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Abstract

Background: Next-generation DNA sequencing platforms are capable of generating millions of reads in a matter of
days at rapidly reducing costs. Despite its proliferation and technological improvements, the performance of
next-generation sequencing remains adversely affected by the imperfections in the underlying biochemical and
signal acquisition procedures. To this end, various techniques, including statistical methods, are used to improve read
lengths and accuracy of these systems. Development of high performing base calling algorithms that are
computationally efficient and scalable is an ongoing challenge.

Results: We develop model-based statistical methods for fast and accurate base calling in Illumina’s next-generation
sequencing platforms. In particular, we propose a computationally tractable parametric model which enables
dynamic programming formulation of the base calling problem. Forward-backward and soft-output Viterbi
algorithms are developed, and their performance and complexity are investigated and compared with the existing
state-of-the-art base calling methods for this platform. A C code implementation of our algorithm named Softy can be
downloaded from https://sourceforge.net/projects/dynamicprog.

Conclusion: We demonstrate high accuracy and speed of the proposed methods on reads obtained using Illumina’s
Genome Analyzer II and HiSeq2000. In addition to performing reliable and fast base calling, the developed algorithms
enable incorporation of prior knowledge which can be utilized for parameter estimation and is potentially beneficial
in various downstream applications.

Background
Technological advancements in sequencing technologies
have enabled fast sequencing of millions of reads at a
rapidly reducing cost. Sequencing-by-synthesis, includ-
ing Illumina’s platforms based on reversible terminator
chemistry and 454’s pyrosequencing platforms, is taking
us closer to affordable routine sequencing tasks. However,
inherent uncertainties in the ensemble-based sequencing-
by-synthesis, along with data acquisition noise, present a
major bottleneck in the quest for reads that are as long
and reliable as those provided by the conventional Sanger
sequencing method.
Sequencing-by-synthesis on Illumina’s platforms typi-

cally involves the following steps. First, multiple copies
of the genome being sequenced are broken into short
fragments in a random fashion, followed by ligation of
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sequencing adapters to the fragments. In the next phase,
the DNA sample is introduced into one of the 8 lanes
(or 16 flow cells for HiSeq) split into multiple tiles each
containing a lawn of primers covalently bonded to the sur-
face to generate clonal clusters of the captured forward
and reverse DNA strands. In particular, captured strands
hybridize to neighboring primers to form so-called U-
shaped bridges, followed by the process of bridge ampli-
fication which is repeated ≈ 35 times to generate clusters
containing ≈ 2000 molecules. In the final stage, “sequenc-
ing”, fluorescently labeled reversible terminators (different
color for each base) are introduced and incorporated into
the complementary strands of the DNA templates. Imag-
ing of the fluorescently labeled clusters is followed by
cleavage and unblocking of the incorporated nucleotides,
and the labeled reversible terminators are added anew to
proceed with synthesis of the complementary strands.
Images acquired at the end of each sequencing cycle

are processed, and the resulting signals are analyzed to
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determine the type of nucleotides incorporated into the
complementary strands. The problem of inferring the
order of nucleotides in a template from the noisy signals is
referred to as base calling. For base calling, Illumina uses
its in-house software Bustard. Fundamentally, Bustard
attempts to reverse the effects of various uncertainties on
the signal and then makes base calls. While it is computa-
tionally very fast, the error rates resulting from Bustard’s
calls may be significantly improved by more sophisticated
algorithms [1].
Several base calling strategies for the Illumina platform

have been proposed in recent years such as [2-4]. In [5],
a parametric model of the sequencing-by-synthesis pro-
cess was proposed, and a Monte Carlo method for base
calling was presented. While having better performance
than Bustard, this scheme is computationally intensive
and impractical for processing tens of millions of reads
generated by today’s sequencers. Kao and Song 2010 [6],
the follow-up paper, suggested a modification leading to
a computationally feasible base calling albeit with slight
degradation in performance compared to [5]. In [7], an
algorithm achieving significant improvement in speed at
the cost of a minor deterioration of base calling error rate
as compared to [5] was presented.
Following a simplification of the parametric model of

Illumina’s sequencing-by-synthesis platform proposed in
[5], in this paper we present a formulation of the base
calling problem amenable to being solved by dynamic pro-
gramming methods. In particular, we derive the forward-
backward and soft-output Viterbi algorithm (SOVA) for
solving the base calling problem. The performance of
the proposed algorithms is demonstrated on experimental
reads acquired from Illumina’s Genome Analyzer II and
HiSeq2000 and compared with several recent base calling
techniques.

