely
than filtering by variance, which is a limitation of the



Marczyk et al. BVIC Bioinformatics 2013, 14:101
http://www.biomedcentral.com/1471-2105/14/101

Page 8 of 12

Table 2 Comparison of results of using different filtering methods applied to the artificially created dataset

Method NF S 50 V_50 Fixed Top3 K-means

AS AV AS AV AS AV
AUC 1247 15.14 14.59 17.14 14.10 1247 14.08 17.41 14.07
Sensitivity 5473 7148 69.33 86.54 70.35 54.74 66.08 87.81 66.02

Results illustrated by the area under the ROC curve (average AUC over 50 simulations) from FDR equal 0 to 20% and median sensitivity at 5% FDR calculated
across 50 simulations for the case when the proportion between informative and non-informative genes was set to 85% EEGs versus 15% DEGs.

simulation methodology used here. Apart from using
adaptive approach based of Gaussian mixture decompo-
sitions into fixed number of 2 Gaussian components
(reported in Figure 2) we have also tested the second ap-
proach, where the number of Gaussian components was
assumed unknown and was estimated by using BIC cri-
terion and pools of removed and retained genes were de-
termined by using either top3 or k-means methods. For
each of 11 values of proportions of EEGs, which are
distributed linearly in the range 70%-95%, we have
performed 50 simulations (550 simulations in total). The
simulation scenario was the same as that reported in
Figure 2; the only difference was that instead of using a
fixed number of components we assumed unknown
number of components and estimate it using BIC criter-
ion. The number of Gaussian components, different for
each of 50 simulations and different for different propor-
tions of EEGs and DEGs, varied from 2 to 4 (3 in 92% of
cases) in the AS method, and from 4 to 5 (4 in 85% of
cases) in the AV method. Consistently to the simulation
scenario, in the decompositions of sample means there
were always two dominating components (representing
EEGs and DEGs). Results of applying different filtration
methods to simulated data for the case when the propor-
tion between informative and non-informative genes was
set to 85% EEGs versus 15% DEGs are presented in Table 2.
Again, the AS filtration method was outperforming other
filtration methods. When we used k-means method for AS
filter ROC curves and plots of sensitivity were very similar
to those presented in Figure 2. However, due to the small
number of mixture components the use of top3 method
for simulated data rarely increased sensitivity of finding
DEGs. In the majority of cases AS method was used on 3
components model, so introducing top3 method gave the
same results as NF. The mixture decompositions of the
distributions of sample variances were most often built of
4 components and retaining 3 components gave results
similar to V_50. AV filter gave similar results to V_50 filter
for the range of values of proportion of EEGs 70% - 80%.
When we further increased the number of EEGs we filter
out too many genes with AV, which resulted in decreasing
sensitivity of finding DEGs. At EEGs =90% the median
sensitivity resulting from using V_50, was equal to 60.72%
compared to median sensitivity 42.01% resulting from
using AV.

For the spike-in dataset, where we use the F1 measure
and ROC curves to compare filtering methods and show
results in Figure 3, we observe that at low values of FDR
the highest sensitivity is achieved by our ALV method
(Figure 3, upper plot (A)). However, at higher values of
FDR we see a flattening of the ROC curve for the ALV
method. This shape of the FDR curve is related to the fact
that the application of the ALV method leads to filtering
out quite a high percentage (about 93%) of genes in this
dataset. From Figure 3 we can notice that the use of the
ALV method gives the worst sensitivity of finding DEGs.
From plot (B) we notice that the methods k-means and
top3 lead to the same result in AS and ALV filtration.
From the plots of F1 indexes versus percentages of genes
filtered out (the lower plot (B) of Figure 3) one can see
that the threshold values obtained by using AV, AS and
ALV methods are close to optimal i.e. close to values of fil-
tering thresholds corresponding to maxima of the F1
measure. In comparisons of adaptive to fixed threshold
methods (AS to S_50, AV to V_50 and ALV to LV_50) we
conclude that AS outperforms S_50, AV outperforms
V_50 but ALV led to worse result than LV_50. Also both
AV and AS outperform the no filtering method. As in [10]
we also check influence of filtering, with a smaller number
of replicates (data not shown). In all cases adaptive filter-
ing increases the sensitivity of finding DEGs. The general
conclusion is that when the number of replicates is
smaller, the increase is higher. In the spike-in dataset ana-
lysis filters based on variances give better results than
those based on means. Comparisons of the PVAC method
to variance based filters, shown in Figure 4 leads to the
conclusion that PVAC is indeed a highly effective method,
but still similar to AV. In the range of low values of FDR,
PVAC is outperformed by our ALV method.

