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Investigating the concordance of Gene Ontology
terms reveals the intra- and inter-platform
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Lifang Zhang1, Juan Zhang1, Gang Yang1, Di Wu1, Lina Jiang1, Zhining Wen1,2* and Menglong Li1*
Abstract

Background: Reliability and Reproducibility of differentially expressed genes (DEGs) are essential for the biological
interpretation of microarray data. The microarray quality control (MAQC) project launched by US Food and Drug
Administration (FDA) elucidated that the lists of DEGs generated by intra- and inter-platform comparisons can reach
a high level of concordance, which mainly depended on the statistical criteria used for ranking and selecting DEGs.
Generally, it will produce reproducible lists of DEGs when combining fold change ranking with a non-stringent
p-value cutoff. For further interpretation of the gene expression data, statistical methods of gene enrichment
analysis provide powerful tools for associating the DEGs with prior biological knowledge, e.g. Gene Ontology (GO)
terms and pathways, and are widely used in genome-wide research. Although the DEG lists generated from the
same compared conditions proved to be reliable, the reproducible enrichment results are still crucial to the
discovery of the underlying molecular mechanism differentiating the two conditions. Therefore, it is important to
know whether the enrichment results are still reproducible, when using the lists of DEGs generated by different
statistic criteria from inter-laboratory and cross-platform comparisons. In our study, we used the MAQC data sets for
systematically accessing the intra- and inter-platform concordance of GO terms enriched by Gene Set Enrichment
Analysis (GSEA) and LRpath.

Results: In intra-platform comparisons, the overlapped percentage of enriched GO terms was as high as ~80%
when the inputted lists of DEGs were generated by fold change ranking and Significance Analysis of Microarrays
(SAM), whereas the percentages decreased about 20% when generating the lists of DEGs by using fold change
ranking and t-test, or by using SAM and t-test. Similar results were found in inter-platform comparisons.

Conclusions: Our results demonstrated that the lists of DEGs in a high level of concordance can ensure the high
concordance of enrichment results. Importantly, based on the lists of DEGs generated by a straightforward method
of combining fold change ranking with a non-stringent p-value cutoff, enrichment analysis will produce
reproducible enriched GO terms for the biological interpretation.
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Background
Over the last decade, DNA microarray technology has
reached a rapid development and found wide applica-
tion in many areas of biology and medical science. One
of its important applications is to identify differentially
expressed genes (DEGs) across groups of samples or
distinct biological conditions of interest [1,2]. Biological
interpretation of microarray data requires reliable and
reproducible lists of DEGs. The microarray quality con-
trol (MAQC) project launched by US Food and Drug
Administration (FDA) elucidated that the lists of DEGs
generated by intra- and inter-platform comparisons
reached a high level of concordance, which largely
depended on the statistical criteria used for ranking and
selecting DEGs [3,4]. For the further biological inter-
pretation, statistical methods of gene enrichment ana-
lysis provide powerful tools for associating the DEGs
with prior biological knowledge, e.g. Gene Ontology
(GO) terms and signaling pathways. The enrichment
analysis mainly used prior knowledge, e.g. GO categories
[5,6] or Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways [7,8], to investigate whether the prede-
fined gene sets showed significantly phenotypic differences
between two biological states.
Many methods for enrichment analysis were developed

to discover the biological meaning of DEGs. Mootha et al.
firstly proposed an earlier version of Gene Set Enrichment
Analysis (GSEA), which used an equal weighted version of
Kolmogorov-Smirnow statistic for gene sets enrichment
without considering the correlation between genes and
the phenotype [9]. Subramanian et al. extended this pro-
cedure in 2005 and successfully used it for analyzing mo-
lecular profiling data [10]. Kim and Volsky carried out a
parametric analysis of gene set enrichment (PAGE) to the
improved GSEA and identified more statistically signifi-
cant gene sets. PAGE used less computational effort than
GSEA because it used normal distribution for statistical
inference [11]. Oron et al. improved GSEA by using a
linear regression diagnostic technique and discovered a
vital factor to the influence of gene expression from acute
lymphoblastic leukemia datasets [12]. Ji et al. proposed a
new method FDR-FET to improve the sensitivity and
selectivity of GSEA [13]. Kim et al. used z-statistics and
permutation test to identify significantly enriched gene
sets [14]. In addition, other statistical methods including
significance analysis of function and expression (SAFE)
[15], BayGO [16], ProbCD [17], EasyGO [18], ProfCom
[19], GlobalANCOVA [20], GOEAST [21] and LRpath
[22] were also developed for enrichment analysis.
Based on the methods mentioned above, researchers