Methods
In this section, we present the mathematical model that
leads to the dynamic programming formulation of the
base calling problem, and present algorithms for base
calling and parameter estimation.

Comprehensive model of sequencing-by-synthesis in
Illumina’s platforms
A detailed mathematical model of Illumina’s platforms
which describes various sources of uncertainty in the
sequencing process and data acquisition step was intro-
duced in [5]. For the sake of self-contained presentation,
we briefly review this model here while omitting details
for brevity.
The 4-dimensional observation vector Yi (inten-

sity) acquired in the ith cycle (i = 1, 2, . . . ,N) of the
sequencing-by-synthesis process can be expressed as

Yi ∼ N (KXi,�i) i = 1,

Yi|Yi−1 ∼ N (KXi + αYi−1,�i) i = 2, ....N , (1)

where K is the 4× 4 cross-talk matrix quantifying overlap
of the emission spectra of the four fluorescent tags used
to label nucleotide bases, α is the parameter accounting
for empirically observed signal leakage between consecu-
tive cycles, Xi is the signal generated in the ith cycle, and
�i = ‖Xi‖22� is the variance describing multiplicative
measurement noise that primarily originates from fluctu-
ations inK. The generated signal,Xi, is affected by phasing
and pre-phasing. In an ideal setting, addition of the four
terminating base nucleotides during the sequencing step
should lead to a single base getting incorporated into
each of the complementary strands. However, nucleotide
incorporation is not perfect and phasing (when no base is
incorporated) or pre-phasing (when more than 1 base is
incorporated) may occur. These effects are modeled prob-
abilistically: it is assumed that no base is incorporated
with probability pii, while with probability pcf more than 1
base is incorporated. For the sake of tractability of the final
model and practical feasibility of base calling, we assume
that at most two bases may be incorporated into a comple-
mentary strand in a single cycle. Define an (L+1)×(L+1)
transition matrix P with entries

Pi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pii if j = i,

(1 − pii)(1 − pcf ) if j = i + 1,

pcf (1 − pii) if j = i + 2,

0 otherwise,

(2)

where Pi,j is the probability of a complementary strand
extending from length i to length j in any given cycle. Then
the signal generated in the ith cycle, Xi, can be expressed
as

Xi = λiZi = λi(SET )i,

where S is a 4 × L matrix (The ith column of S, Si, has
all zero entries except for one indicating the base in the
ith position of the template. We follow the convention
where the first component corresponds to A, the second
to C, the third to G and the fourth to T) representing
the template sequence of length L, E is an N × L matrix
having entries Ei,j =[Pi]0,j equal to the probability that
the length of a strand after i cycles is j, and λi is a ran-
dom variable describing empirically observed signal decay
caused by the DNA loss due to primer-template melting,
digestion by enzymatic impurities, DNA dissociation and
misincorporation,

λi | λi−1 ∼ N ((1 − d)λi−1, (1 − d)2λ2i−1σ
2), (3)

where d is a constant droop factor over all cycles and all
reads and σ is the standard deviation of λi.



Das and Vikalo BMC Bioinformatics 2013, 14:129 Page 3 of 10
http://www.biomedcentral.com/1471-2105/14/129

Illumina’s base calling approach
Prior to base calling, Bustard (Illumina’s base calling soft-
ware) estimates cross-talk using signals generated by syn-
thesizing the first 2 bases of all reads, evaluating entries
of K as the median of the estimates obtained using indi-
vidual read signals. Bustard then infers X by inverting K
and multiplying it with Y. Next, it calculates a tile-wide
average scalar Xi = ∑

Xj,i and renormalizes the signal
by multiplying Xi by X1/Xi. This procedure corrects for
the signal droop. Matrix E is estimated from the first 12
bases, inverted and multiplied by the normalized Xi val-
ues. This compensates for phasing/prephasing. Finally, for
each cycle, base calling is performed by selecting the base
inferred as having the highest corrected signal.

