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Abstract

Background: Molecular pathways represent an ensemble of interactions occurring among molecules within the cell
and between cells. The identification of similarities between molecular pathways across organisms and functions has
a critical role in understanding complex biological processes. For the inference of such novel information, the
comparison of molecular pathways requires to account for imperfect matches (flexibility) and to efficiently handle
complex network topologies. To date, these characteristics are only partially available in tools designed to compare
molecular interaction maps.

Results: Our approach MIMO (Molecular Interaction Maps Overlap) addresses the first problem by allowing the
introduction of gaps and mismatches between query and template pathways and permits -when necessary-
supervised queries incorporating a priori biological information. It then addresses the second issue by relying directly
on the rich graph topology described in the Systems Biology Markup Language (SBML) standard, and uses
multidigraphs to efficiently handle multiple queries on biological graph databases. The algorithm has been here
successfully used to highlight the contact point between various human pathways in the Reactome database.

Conclusions: MIMO offers a flexible and efficient graph-matching tool for comparing complex biological pathways.

Background
In the post-genomic era the analysis of biological net-
works plays a crucial role in computational and systems
biology. Consequently, biological network databases, tools
for biological graph modeling and approaches for the
management and standardization of the large amount of
generated data are under continuous evolution. As an
example, the PathGuide [1] repository lists four differ-
ent XML standards for biological networks, modeled as
graphs (SBML [2], BioPax [3], CellML [4], PSI-ML [5]),
and over 300 biological pathway related resources, includ-
ing databases of protein-protein interactions, metabolic
and signaling pathways, gene regulatory and interaction
networks. Generally speaking, in these databases, differ-
ent molecular species are represented as nodes, while
edges indicate a plethora of relationships existing among
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such molecules (including protein-protein interactions
and phosphorylation).
Due to the increasing availability of biological graph

databases, the problem of developing efficient and flexible
subgraph matching methods arises in a number of appli-
cations. The main goal of biological graph matching is to
detect the template-subgraphs that share similarity with
noisy pathways built from the analysis of experimental
data or built by collecting various sources of information.
The goals are numerous and span over a large amount of
topics: inference of metabolic pathways [6], prediction of
protein-protein interactions (PPI) [7,8] or complex inter-
actions by joining together various sources of information
[9]. In the frame of the quickly evolving translational and
evidence-based medicine it is crucial to give biological
support to any novel claim, emerging from statistically
relevant clinical evidence. In this sense, from the identi-
fication of shared pathways among maladies [10], to the
elucidation of common targets for different drugs [11],
and potential side effects, it is crucial to provide bio-
logical bases on any novel finding. Challenges involve
both computational bottlenecks (such as the computa-
tional intractability of the subgraph matching problem,
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which translates in huge time/memory requirements),
and biological limitations, due to noisy/incomplete
information.
In the last ten years, several approaches to perform

approximate graph matching have been proposed [12-22].
However, few of them are specific for biological graph
comparisons. The most notable examples are Netalign
[8], Rahnuma [6], PathAligner [14], PathBLAST [15], Net-
workBLAST [17], and SAGA [20]. To compare PPI, Netal-
ign [8] models pathways as undirected graphs, allowing
mismatches up to a certain BLAST E-value and gaps by
clustering smaller subnetworks (overlap ≥ 80%, i.e. gaps
limited to a proportion of the size of the smaller net-
work). PathBLAST [15] and its extension NetworkBLAST
[17] allow node mismatches and gap-node management
for very short pathways. For the modeling of metabolic
network Rahnuma [6] uses directed hypergraphs, with
large flexibility in terms of gaps and mismatches (back-
tracking). However, the approach does not rely on any
standard. PathAligner [14] can only process linear path-
ways, therefore excluding tree-like structures. SAGA [20]
permits both node gaps and mismatches and implements
a very computationally efficient subgraph indexing pro-
cedure, which, however, affects its sensitivity (i.e a path-
way of exactly three nodes can be indexed only if there
exists a path joining each possible pair of nodes) and
does not allow the management of purely linear pathways
(that have no backward edges and thus are not indexed).
Besides, the input is SAGA-specific. Overall, the above
described approaches rely on simplified graphs topolo-
gies (for example, none of these methods can handle
directed edges) and have consequently limited flexibility
or reduced matching capabilities.
Our contribution, MIMO (Molecular Interaction Maps