can subsequently reveal the pathological mechanism from
the microarray data sets. Xu et al. enriched two gene sets
associated with the glycolytic-related pathway from the
microarray data of prostate non-recurrent patients. This
pathway was considered as a candidate negative modu-
lator of AKT1-induced proliferation [23]. De Windt
et al. used GSEA to analyze Niemann-pick type C
(NPC) disease and discovered 27 up-regulated and 33
down-regulated pathways. These affected pathways
were provided as targets for subsequent drug discovery
project [24]. In breast cancer research, Murohashi et al.
found that the genes composed in CD24/low/CD44+ cell
populations were fallen into the significantly enriched
gene sets, which were associated with the pathways of
transforming growth factor-ß, tumor necrosis factor, and
interferon response. The signaling pathways enriched by
GSEA were suggested to identify molecular targets and
biomarkers for Tumour-initiating-like cells [25].
However, when mapping the DEGs to the predefined

gene sets, any difference between two DEG lists may cause
different outputs of the enrichment analysis. For the same
compared conditions, the reproducible enrichment results
are still crucial to the discovery of the underlying molecu-
lar mechanism differentiating the two conditions. There-
fore, it is important to know whether the enrichment
results are still reproducible, when using the lists of DEGs
generated by different statistic criteria from different com-
mercial microarray platforms. As a part of the MAQC
project, Guo et al. investigated the intra-laboratory overlap
of enriched KEGG pathways and GO terms with a rat
toxicogenomics dataset and revealed that, compared to
the p-value ranking, the use of fold change ranking (with
p < 0.05 cutoff) for DEG selection showed more
consistency in enrichment analysis [26]. In the previous
study by Manoli et al. [27], the concordance of pathways
enriched by Fisher’s exact test, global test and GESA were
investigated based on the microarray data from Affymetrix
microarray platform and the DEGs generated by signifi-
cance analysis of microarrays (SAM) and mixed model
analysis (MMA). The pathways found by Fisher’s exact
test and global test showed more concordant than those
by GSEA in all conditions. In the current study, the
microarray data were collected from the large data sets
provided by MAQC project [3,4], which included three
major microarray platforms: Affymetrix (AFX), Agilent
Technologies (AG1) and Illumina (ILM) and the lists of
DEGs for enrichment analysis were generated by using
three statistical criteria: fold change ranking with a non-
stringent p-value cut-off which was calculated by t-test,
significance analysis of microarrays (SAM) [28] and t-test.
Finally, we systematically investigated the intra- and inter-
platform concordance of GO terms enriched by two
common methods of enrichment analysis, namely gene
set enrichment analysis (GSEA) [10] and LRpath [22].
The results showed that, based on the DEG lists gener-
ated by SAM and FC, the levels of intra- and inter-
platform concordance of GO terms were generally high
and can satisfy the further biological interpretation.
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Results
In this study, we systematically investigated whether the
results of enrichment analysis were still reproducible
when the inputted lists of DEGs were generated by three
statistical methods from different commercial micro-
array platforms. The GO terms were enriched by using
GSEA and LRpath with the criteria of FDR < 0.25. Then,
the intra- and inter-platform concordance of these terms
was analyzed (Figure 1) and detailed results were shown
below.

Intra-platform concordance of enrichment results
For the intra-platform comparison, we inspected the
concordance of significant GO terms enriched by GSEA
and LRpath when 1) the inputted lists of DEGs were
generated from different test sites by using the same
statistic criteria, and 2) the inputted lists of DEGs were
generated by using different statistic criteria from the
same test sites. Based on the expression data generated
from Affymetrix microarray platform, the inter-site com-
parisons were conducted and the percentages of overlap-
ping significant GO terms enriched by GSEA and LRpath
were shown in Figure 2 and Figure 3, respectively. When
selecting the top n GO terms (n ≥ 10), it can be seen from
Figure 2 that all the percentages of overlapping GO terms
AFX: sites 1~3 AG1: sites 1~3 ILM: sites 1~3
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Figure 1 Schematic overview of the concordance analysis of
enriched gene ontology terms. The _1, _2 and _3 suffixes refer to
test site location. DEGs refer to differentially expressed genes.
were as high as ~90%, which indicates high inter-site con-
cordance among the GO terms enriched by GSEA. For
the inter-site concordance of GO terms enriched by LRpath
(Figure 3), the percentages of overlapping GO terms were
still around 87% for two DEG selection methods, fold
change ranking with a non-stringent p-value cut-off and
SAM, when all the GO terms meeting the FDR < 0.25
criterion were selected. In addition, for the DEG selec-
tion method of t-test, the overlapped percentages were
about 19% lower than those showed in Figure 3 (a drop
from ~88% to ~69%), suggesting that the inter-site con-
cordance of GO terms for t-test was less reproducible
than those for SAM and fold change ranking.
The inter-site concordance comparisons were also