Parameter estimation and basecalling approach of BayesCall
and naiveBayesCall
BayesCall relies on the comprehensive model reviewed
in this section to perform base calling and significantly
reduce error rates compared to Bustard. However, it suf-
fers from two major computational bottlenecks. First, the
lack of a closed form expression for the solution to the
E-step of the EM algorithm used for parameter estima-
tion necessitates a computationally intensive numerical
optimization. Hence, the parameter estimation stage is
time consuming, requiring ≈ 25 minutes per iteration
on an 8 core machine. Consequently, BayesCall performs
a single parameter estimation step that uses reads from
all the tiles in a lane to generate a single set of param-
eters for the entire lane. Detailed analysis of BayesCall
and naiveBayesCall error rates indicates that using a sin-
gle set of parameters for an entire lane results in serious
performance degradation for tiles where the parameters
significantly differ from the ones used by the base call-
ing algorithms (data not shown). Moreover, base calling in
BayesCall is performed by relying on simulated annealing.
Being a computationally intensive algorithm, the times
for base calling via simulated annealing are prohibitively
high. In order to overcome this issue, in the follow-up
paper [6], the authors propose a simplified heuristic which
reduces base calling times to ≈ 6 hours per lane with a
small reduction in performance compared to BayesCall.
However, since the parameter estimation step used by
naiveBayesCall is the same as the one used by BayesCall,
tiles with parameters which significantly differ from the
single parameter set computed for the entire lane have
very small performance improvements over Bustard.

Our model refinements for fast tractable base calling
While providing detailed description of various sources of
uncertainty, mathematical model of the sequencing pro-
cess overviewed in the previous section leads to compu-
tationally demanding base calling algorithms. To simplify
the model and enable practically feasible base calling, we

approximate λi by its mean. Such an approximation is jus-
tified by the analysis of experimental data which shows
that the coefficient of variation (ratio of the standard devi-
ation to the mean) of λi in (3) is small (typically below
0.1 for early cycles and below 0.06 in the latter ones) [7].
On the other hand, it is desirable that the model allows
variations in the droop factor from one cycle to another.
Therefore, we describe the decay as λi = λ

∏i
j=2(1 − d̄j),

where λ denotes a read-dependent transduction coeffi-
cient mapping synthesis events to the generated signal
intensity, and d̄j denotes cycle-dependent droop factors.
Note that the signal generated in the ith cycle of the

sequencing step, (SET )i, can be expressed as

(SET )i =
L∑

j=1,j �=i
βi,jSj + (1 −

L∑
j=1,j �=i

βi,j)Si, (4)

where βi,js are dependent on pii and pcf . Based on the
initial parameter estimates obtained using Monte Carlo
methods, we observe that pii is very small. It is also
observed that if we choose to retain only those terms in a
given row of E that are at least 10% of the maximum entry,
there is at most one base ahead of the tested base that
contributes significantly to the signalXi. Consequently, we
may approximate (SET )i in (4) as

(SET )i ≈ (1 − βi,i+1)Si + βi,i+1Si+1, (5)

where βi,i+1 is a cycle-dependent parameter which allows
us to essentially approximate the nonlinear dependence of
E on pcf and hence facilitate efficient base calling.
For any given cycle i, the intensity of the signal in (5) is

a function of Si and Si+1. Such a finite memory approxi-
mation enables search for the optimal path S1, S2, . . . , SL
using dynamic programming principles. Graphically, this
can be interpreted as the search on a 16-state trellis (The
number of states needs to be increased if the parame-
ters pii and/or pcf are large, or if longer reads need to be
called), where the states at the ith stage of the trellis rep-
resent all possible pairs of bases in the ith and (i + 1)th
position of a read. We denote the states of the trellis by Ti,
where i is the cycle number. The states can take one of 16
possible values in the set {AA,AC,AG, . . . ,TT}, 1 ≤ j ≤
16. Note that not all state transitions are feasible. In par-
ticular, a transition from a state in cycle i to a state in cycle
i+1 is valid if the second symbol of the state in cycle i is the
same as the first symbol of the state in cycle i+ 1. Figure 1
illustrates two consecutive stages of the trellis. For the
sake of tractability of the illustration, only 8 of the possi-
ble 16 states are shown. Arrows indicate valid transitions
between the states that are included in the illustration.
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Figure 1 The 16 state trellis illustration of the transitions
between states in the ith and (i + 1)th stage of the trellis. The
figure shows 8 out of the possible 16 states along with all valid
transitions between them.