Overlap) is characterized by three main properties that
guarantee the suppleness needed to properly handle
the biological graph matching problem. First, our algo-
rithm relies directly on the graph topology described
in SBML documents, which defines a reaction as a set
of interacting entities (reactants, products of the reac-
tions and modifiers) placed in specific compartments.
This takes into account the biological environment and
the complexity of a 3-ways interaction, crucial to pre-
serve the largest possible information in noisy bio-
logical network models. Importantly, no intermediate
format conversion is needed, avoiding possible losses of
information and additional error-prone processing steps.
Second, our matching procedure naturally allows node
mismatches and gap-nodes introduction. Although com-
putationally intractable, the matching procedure imple-
mented in MIMO is fast enough to allow multiple queries
on biological graph databases. Third, in order to deal with
the possibility to match distinct elements with similar bio-
logical role (i.e. orthologous proteins), or conversely not to

match distinct entities encoded as the same element (i.e.
a gene and its expressed protein), MIMO allows the user
to specify a set of allowed/forbidden mappings between
entities in two SBML documents. This list is prepro-
cessed to define a similarity function that extends the
matching capabilities of the procedure, when the user
has a priori knowledge about the biological processes
to be compared.

Implementation
SBML format and graphmodel
The Systems Biology Markup Language (SBML) [2] is
a free XML-based format for representing molecular
interaction networks. In the following, we only describe
those components of an SBML document that are
used in our comparison algorithm (for additional details
refer to [23]).
An SBML document specifies a set of entities, generally

denoted with the term species, that take part in reac-
tions. An SBML species has two mandatory attributes: the
id attribute, which uniquely identifies the species in the
document, and the compartment attribute, the physical
location where the reacting species are placed. A species
has also an optional name attribute of type string. Dis-
tinct species (i.e. species with distinct id attributes) are
allowed to share the same name (for example, a gene
and its expressed protein). A reaction component is a
statement that links one or more species. A reaction is
defined in terms of the participating species and it con-
sists of a set of (possibly empty) reactants, products and
modifiers, along with an additional Boolean reversibility
attribute. Just like species, reactions are identified by a
mandatory id attribute and an optional name attribute.
A reaction can be seen as a directed edge connect-
ing a set of reactants to a set of products. The set of
modifiers can be seen as an attribute of the edge. The
reversibility attribute, when true, implicitly asserts that
the role of reactants and products in the reaction can
be reversed. A single species in an SBML document can
participate in one or more reactions as reactant, prod-
uct or modifier. SBML specifications allow the definition
of species that do not take part in any reaction and reac-
tions that have empty sets of reactants, products and
modifiers.
Thus, the topology of an SBML map can be described

by a labeled multidigraph (i.e. a directed graph that allows
multiple edges between the same pair of nodes), where
a single SBML reaction is spliced into a set of directed
edges, connecting every single reactant with every sin-
gle product in the reaction. The modifiers are treated
as edges’ attributes and the compartments are treated
as vertices’ attributes. In our model incomplete reactions
(empty set of reactants or products) and isolated species
are ignored.
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MIMO graph comparison procedure
The algorithmic procedure implemented in MIMO
computes the overlap between two multidigraphs by
detecting the largest possible consistent set of matches
between shortest paths in the two graph structures.
A matching is consistent if it induces a one-to-one
mapping between subsets of reaction pathways, entities
(species) and compartments. Two user-defined param-
eters are required in order to constrain the overlap:
1. Maximum length N : specifies the maximum-length
for the computation of the shortest paths; 2. List of
allowed/forbidden matches between nodes and reaction
pathways: this list is used in step (ii) below to define
the sets of equivalences between species and reaction
pathways.
A short introductory description of the main points

characterizing the algorithm is given below (see
Additional file 1 for details).