conducted for AG1 and ILM (Additional file 1: Figures
S1-S4). Similar to the analysis results for AFX, based on
the microarray data from AG1, the concordance of GO
terms enriched by GSEA for all the DEG selection cri-
teria was generally high (~90%) when all the GO terms
meeting FDR < 0.25 criterion were selected (Additional
file 1: Figure S1) and a significant drop of percentages
(a drop from ~84% to ~63%) was also seen for t-test
method when the GO terms were enriched by LRpath
(Additional file 1: Figure S2). Note that there was an
obvious drop of percentages for SAM with a cut-off of
p < 0.01, because the number of DEGs selected by
SAM with p < 0.01 was less than half of those selected
by other DEG selection methods (Table 1). As to the
results for ILM, the percentages of overlapping GO
terms for all DEG selection methods but SAM were
higher than ~89%, when the GO terms were enriched
by GSEA (Additional file 1: Figure S3). For SAM with
p < 0.01, the percentages of overlapping GO terms
were as high as ~89% when comparing the test sites 1
with 3 (Additional file 1: Figure S3b), whereas the per-
centages dropped to ~80% when comparing the test
sites 1 with 2 (Additional file 1: Figure S3a) and ~76%
when comparing the test sites 2 with 3 (Additional file 1:
Figure S3c). The main reason for the decrease in percent-
ages was the reduction in the number of DEGs selected
from test site 2, which was only 3,059 for test site 2
and were 5,192 and 6,996 for test sites 1 and 3, respect-
ively (Table 1). It suggested that inter-site concordance
of GO terms were also impacted by the number of
selected DEGs. In addition, for SAM with p < 0.05, the
percentage was dropped to ~85% when comparing the
test sites 2 with 3 (Additional file 1: Figure S3c), which
was ~5% lower than those when comparing the test
sites 1 with 2 and the test sites 1 with 3. When the GO
terms were enriched by LRpath, only the percentages of
overlapping GO terms for the DEG selection method
of fold change ranking with a non-stringent p-value
cut-off were higher than ~80%. The percentages of
overlapping GO terms for the rest DEG selection



Figure 2 Intra-platform concordance of significant GO terms enriched by GSEA among three test sites of AFX. (a) AFX_1 versus AFX_2;
(b) AFX_1 versus AFX_3; (c) AFX_2 versus AFX_3. The scatter plots showed the percentage of overlapping GO terms which were enriched by
GSEA and derived from two test sites. Each color and each type of points represented the different gene lists that selected by different statistical
methods and different cutoff. The x-axis represents the number of enriched GO terms selected as significance, and y-axis is the percentage (%) of
GO terms common to the two AFX test sites enrichment results. The _1, _2 and _3 suffixes refer to test site locations.
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methods varied from ~55% to ~73% (Additional file 1:
Figure S4).
In order to demonstrate the difference among the lists