Final model
Based on the discussion in the preceding section, the final
model (for the lth window) is of the form

Yi ∼ N (λKiXi, λ2‖Xi‖22�i) i = 1

Yi|Yi−1 ∼ N (λ

i∏
j=2

(1 − d̄j)KiXi + αiYi−1,

(λ

i∏
j=2

(1 − d̄j))2‖Xi‖22�i) i = 2, ....N

(6)

whereXi = ((1−βi)Si+βiSi+1), and βi,i+1 is relabeled as βi
for the simplicity of notation. Let us collect all the param-
eters into a vector �. Given �, λ and Y1,Y2, . . . ,YN , the
goal of base calling is to determine S1, S2, . . . , SL. In our
approach, we first obtain estimates of the parameters �

using an unsupervised learning scheme. Then, posterior
probabilities of Si are determined using either forward-
backward or soft-output Viterbi algorithm. Details of the
proposed scheme follow.

Parameter estimation
We infer parameters of the mathematical model (6) by
relying on an unsupervised estimation scheme. Unsuper-
vised estimation need not be aided by a reference genome
nor does it require analyzing a known sequence in a con-
trol lane. Our scheme also has the advantage of being
implemented as an online, as opposed to a batch, algo-
rithm. This allows parameter estimation (and base calling)
of a previous window to be performed while the exper-
iment is still in progress, resulting in smaller latency
between the end of the run and basecalling results. In par-
ticular, we employ the online expectation-maximization
(EM) algorithm [8] which relies on a training set of R =
250 reads randomly selected across a tile. The optimiza-
tion problem that the EM algorithm solves in an iterative
fashion can be stated as

�n = argmax
�

E(λ,S)|�n−1 [ logP(S, λ|Y,�)] , (7)

where the scalar coefficient λ and the template sequence
matrix S are latent variables, � = {α,β ,K,�, d̄j} is
the set of parameters which need to be determined, and
logP(S, λ|Y,�) denotes the log-posterior function. In the
absence of any prior information, this is also the log-
likelihood function. The expectation in (7) needs to be
evaluated with respect to λ and S given the current esti-
mates of �.
The results from [5] indicate that base calling may be

significantly improved by allowing the parameters to be
cycle dependent. We observe the same and thus divide a
sequencing run into windows of length W = 6, and esti-
mate model parameters window-by-window. Parameters
for window l are initialized using the values of the param-
eters estimated in the previous window, l − 1. To prevent
over-fitting, (7) is optimized over two windows, l and l+1,
and the resulting � is used as the set of parameters for
window l. A window lengthW = 6 was found to be short
enough to capture time variations in the parameters and
still maintain run times of the parameter estimation and
base calling low.

Initialization for the first window
The EM algorithm requires initialization of the parame-
ters in the first time window. We can reliably call the first
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two bases in a template by simply identifying the chan-
nels having the largest signal in the first two test cycles
from which an initial estimate of K is obtained. As done
by Bustard, multiple estimates of the columns of K can
be computed from the first two signals of each read in
a tile, and then the median of all these estimates can be
used to provide an initial estimate K̂. Subsequently, we
find the mean of each column and add this to the diagonal
entries. We then use the inverse of the resulting matrix to
call bases again and iteratively refine the estimates of the
entries of the matrix. The number of iterations is set to 5.
Given K̂, an empirical estimate of � is obtained by com-

puting the difference between the intensity vector and the
column of the cross talk matrix that corresponds to the
called base. The covariance matrix �̂l is computed from
this for each read. Finally, the estimate �̂ is formed as the
median of �̂l. Parameters αi and βi are negligible in the
early cycles and are initialized as zeros. To estimate droop
coefficients d̄i, we start by calculating K̂−1Y l

i for each read
and summing up the resulting vector elements to obtain
the total signal xli acquired in the ith cycle. The droop for
the ith cycle is then calculated as ˆ̄dli = xli/x

l
i−1 for each

individual read. Finally, the median value of all ˆ̄dli is cho-
sen as the initial value of d̄i. Details of this step are omitted
and the interested reader is referred to [7].