i) Simple paths computation. The algorithm
computes and stores the set of simple paths of the
two input graphs. A simple path is a valid path of
maximum length N connecting two species.
Moreover, a simple path is non-overlapping, i.e. it
identifies a non-overlapping chain of SBML reactions
ids. Finally, a simple path between two species is
required to be minimal, i.e. all simple paths are
shortest paths. In short, a simple path between two
species is defined as the shortest chain of reactions
connecting the two species. Given a pair of species,
there can be distinct reaction chains of minimal
length connecting the pair (by definition, a simple
path is allowed to start and end at the
same species).

ii) Simple paths matching. Two simple paths are
considered equivalent, if they can be matched at the
extremes, i.e. if they have equivalent initial and
terminal species. By default, two species are
considered equivalent if they have the same name
attribute. Even when two paths are equivalent at the
extremes, they are not matched if: a) the matching
between the corresponding reaction pathways or
species is explicitly forbidden by the user (user-
defined parameters); b) there are matchable subpaths,
i.e. if there are two equivalent intermediate species in
the two paths; c) the matching does not induce a
one-to-one mapping between species and
compartments. For example, a simple path starting
and ending at the same species (or respectively
compartment) cannot be matched with a simple path
connecting two distinct species (respectively
compartments). The simple paths matching
procedure naturally induces gaps and mismatches
between two linear paths.

iii) Maximal sets of compatible simple path pairs. A
subset of equivalent path pairs is consistent if it
induces a one-to-one mapping between species,
compartments and reaction pathways and it is
maximal if it is not a proper subset of any other
consistent set. This issue is recoded (in the standard
way) as the computation of the maximal clique of the
compatibility graph on the full set of equivalent path
pairs, computed with the standard Bron-Kerbosh
Version 2 (BKv2) algorithm [24].
In detail, the compatibility graph is an undirected
graph (without self loops) that describes the
compatibility between pairs of matched paths. By
construction each vertex of the compatibility graph
corresponds to one pair of matched paths and an
edge between two vertices indicates that two pairs of
paths are compatible. Two pairs of matched paths
are compatible if the induced mapping between
reaction pathways is one-to-one, i.e. a chain of
reaction ids in one graph can be matched at most
with a unique chain of reactions ids in the other
graph, and, in particular, every single reaction id is
required to belong at most to a unique path of
reaction ids or to its reversed chain. Moreover, two
pairs of matched paths are compatible if the induced
mapping between vertices and compartments is
one-to-one. A subset of equivalent path pairs
respecting these rules is consistent, in the sense
that it induces a one-to-one mapping between
species, compartments and reaction id pathways.
The maximal clique detection is computationally
intractable. In order to make this phase more
efficient, the clique computation is iteratively
performed in N steps, where, at each step i = 1, ...,N
only the subset of path pairs of maximum length i is
considered. This heuristic approach has the
advantage of speeding up the computation, while
giving more importance to the matches between the
shortest biological pathways in the two maps.
Intuitively, the procedure iteratively builds a solution
by detecting first the safest similarities among the
two graphs. After the computation of the maximal
compatible subset, the procedure sets-up the
mapping between the modifiers that appear in the
selected pathways.

iv) Overlap score. A consistent subset E of equivalent
path pairs detects a subgraph matching between
the two input graphs, G1 and G2. The comparison
score S associated to the subgraph matching E is
defined as