of GO terms created by GSEA and LRpath with the input-
ted DEGs generated by different DEG selection criteria,
we compared the percentages of overlapping GO terms
for each microarray platform at each test site. For a certain
test site, the comparisons of three DEG selection methods,
namely fold change ranking with a non-stringent p-value
cut-off versus SAM, fold change ranking with a non-
stringent p-value cut-off versus t-test and t-test versus
SAM, were conducted. Figures 3 and 4 showed the con-
cordance of GO terms enriched by GSEA and LRpath,
respectively, for the Affymetrix microarray platform at
three test sites. When the GO terms enriched by GSEA,
most of the percentages of overlapping GO terms for
the comparison of fold change ranking with a non-
stringent p-value cut-off and SAM were greater than
~82%, which were the highest percentages among the
comparisons of DEG selection methods (Figure 4). Es-
pecially for the comparison of fold change (|log2FC| > 1
(p < 0.01)) and SAM (p < 0.01), the percentages were as
high as ~98% when all GO terms meeting FDR < 0.25
criterion were selected. When comparing the fold
change ranking with t-test and SAM with t-test, the per-
centages of overlapping GO terms varied from ~70% to
~81%, which were about 20% lower than those for com-
paring fold change ranking with SAM. However, for the
GO terms enriched by LRpath, Figure 5 showed the
more obvious difference between the percentages for
comparing fold change ranking with SAM and those for
the comparisons of fold change ranking with t-test and
SAM with t-test. The percentages of overlapping GO
terms for comparing the fold change ranking with SAM
were higher than ~71%, whereas the percentages for the
comparisons of fold change ranking versus t-test and
SAM versus t-test were lower than ~52% when all GO
terms meeting FDR < 0.25 criterion were selected.



Figure 3 Intra-platform concordance of significant GO terms enriched by LRpath among three test sites of AFX. (a) AFX_1 versus AFX_2;
(b) AFX_1 versus AFX_3; (c) AFX_2 versus AFX_3. The scatter plots showed the percentage of overlapping GO terms which were enriched by
LRpath and derived from two test sites. See notes under Figure 2 for more information.
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The results of the comparisons among difference
DEG selection criteria for AG1 and ILM were shown in
Additional file 1: Figures S5-S8. For AG1, when the GO
terms enriched by GSEA and LRpath, the percentages of
overlapping GO terms for comparing the fold change
ranking (p < 0.05) with SAM (p < 0.05) were always higher
than ~77%, whereas the percentages of overlapping GO
Table 1 Number of DEGs selected by FC, SAM and t-test and

AFX_1 AFX_2 AFX_3 AG1_

|log2FC| > 1 (p < 0.01) 4442 4236 4546 5405

|log2FC| > 1 (p < 0.05) 4444 4237 4548 5539

SAM (P < 0.01) 4665 4269 3726 2623

SAM (P < 0.05) 6682 6485 6287 5495

t-test (p < 0.01) 9246 9322 9528 7447

t-test (p < 0.05) 9920 9982 10187 8302

There are three microarray platforms, and three test sites for each platform. For the
the expression of 12,091 common probes based on matching of One Probe-to-One
v24/n9/extref/nbt1239-S5.txt). DEGs were selected by three different statistical meth
p-value cut-off, SAM and t-test. Different cutoffs were applied in this research.
terms for the rest comparisons varied from ~62% to ~92%
(Additional file 1: Figure S5 and S6). Similar results can be
seen for ILM (Additional file 1: Figure S7 and S8). When
all GO terms meeting FDR < 0.25 criterion were selected,
the variation range of the percentages for the comparisons
among three DEG selection criteria became wider than
those showed in Additional file 1: Figures S5 and S6.
different cutoff

1 AG1_2 AG1_3 ILM_1 ILM_2 ILM_3

5601 5460 3677 3355 3281

5736 5554 3677 3361 3281

2658 2840 5192 3059 6996

5553 5692 6634 5657 8071

8209 8180 7757 6497 7036

8925 9018 8649 7642 8021

convenient of intra- and inter-platform comparison, we directly focused on
Gene List summarized by MAQC project (http://www.nature.com/nbt/journal/
ods for enrichment analysis, namely fold change ranking with a non-stringent

http://www.nature.com/nbt/journal/v24/n9/extref/nbt1239-S5.txt
http://www.nature.com/nbt/journal/v24/n9/extref/nbt1239-S5.txt