E-step for the first window
The E-step requires finding the expectation of the log-
likelihood function in (7) over λ and S. Closed form
expressions are not available, while the numerical Monte-
Carlo methods are computationally prohibitive in prac-
tice. As an alternative, we rely on Bustard’s approach to
call sequences in the training set and use the resulting
Ŝk , 1 ≤ k ≤ R, to approximate the expectation with
respect to S. In particular, we approximate the objective of
maximization (7) by

O = −
R∑

k=1
Eλk

⎡
⎣

(l+1)W∑
i=(l−1)W+1

1
2
L(λk , Ŝki ,�l)

⎤
⎦ , (8)

where

L(λk , Ŝki ,�l) = logdet(λk(
i∏

j=2
(1 − d̄j))2‖Xi‖2�i)

+
(Yk

i −λk
i∏

j=2
(1−d̄j)KiXk

i )
T�−1

i (Yk
i − λk

i∏
j=2

(1 − d̄j)KiXk
i )

(λk
i∏

j=2
(1 − d̄j))2‖Xi‖2

,

(9)

and Y i = Yi for i = 1 and Y i = Yi − αYi−1 for i > 1, i <=
N . The superscript k is an index of a read in the training
set and ranges from 1 to R. Then the expectation over λk

in (8) is evaluated numerically via importance sampling,
leading to an approximation of the objective function

O ≈ −1
2

R∑
k=1

(l+1)W∑
i=(l−1)W+1

NIS∑
j=1

wj,kL(λkj , Ŝ
k
i ,�l), (10)

where wj,k denote normalized weights of NIS = 500 sam-
ples λkj generated for each read in the training set from the
Gaussian distribution N(λ̂k , 0.1) (such a choice of sam-
pling distribution for λkj is suggested by the analysis of
experimental data). Themean of the sampling distribution
for each read in the training set, λ̂k , is obtained by max-
imizing the log-likelihood function (9) given the current
estimates of the parameters � and base calls Ŝk .

M-step for first window
The objective function in (9) is separately differentiable
and convex over each of the parameters in � except β .
To optimize it, we rely on a cyclic co-ordinate descent
scheme which rotates among the components of �. To
find β , we employ a grid search. The co-ordinate descent
is terminated when the ratio of the change in the value of
the objective function to the value of the objective func-
tion in a previous iteration is less than ε = 0.003. We
use a similar stopping criterion for termination of the
expectation-maximization algorithm.

E-step for subsequent windows
Due to phasing effects and other imperfections affect-
ing generated and measured signal, using Bustard’s calls
to approximate expectation of the log-likelihood func-
tion as in (8) fails to provide reliable parameter esti-
mates in subsequent windows. On the other hand,
numerical evaluation of the objective function in (7),
E(λ,S)|�n−1 [ logP(S, λ|Y,�)], as we already argued in this
section, is computationally prohibitive in practice. To
facilitate practically feasible evaluation of the E-step for
windows l > 1, for each read in the training set we approx-
imate the transduction coefficient λk by its mean, λ̂k , and
replace the objective function by

R∑
k=1

M∑
i=1

P(Si|Yk , λ̂k ,�) log(P(Si|Yk , λ̂k ,�)), (11)

where λ̂k is obtained by maximizing the log-likelihood
function (9) given the parameters inferred in the (l − 1)st
window. Posteriori probabilities P(Si|Yk , λ̂k ,�) needed to
evaluate expression (11) can be found from the state pos-
teriori probabilities. For instance, posteriori probability
that the ith base is A is

P(STi =[ 1 0 0 0] |Yk , λ̂k ,�) =
4∑

j=1
P(Ti = tj|Y, λ̂k ,�),

(12)
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where tj ∈ {AA,AC,AG,AT ,CA, . . . ,TT}, 1 ≤ j ≤ 16.
Clearly, we need to find P(Ti = tj|Y, λ̂k ,�). For this, we
turn to dynamic programming ideas – in particular, the
forward-backward and soft-output Viterbi algorithms.

Forward-backward algorithm
Denote the transition probability from state k in the ith
stage to state l in the (i + 1)th stage of the trellis by akl =
P(Ti = tk|Ti+1 = tl). If no prior information about transi-
tion probabilities is available, we will assume that the valid
transitions are equally likely. Moreover, note that the state
priors may be computed from the symbol priors, if those
are available. For instance, prior for the state Ti = AC can
be found as the product of the priors for STi =[ 1 0 0 0]
and STi+1 =[ 0 1 0 0]. Let fl(i) = P(Y1,Y2, . . . ,Yi,Ti = tl)
denote the so-called forward probabilities, and bl(i) =
P(Yi+1, . . . ,YM|Ti = tl) denote the backward probabil-
ities. Moreover, let el(Yi) = P(Yi|Ti = tl, λ,�) denote
emission probabilities. Then the recursion that computes
forward probabilities can be stated as

fl(i + 1) = el(Yi+1)
16∑
k=1

fk(i)akl,

while the backward recursion is given by

bk(i) =
16∑
l=1

el(Yi+1)aklbl(i + 1).