Contemplation of ROC curves in Figures 3 (upper plot)
and 4 leads to an observation that when FDR changes (in-
creases), relations between sensitivities of different
methods can become inverted. If the increase of FDR was
continued to very high values (exceeding the ranges in
Figures 3 and 4), then the highest sensitivity would be
achieved by no filtering (NF) method. This shows that all
filtering methods (except NF) are under risk of commit-
ting type II statistical errors of removing some proportion
of true DEGs and that different methods can offer differ-
ent compromises between sensitivities and FDR. When
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correspond to points given by percentages following from our
adaptive filtering methods (top3 and k-means respectively) and
corresponding values of the F1 measure. Different colors correspond
to different filtering types of filters: red color is assigned to the
filtration in sample variance domain, blue — sample mean, green —
sample variance in log scale, and black - no filtration. Different line
styles correspond to different methods: solid line shows the results
for adaptive filtering, dashed line - fixed threshold filtering.
Percentages of the removed genes after AS, AV and ALV filtering are
764, 86.9 and 92.8, respectively, for the top3 method, and 764, 76.1
and 92.8, respectively, for the k-means method.

( Table 3 Comparison of power to detect DEGs between
A 80 ) j algorithms using different filtering methods applied to
s eanne s the spike-in dataset
Method NF S50 AS V.50 AV LV.50 ALV PVAC
601 AUC 1260 1257 1273 1268 1311 1296 1194 13.17
— Sensitivity  69.03 6962 7254 69.59 73.37 7133 6323 7200
i W N F Data illustrated by two indexes: the area under the ROC curve in Figure 3
>, (AUCQ) from FDR equal 0 to 20% and sensitivity at 10% FDR.
=R T S P S_50
= 40 .
= —_— AS indexes like F1 or AUC are used, some methods can fully
% A 5T outperform others, as discussed above.
w A\_/ The plot in the upper panel (A) of Figure 5 demon-
20° § strates that for the rat diabetes dataset, filtering thresholds
s V30 found by using our adaptive methods are (again) close to
— ALV optimal with respect to the measure given by the number
of genes that can be called DEGs. S and V gene filtering
0 : ' ‘ methods based on adaptive thresholds are superior to the
0 5 _ 10 15 20 method of using 34% threshold level resulting from “Ab-
False Discovery Rate [%] sent” calls of probe sets, analyzed in [7]. The use of the
- . - - adaptive version of the LV method leads to poor results.
B 80f o N , .
"Af Y We can explain this by contemplating the histogram
et ‘.“" é shown in Figure 1H, which does not exhibit distinctive
70 Jp— gEs=ates ‘10?..-3 i Gaussian components. In this situation, there is a high
Py overlap between two components detected, which leads to
60| kY ‘-_“'j: ] the removal of excessive number of genes called
.
— .
= 50 . . ‘
= '_.' == 80 L i _‘_‘_,.‘..-‘._‘..‘m.‘.
L 40¢ H I
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30f| ~NF
......... S 60+
X
20 ammammmas V o™,
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% of filtered out genes o LV 76
Figure 3 Comparisons of different filtering methods for spike- 20} { -
in data. Upper panel (A): ROC curves for different filtering methods. AV
Adaptive filtering results are based on k-means method. The line e A | \/
representing S_50 filtering method, in the upper panel (A) is hard to .
notice due to the fact that it is obstructed by other lines. Lower | | [T == PVAC
panel (B): Change of F1 measure versus percentage of genes filtered 0 ’ ' ‘
out by different filtering methods. 50% threshold is additionally 0 5 10 15 20
marked with vertical black line. Circles and x-signs on the plot

False Discovery Rate [%]

Figure 4 Comparison of methods for discovery of DEGs based
on ALV and AV filtering to PVAC filtering algorithm. ROC curves
for different filtering methods for spike-in dataset. Different colors
correspond to different filtering types of filters: red color is assigned
to the filtration in sample variance domain, blue — sample mean,
green — sample variance in log scale, purple - PVAC method, and
black — no filtration. Different line styles correspond to different
methods: solid line shows the results for adaptive filtering, dashed
and dashdot line - fixed threshold filtering. Percentage of the

removed genes after PVAC filtering is 76.2.
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Figure 5 Comparison of different filtering methods on diabetes
and leukemia data. Numbers of genes called DEGs (found by using
t-test and g value correction for FDR) versus percentages of genes
filtered out. Upper plot (A): diabetes dataset, lower plot (B): leukemia
dataset. Different colors correspond to different filtering types of
filters: red color is assigned to the filtration in sample variance
domain, blue — sample mean, green — sample variance in log scale,
and black — no filtration. Circles and x-signs on the plot correspond
to points given by percentages following from our adaptive filtering
methods (top3 and k-means respectively) and corresponding values
of the DEGs. Top3 method for the ALV filter for the data sets in both
plots A and B is equivalent to NF because we have only 2 Gaussian
components in the mixture distribution. For the top3 method
percentages of removed genes after AS and AV filtering are 51.3 and
31.9, respectively, in the rat diabetes dataset and 26.2 and 27.7,
respectively, in the leukemia dataset. For the k-means method
percentages of removed genes after AS, AV and ALV filtering are
70.1, 534 and 93.2, respectively, for the rat diabetes dataset and 98.2,
62.5 and 48.35, respectively, for the leukemia dataset. In the upper
plot (A) the 34% threshold used in (6), 50% threshold and in the
lower plot (B) 50% threshold used in (7) are marked with black
vertical lines. Gene level related to the use of PVAC method is
marked by purple horizontal dashed line. Estimated proportions of
EEGs in the two datasets are as follows. Rat diabetes dataset: 0.968
(AS, top3 method), 0.971 (AV, top3 method), 0.968 (AS, k-means
method), 0.964 (AV, k-means method), 0.985 (ALV, k-means method),
0.967 (PVAQ). Leukemia dataset: 0.985 (AS, top3 method), 0.983 (AV,
top3 method), 0.999 (AS, k-means method), 0.982 (AV, k-means
method), 0.978 (ALV, k-means method), 0.977 (PVAQ).
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uninformative. Concerning the comparison of our adap-
tive methods to the PVAC method, the level of 1,002
genes obtained by using the PVAC method was
outperformed by our AV method.