Figure 4 The concordance of significant GO terms enriched by GSEA within the same test site of AFX. The comparisons of significant GO
terms enriched by GSEA were conducted within a) AFX_1; b) AFX_2; c)AFX_3. Two DEG lists generated by fold change ranking, two DEG lists
generated by SAM and two DEG lists generated by t-test were inputted in GSEA to enrich significant GO terms (FDR < 0.25). And then the
concordance of two significant GO terms lists derived from two DEGs selected methods was compared on the same p-value cutoff. The red
markers reflect the percentages of overlapping GO terms by using fold change ranking and SAM for generating DEG lists. The blue markers
reflect the percentages of overlapping GO terms by using fold change ranking and t-test for generating DEG lists. The olive markers reflect the
percentages of overlapping GO terms by using SAM and t-test for generating DEG lists. The _1, _2 and _3 suffixes refer to test site location.
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Inter-platform concordance of enrichment results
With regard to the analysis of inter-platform concord-
ance, we inspected the percentages of overlapping GO
terms enriched by GSEA and LRpath for the compari-
sons among three DEG selection criteria based on the
microarray data from three commercial platforms at the
same test site. For test site 1, Figures 6 and 7 showed
the number of GO terms enriched by GSEA and
LRpath, respectively, and the percentages of overlapping
GO terms for the comparisons among three microarray
platforms, when the inputted DEG lists were generated
by fold change ranking (|log2FC| > 1 (p < 0.05)), SAM
(p < 0.05) and t-test (p < 0.05). For the GO terms enriched
by GSEA, it can be seen from Figure 6 that all the percent-
ages of overlapping GO terms for the cross-platform com-
parisons were around 80%, which indicated that there was
no significant impact on the concordance of GO terms
when the inputted DEG lists were generated by different
DEG selection methods and from different microarray
platforms. However, for the comparisons of AFX versus
AG1 and AFX versus ILM, the percentages of GO terms
enriched by LRpath were ~31% lower than those enriched
by GSEA (a drop from ~83% to ~52%) when inputted
DEG lists were generated by t-test (p < 0.05) (Figure 7).
As to the comparison of AG1 versus ILM, there was
also a decrease in percentage of overlapping GO terms
by approximately 13% when generating DEG lists by t-test
(p < 0.05). Note that, to some extent the number of
enriched GO terms will impact on the cross-platform
concordance.

Discussion
Reproducible enrichment results are essential for further
biological interpretation of microarray data when using



Figure 5 The concordance of significant GO terms enriched by LRpath within the same test site of AFX. The comparisons of significant GO
terms enriched by LRpath were conducted within a) AFX_1; b) AFX_2; c)AFX_3. The same test site of the same platform enrichment which used the
gene lists derived from different statistical methods. Two DEGs lists generated by fold change ranking and two DEGs lists generated by SAM and two
DEGs lists generated by t-test were input in LRpath to get significant GO terms (FDR < 0.25). See notes under Figure 4 for more information. The
concordance of two significant GO terms lists derived from two DEGs selected methods was compared on the same p-value cutoff.
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statistical methods for gene enrichment analysis. It was
proved by MAQC project that the levels of DEG concord-
ance in inter-laboratory and cross-platform comparisons
were generally high [3,4]. For the subsequent enrichment
analysis, it is important to know whether the DEG lists
generated by different statistical criteria from different
microarray platforms can ensure satisfied reproducibility
of the enrichment results. In our current study, we sys-
tematically investigated the intra- and inter-platform con-
cordance of GO terms enriched by GSEA and LRpath.
Note that GSEA is of the 'subject-sampling' type while
LRpath treats the genes as the sampling units. In this
study, we only focused on the concordance of GO terms
enriched by the same enrichment analysis method. The
comparison of different enrichment analysis methods will
be discussed in our further research.
As proposed by MAQC project that combining fold

change ranking with a non-stringent p-value cut-off can
provide reproducible DEG lists, the levels of concordance
of enriched GO terms were still high for this straightfor-
ward combining method. In inter-site comparisons for
AFX, AG1 and ILM, all the percentages of overlapping
GO terms enriched by GSEA and LRpath were above
~90% and ~80%, respectively, when GO terms meeting
FDR < 0.25 criterion were selected. The concordance of
GSEA results were no significant difference in inter-site
comparisons. But for a certain test site, the concordance
of LRpath results were obviously different when the com-
parisons among three DEG selection criteria. For the
cross-platform comparisons at each test site, the percent-
ages were around 80% (varied from ~75% to ~84%) when
the GO terms were enriched with the inputted DEGs
selected by fold change ranking (|log2FC| > 1 (p < 0.05)).
By contrast, the lack of reproducibility of enriched GO
terms was found when the inputted DEGs were selected
by t-test. Although all the percentages of overlapping GO
terms enriched by GSEA in inter-site comparison were
still greater than ~87%, the percentages varied from ~69%



Figure 6 Inter-platform concordance of significant GO terms
enriched by GSEA. The left y-axis represents the number of
enriched GO terms by using GSEA for each of the platforms, and the
right y-axis is the percentage (%) of overlapping GO terms. The
number of overlapping GO terms of each platform are presented in
a series of bars which correspond to the left scale. Scatter plots
represent the percentages of overlapping GO terms of two
platforms which correspond to the right scale. The blue, lightblue
and white barplots represent the number of significantly enriched
GO terms (FDR < 0.25) of AFX_1, AG1_1 and ILM_1, respectively.
Different markers represent different DEG selection methods and
their cutoff. The _1 suffixe refers to test site.