The recursions are initialized by setting f0(0) = 1 and
bk(M) = ak,e, where ak,e denotes the probabilities of the
terminating state as computed by the forward algorithm.
Finally, the posterior probability is obtained as

P(Ti = tk|Y, λ,�) = fk(i)bk(i)∑16
j=1 fj(i)bj(i)

,

for all 1 ≤ k ≤ 16, 1 ≤ i ≤ M. In order to ensure that the
finite size of the trellis does not adversely effect reliability
of the computed probabilities, we add an extra 5 cycles in
the calculations (i.e., we use Y1, . . . ,YM+5).

Soft output Viterbi algorithm
The forward-backward algorithm computes exact pos-
teriori probabilities of the bases in a sequence. On the
other hand, one can rely on various heuristics to obtain
reasonably good approximations of posteriori probabili-
ties while suffering only minor degradation in accuracy.
Such heuristics include the soft-output Viterbi algorithm
(SOVA), a modification of the Viterbi algorithm imple-
mented on the same trellis we described in previous
sections.
Let vk(i) denote the probability of the most likely state

sequence which ends at Ti = tk , i.e.,

vk(i) = max
T1,...,Ti−1

P(Y1, . . . ,Yi,T1, . . . ,Ti−1,Ti = k).

Retaining the notation introduced for the description of
the forward-backward algorithm, we can recursively com-
pute vk(i) as

vl(i + 1) = el(Yi+1)max
k

aklvk(i),

where the recursion is initialized by setting v0(0) = 1,
vk(0) = 0 for all k > 0. This recursion is at the core of
the Viterbi algorithm, which then proceeds by backtrack-
ing through the optimal trellis path to determine the most
likely sequence of states. The Viterbi algorithm, however,
provides only the most likely sequence of states and does
not find posteriori probabilities of the symbols. To this
end, a soft-output variant of the Viterbi algorithm was
proposed in [9]. SOVA traces back optimal path through
the trellis and for each symbol (i.e., base) explores alter-
native paths that could have changed the decision of the
Viterbi algorithm for that symbol. Cost metrics of the
alternative paths are then used to approximate posteriori
probabilities for the base under consideration. To allow
computationally efficient procedure, we limit the length
of deviation of the alternative paths from the optimal one
to 3 edges. Note that it is necessary to normalize the
posterior probabilities obtained in the described fashion.
As we will demonstrate in the subsequent sections, the
forward-backward algorithm achieves better base calling
error rates than SOVA, but it does so at the cost of having
reduced speed.

M-step for subsequent windows
The M-step for subsequent windows is very similar to the
M-step for the first window. The only difference is that the
objective function being maximized is now

−1
2

R∑
k=1

(l+1)W∑
i=(l−1)W+1

4∑
j=1

P(Si= sj|Yk, λ̂k,�l)L(λj, Si= skj ,�l).

(13)

The optimization follows the same procedure as described
for the first window.
Updating λ̂k - After each step of the EM algorithm used

for estimating parameters in a given window, we make
calls for Ski (using outputs of either forward-backward or
SOVA). The calls and the most recent parameters are then
employed to update λ̂k by maximizing the log-likelihood
function (9). The updated value of λ̂k is used by the EM
algorithm in the next window.

Base calling
Given � inferred by the EM algorithm and Y1,Y2, . . . ,YN ,
the goal of base calling is to determine S1, S2, . . . , SL, i.e.,
to find

Ŝi = argmax
sj

P(Si = sj|Y, λ̂,�), (14)
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where sj can take values of unit vectors comprising three
zeros and one non-zero entry equal to 1, and 1 ≤ j ≤
4. Base probabilities P(Si = sj|Y, λ̂,�) can be calculated
from the state probabilities of the trellis that we defined in
the parameter estimation section, e.g.,