The comparison between upper and lower plot in
Figure 5 shows that the choice of the type of filter can
be crucial for the obtained results. For the leukemia
dataset the best result is obtained after using the ALV
method, which is the worst choice for the rat diabetes
dataset. This stems from the fact that in the diabetes
dataset the DEGs belong to the group of highly
expressed genes (across all treatments), which is not true
for the leukemia dataset. Strictly, for no filtering case in
diabetes dataset, median of mean expression of esti-
mated DEGs across all treatments is equal to 9.06 and of
estimated EEGs is equal to 5.92 (1.53 times smaller than
for DEGs). Median of variance of expression on the log2
scale of estimated DEGs across all treatments is equal to
0.119 and of estimated EEGs is equal to 0.061 (1.95
times smaller than for DEGs). For no filtering case in
leukemia dataset, median of mean expression of esti-
mated DEGs across all treatments is equal to 5.99 and of
estimated EEGs is equal to 5.49 (1.09 times smaller than
for DEGs). Median of variance of expression on the log2
scale of estimated DEGs across all treatments is equal to
0.628 and of estimated EEGs is equal to 0.102 (6.15
times smaller than for DEGs).

Assessment of the proposed methodology

Our adaptive filtering methods based on Gaussian mix-
ture decompositions do not use sample class labels.
Combined with the z-test they satisfy the “marginal inde-
pendence” condition [8] mentioned in the Introduction
section, since they only use sample means or variances
corresponding to gene expressions signals. Therefore we
consider the proposed methodology as a reliable ap-
proach for gene filtering.

The representation of the probability distribution func-
tion as a mixture of components can be related to certain
hypotheses concerning measured signals. Components of
signals defined by means or variances can be interpreted as
corresponding to technical (measurement) noise, biological
variation or to biological or cellular processes. Decompos-
ition of the distribution of the signal x into a mixture of
(Gaussian) components is based on well-developed
methods of statistical modeling [16]. Different variants of
methods of decompositions of signal distribution into mix-
tures of components were already successfully applied to
several problems of analyses of DNA microarray data, ex-
amples of related papers are [19-24]. In [20-23] mixture
decompositions are used for unsupervised clustering of
microarray data. Authors of paper [19] propose mixture
models for assessing differential expression between sam-
ples in microarray data. Lee et al. [24] use a mixture model
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for analysis of replicated microarray experiments. In this
paper, we extend the range of applications of the mixture
decomposition methodology to the problem of filtering
genes in DNA microarrays.

The mechanism of adaptation related to the mixture de-
composition approach can be intuitively explained as fol-
lows. If in the analyzed data there are many genes or probe
sets, highly corrupted by noise, with low levels of signal to
noise ratios, then there would most probably exist corre-
sponding Gaussian components with low values of x signal
and quite high component weights. These components will
be removed by our filtration procedure. Both of the two
proposed selection methods, top3 and k-means, have adap-
tation potential. It seems, however, that the k-means
method can lead to better results as seen in Figures 3 and 5.

Conclusions

The power of our adaptive method for improving detection
of DEGs is compared to the results reported in earlier pa-
pers [7,10]. Efficiencies of methods for improving DEGs de-
tection power in microarray data are compared by using
two datasets, in which the status of each gene is known.
Adaptive filtering repeatedly takes the highest places in
comparisons of detection powers by different indexes
(ROC curves, the F1 index, and the AUC index). The effi-
ciencies of different two-step methods for improving DEGs
detection power are also estimated and compared for the
rat diabetes and leukemia datasets, where the status of
genes is not known, by comparing the numbers of the dis-
covered DEGs for the same limits on FDR. The numbers of
DEGs found by using adaptive filtering (AV and ALV re-
spectively) belong to the highest among the compared
methods. In conclusion, the number of genes to filter out
by overall mean and variance should not be fixed, but ra-
ther found based on probe set signal properties (distribu-
tions), and the methodology for setting adaptive thresholds
based on mixture decompositions is competitive compared
to other gene filtering approaches.
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