Figure 7 Inter-platform concordance of significant GO terms
enriched by LRpath. The left y-axis represents the number of
enriched GO terms by using LRpath for each of the platforms, and
the right y-axis is the percentage (%) of overlapping GO terms. See
notes under Figure 6 for more information. We can clearly see a
drop of the percentages for DEG selection criteria t-test.
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to ~74% when the inputted DEGs were generated by t-test
and the GO terms were enriched by LRpath. Similarly, in
the cross-platform comparisons for t-test (p < 0.05), the
percentages of overlapping GO terms enriched by GSEA
were ~78% and then dropped to ~50% when GO terms
were enriched by LRpath. In addition, for AFX and AG1,
we found that the percentages of overlapping GO terms
for the comparison of fold change (|log2FC| > 1 (p < 0.05))
versus SAM (p < 0.05) were always higher than ~76%
when comparing the different DEG selection criteria at
each test site. It suggested that the concordance of enrich-
ment results based on the DEG selection methods of fold
change ranking and SAM were generally high.
To some extent, the number of selected DEGs im-

pacted on the percentages of overlapping GO terms. In
inter-site comparisons, most of the percentages for SAM
(p < 0.01) were higher than ~85% except for the compari-
sons of ILM_1 versus ILM_2 and ILM_2 versus ILM_3,
when the GO terms were enriched by GSEA (Additional
file 1: Figure S2a and S2c), because the number of DEGs
selected from test site 2 was 3,059, which was about half
of those selected from test sites 1 and 3 (Table 1). It is
worthwhile to note that there were large discrepancies
between the two reference RNA samples, namely UHRR
and HBRR, which were just designed for investigating
the capabilities and limitations of the microarray technol-
ogy and for the corresponding data analysis approaches.
So, the number of selected DEGs from a relevant bio-
logical study such as control versus treatment would be
less than those selected by using UHRR versus HBRR,
for which it may cause a decrease in the percentages of
overlapping GO terms. In addition, when comparing
the GO semantic similarity with real biological data
sets, the hierarchical structure of GO graph should be
considered [29].
Conclusions
In our study, we conducted the intra- and inter-platform
comparisons with MAQC data sets and inspected the con-
cordance of GO terms enriched by GSEA and LRpath
when the inputted DEG lists were generated by different
statistical criteria. The percentages of overlapping GO
terms for fold change ranking (|log2FC| > 1 (p < 0.05))
were as high as ~90% in inter-site comparisons when GO
terms meeting FDR < 0.25 criterion were selected, and
were around 80% in cross-platform comparisons. Our re-
sults demonstrated that the DEG lists generated by a
straightforward method combining fold change ranking
with a non-stringent p-value cut-off can ensure the repro-
ducibility of the enrichment results. In addition, the tool
GSEA for enrichment analysis can always yield relatively
stable enrichment results.
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Methods
Data sets
The MAQC data sets were downloaded from the National
Center for Biotechnology Information’s Gene Expression
Omnibus (GEO series accession number: GSE5350). The
two compared RNA samples were a Universal Human
Reference RNA (UHRR, marked as sample A) from
Stratagene and a Human Brain Reference RNA (HBRR,
marked as sample B) from Ambion, which were used as
two compared biological conditions for selecting DEGs.
Microarray data generated from three commercial plat-
forms: Affymetrix (AFX), Agilent Technologies (AG1)
and Illumina (ILM), were collected from MAQC data
sets and used in our study. Each microarray platform
was tested at three independent test sites and each RNA
sample was replicated five times at each test site. Due to
the distinct probe-design strategies and manufacturing
processes, different microarray platforms target differ-
ent subsets of the whole human transcriptome. For the
convenient of intra- and inter-platform comparison, we
directly focused on the expression of 12,091 common
probes, which were summarized by MAQC project and
represented 12,091 unique Entrez genes [3,4]. Results
showed below were based on these 12,091 “common”
genes. All the gene expression data were log2-transformed.