P(STi =[ 1 0 0 0]) =
4∑

j=1
P(Ti = tj|Y, λ,�), (15)

and so on. Note that these probabilities are also the ‘qual-
ity score’ assigned to the given basecall (more on quality
scores in the next section). Clearly, we need to find pos-
teriori probabilities P(Ti = tj|Y, λ̂,�). For this, we again
turn to the soft-output Viterbi and forward-backward
algorithms that we described in the previous section.
Note that the value of λ̂ used for base calling in window

l is approximated by the value of λ which maximizes the
log-likelihood function formed using � and Ŝi from the
previous window, l − 1 (except in window l = 1 where
we use Ŝi provided by Bustard). It is straightforward to
show that this maximization entails solving the quadratic
equation in λ

lW∑
i=(l−1)W+1

4λ2 + (KiX̂i)T�i−1(Yi)

(
i∏

j=2
(1 − d̄j))‖X̂i‖2

λ

− Yi�i−1Yi

(
i∏

j=2
(1 − d̄j))2‖X̂i‖2

= 0,

(16)

and choosing the positive solution as the value of λ̂.

Quality scores
Performance of various base calling algorithms can be
compared by evaluating error rates that they achieve
when applied to determining the order of nucleotides
in a known sequence. In practical applications, where
the sequence being analyzed is not known, we need to
assess the confidence of a base calling procedure. To this
end, quality scores provide information as to how reli-
able the corresponding base calls are. The quality scores
that we assign to base calls are the posterior probabilities
of the bases computed by the forward-backward/SOVA
schemes. In particular, we use the posteriori probabilities
of the bases computed according to (15) as the qual-
ity scores. In order to assess the ‘goodness’ of quality
scores, we consider their discrimination ability [10,11].
The discrimination ability for a given error rate is obtained
by sorting all bases according to their quality scores in
descending order and finding the number of bases called
before the error rate exceeds the predefined threshold.

Results
GAII
Performance of the forward-backward algorithm and
SOVA is verified on a full lane data obtained by sequenc-
ing phiX174 ((EMBL/NCBI accession number J02482)
bacteriophage using Illumina’s Genome Analyzer II which
generates reads of length 76. After basecalling the lane by
Bustard, naiveBayesCall, Rolexa, Ibis, forward-backward
and SOVA, the calls were mapped onto the known refer-
ence sequence comprising 5386 bases. The optimal align-
ment is found using a Hamming distance metric. Reads
that map with less than 30% errors are retained while
reads having more errors are removed to ensure that there
is no ambiguity in the alignment. This results in approx-
imately 7 million reads and 550 million bases which are
used to compare the performance of the considered base-
calling schemes. Average error rates computed over the
entire lane are compared in Table 1. Figure 2 shows the by
tile error rates, by cycle error rates and the discrimination
abilities of the different basecallers. Forward-backward
algorithm and SOVA outperform all other schemes in
terms of error rates and discrimination abilities.

HiSeq
Performance of the forward-backward algorithm and
SOVA is verified on reads from E.coli (EMBL/NCBI acces-
sion numberNC007779) using Illumina’s HiSeq2000 com-
prising of 100 cycle paired end data. The error rates
for both pairs of reads are shown as a function of cycle
number in Figure 3. Average error rates are compared in
Table 2 for both SOVA and FB schemes. As can be seen,
we improve on Bustard’s calls by 12.3 and 9.6% for the first
and second pair respectively.

Discussion
Computational complexity
For each read, the most computationally expensive Bus-
tard’s step is its correction of phasing effects. For both
forward-backward algorithm and SOVA, we need to
evaluate 16 objective functions for the states at each stage

Table 1 Comparison of error rates and speed for GAII

Decoding strategy Error rate Running times

FB 0.0128 400mins

SOVA 0.0129 300mins

OnlineCall 0.0137 30mins

naiveBayesCall 0.0139 1500mins

Ibis 0.0147 480mins

Bustard 0.0154 40mins

Rolexa 0.0171 720mins

A comparison of error rates and running times (per lane) for different base
callers (note that Bustard’s running time is underestimated since it does not
account for the parameter estimation step).
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Figure 2 (a,b,c) - Comparison of the different basecalling strategies under different performance metrics. The figure shows a) Base calling
error rates as a function of tile, b) Base calling error rates as a function of cycle number, c) Discrimination ability.

of the trellis. In order to avoid finite window effects,
for each window of length 6 additional 5 cycles are
included in the computations. Therefore, for a 76 cycle
read, we need to evaluate 131 × 16 state values. Addi-
tional overhead due to combining these values requires
mostly additions (when the algorithms are implemented
in the log domain). naiveBayesCall on the other hand,
performsmatrix inversion of the same complexity as those
performed by Bustard, followed by evaluation of 4 × 76×

21 terms. The factor 21 arises due to the fact that naive-
BayesCall needs to solve a quartic equation using a golden
section search that requires 21 evaluations per base. Thus,
forward backward and SOVA are ≈ 3 times faster than
naiveBayesCall.

Implementation and running times
We implemented our codes on an Intel i7 machine
@3.07GHz using only a single core. With our codes
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Figure 3 (a,b) - Comparison of the different basecalling strategies for HiSeq2000. The figure shows a) Base calling error rates as a function of
cycle for the first pair, b) Base calling error rates as a function of cycle for the second pair.

written in C, it takes approximately 240 seconds to read in
an intensity file, perform the parameter estimation step on
250 reads, call bases for the whole tile and write it in fastq
format for the forward backward scheme and 180 seconds
for SOVA. Processing an entire lane requires about 400
minutes and 300 minutes for FB and SOVA, respectively.
naiveBayesCall, on the other hand, requires 19 hours just
for its parameter estimation step while its basecalling
takes 6 hours. Thus, our FB and SOVA implementations

Table 2 Comparison of error rates for HiSeq

Decoding strategy Error rate (Pair 1) Error rate (Pair 2)

FB 0.0029 0.0029

SOVA 0.0029 0.0029

Bustard 0.0033 0.0032

A comparison of error rates for different base callers for HiSeq.

are 4 and 5 times faster than naiveBayesCall. Note that
the run times of naiveBayesCall are reported for an imple-
mentation on a processor with 8 cores; it is expected
that a parallel implementation of our algorithm would
reduce the total running time by roughly 8 times. In

Table 3 Comparison of error rates for supervised and
unsupervised schemes

Decoding strategy Error rate

FB (unsupervised) 0.0125

SOVA (unsupervised) 0.0127

FB (supervised) 0.0124

SOVA (supervised) 0.0126

A comparison of error rates for supervised and unsupervised schemes on a
single tile for GAII.
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addition, our proposed schemes would be able to almost
instantaneously provide very high quality base calls to the
end user since they are online (as opposed to batch) in
nature. A comparison of the running times for processing
an entire lane between the forward-backward algorithm
and SOVA and the other basecallers is shown in Table 1.

Improving error rates using supervised parameter
estimation
Although the described parameter estimation procedure
assumes no supervision, the proposed forward-backward
and SOVA schemes allow incorporation of non-uniform
priors that may improve accuracy of the inferred param-
eters and hence the overall base calling performance.
Illumina platforms typically have a dedicated control lane
comprising reads from a known reference. In such a case,
it is possible to obtain priors by aligning the reads onto the
reference and using them to improve the accuracy of the
estimated parameters.
To this end, we utilize the calls from Bustard and align

the reads onto the reference phiX174 genome using the
same mapping criteria as described in the Results section.
A basecall that is perfectly mapped to the reference is
assigned a prior probability of 1, while in case of a mis-
match the prior probabilities are split between the base
suggested by the reference and the base called. If the refer-
ence is not very trustworthy, lower prior can be assigned
to the base implicated by the reference. The described
change requires very minor modification of the parameter
estimation step. Table 3 shows the improvement obtained
using the supervised scheme. Both forward-backward and
SOVA schemes benefit marginally if the parameters are
estimated in the supervised setting.

Conclusion
We presented a formulation of the base calling prob-
lem on Illumina platforms that is amenable to being
solved by dynamic programming methods, and proposed
forward-backward and soft-output Viterbi algorithms for
solving it. Base calling error rate performance of the
proposed algorithms was demonstrated on experimen-
tal data to be superior to Illumina’s Bustard and several
other publicly available base callers. The developed base
callers are tested on data obtained by Genome Analyzer II
and HiSeq2000 but the model, concepts, and algorithms
should apply to other Illumina’s platforms as well. The
developed schemes are online (as opposed to batch), scal-
able, and much faster than competing model-based base
callers. In addition, they are capable of accounting for soft
inputs (priors) and generating soft outputs (posteriors) –
a feature we exploited to devise a supervised scheme for
learning parameters of the sequencing model, and may
further be useful in applications where prior knowledge
about reads is available.
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