Student t-test
Student t-test is extensively used in gene expression ana-
lysis. It demonstrates whether the difference between two
groups of samples is significant. In our study, the p-values
calculated by t-test are directly used for gene filtering
without any multiple-testing correction. The DEGs were
obtained by setting two criteria of p < 0.05 and p < 0.01,
and inputted to GSEA and LRpath for further analysis.

Fold Change (FC)
The fold change is a wildly used method for selecting
DEGs from gene expression data and indicates to what
extent a gene is differentially expressed between two
groups of samples. After filtering the genes with the
non-stringent p-value cutoff (p < 0.05 or p < 0.01) which
calculated by t-test, the rest of them were ranked by
their fold changes (sample A/sample B). Note that for
each test site, the expression intensity of a gene in sample
A or sample B was the average value of the intensities of
five replicates. Then, at each given cut-off, a list of DEGs
was obtained for the subsequent analysis.

Significance Analysis of Microarrays (SAM)
Significance analysis of microarrays (SAM) identifies
whether a gene is significantly different between two
groups of samples based on a permutation procedure
by combining the gene-specific t-test with a statistic
d value [28]. DEGs selected by SAM were calculated
with siggenes package in Bioconductor 2.10 within R
2.12.1.

Gene Set Enrichment Analysis (GSEA)
Gene Set Enrichment Analysis (GSEA) is a commonly used
approach for enrichment analysis. An earlier version of this
method was firstly proposed by Mootha et al. [9]. In 2005,
Subramanian et al. extended this procedure by considering
the correlation between each of the genes and the pheno-
types [10]. In our research, we used the GSEA method-
ology described by Subramanian et al. GSEA software can
be downloaded from web site (http://www.broadinstitute.
org/gsea/index.jsp). In the calculation procedure, genes
were first ranked by signal to noise ratio (SNR) or other
metric generated by statistical methods, such as p-values
generated by standard t-test and SAM or log2-transformed
values of fold change. Then an enrichment score (ES)
corresponded to Kolmogorov-Smirnow statistic was cal-
culated based on the ranked gene lists for each prede-
fined gene set and subsequently normalized according
to its size. Finally, based on the normalized enrichment
score, a permutation-based false discovery rate (FDR)
was generated to indicate the significance of enriched
gene sets. The GO terms associated with the significant
enriched gene sets were identified and used for further
biological interpretation.

LRpath
LRpath is a logistic-based method for identifying the signifi-
cantly enriched gene sets, which described the log-odds of
a gene belonging to the specific category as a linear func-
tion of the statistical significance of its expression level, e.g.
p-value generated by t-test [22]. The slop parameter in the
logistic regression equation was used to decide whether a
predefined gene set is significantly enriched with the input-
ted DEGs. The p-values from the test of each predefined
gene sets were then adjusted for multiple testing by con-
trolling FDR. LRpath program was run in R 2.12.1 and can
be downloaded from web site (http://eh3.uc.edu/lrpath).

Percentage of overlapping GO terms
The percentage of overlapping GO terms is a measure of
the concordance of significant GO terms discovered by
enrichment analysis. Only the GO terms with FDR < 0.25
criterion were considered as significant and ranked by
FDR in ascending order. The two lists of significant GO
terms are compared under the same length, which was de-
cided by the shorter one. The percentage of overlapping
GO terms was calculated as follow:

Percentage of overlapping GO terms ¼ Oi

Ti
� 100%

where Oi is the number of pairs of overlapped GO terms
and Ti is the total number of pairs of two lists within the

http://www.broadinstitute.org/gsea/index.jsp
http://www.broadinstitute.org/gsea/index.jsp
http://eh3.uc.edu/lrpath
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first i pairs (i = 1, 2,…, N). For GSEA, N is the length of
combined list which consisted of the shorter lists of GO
terms between two compared lists enriched in ‘pos’ and
‘neg’ phenotypes. For LRpath, N equals the shorter length
of two compared lists.

Additional file

Additional file 1: A PDF file containing the supplemental figures. It
includes figures of intra-platform concordance of significant GO terms
and figures of the concordance of significant GO terms within the same
test site and among three DEGs selected methods.
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