S(G1,E) =
∑

r∈R1 w(r)
|R1| , (1)
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whereR1 is the set of reaction identifiers in G1 and
w(r) is a weight associated to the reaction r,
computed as

w(r) = |RE(r)| + |PE(r)| + |ME(r)|
|R(r)| + |P(r)| + |M(r)| , (2)

where R(r),P(r),M(r) denote the set of Reactants,
Products, Modifiers of reaction r, respectively, and
RE(r),PE(r),ME(r) denote the set of Reactants,
Products, Modifiers of reaction r contained in E,
respectively. As a result w(r) = 0 if r has no match in
G2 and w(r) = 1 if all reactants, products and
modifiers of r have a match in G2 with respect to E.
The score for G2 is computed equivalently by
S(G2,E) (normalized on |R2|). Note that, since the
score S is normalized with respect to the size of the
graph, it is in general not symmetric, i.e. in general
S(G1,E) �= S(G2,E). This scoring function provides a
value in [ 0, 1] and roughly measures how much of
the graph G1 is contained in G2 according to E
(equivalently, for G2).

Implementation details
Our software has been implemented in C language by
using the libSBML [25] interface library version 4.1.0. The
libSBML library provides routines for reading, writing,
manipulating and validating SBML documents.
Our implementation takes as input two valid SBML

documents (no conversion required into intermediate for-
mats) and provides also the possibility to obtain as output,
additionally to the comparison score, the computed over-
lap in SBML format. In particular, if requested by the
user, the executable saves three SBML files related to the
highest-scoring solution found. Two of these documents
correspond to the SBML documents in which the non-
matched reactions have been removed. In these files the
matched reactions are saved in their full definition, i.e.
all reactants, products and modifiers of the reaction are
saved, even if they have not been matched in the com-
puted overlap. The third SBML file contains the computed
overlap between the two molecular interaction maps. In
this file, every matched pair of reaction pathways is saved
as a unique reaction. Only those reactants, products and
modifiers that have been matched are saved into the doc-
ument. In addition, in order to simplify the inspection of
the output SBML documents, a text file listing the map-
pings between species, reactions and compartments is
also saved.
The running time of our algorithm is bound by the run-

ning time of the BKv2 procedure [24], used in step (iii) for
the computation of all maximal cliques of the compatibil-
ity graph. The BKv2 algorithm is efficient in practice [26]
but, even with clever pivoting strategies, its running time
depends also on the number of possible maximal cliques

in a graph, which can be exponential in the number of
nodes [27]. In order to provide some control on the run-
ning time of the algorithm in the most complex cases, the
implementation allows the user to bound the running time
by specifying a maximum number of solutions and/or a
maximum amount of time for the execution of the BKv2
procedure. This feature can be useful to allow fast queries
on large databases.

Results and discussion
We present the performances of MIMO in detecting func-
tional relationships among the 56 human pathways of the
manually-curated Reactome [28] database version 39 [29]
(full list in Additional file 2: Table S1). We performed a
leave-one-out test on the whole ensemble of maps, where
every single pathway is used as a query graph and it is
compared against all the other pathways in the dataset; the
detected top scoring pathways (if any) are considered as
related to the query.
We compared the performances of MIMO with those

of SAGA [20], which has been explicitly designed for effi-
cient graph-database querying and which is, to date, the
only publicly available tool closely related to our work. We
converted the SBML documents into the SAGA graph for-
mat. We remark that in the SAGA graph format it is not
possible to encode the information related to modifiers,
compartments and direction of the reactions. In SAGA
(like in MIMO) the isolated entities in the SBML maps
are not encoded during format. We ran SAGA with the
default parameters for the graph database creation (the
maximum allowed length for the fragment index creation
is equal to 3) with the exception of the D MAX parame-
ter, which is, by default, set to 3 and in our test has been
set to 1. The reason is that, with the default value the
algorithm returns almost no match. Additionally, we per-
formed the query phase with SAGA by allowing 0.0 as
percentage of non-gap nodes (by using the default param-
eter 0.8, the algorithm returns no match in all cases). For
performance comparison, we ran MIMO with maximum
path length equal to 3 (the same distance as SAGA) and
with a maximum running time equal to 1 minute for the
BKv2 procedure. No relevant improvement in terms of
quality/size of the overlaps was observed when testing
larger time-bounds for the BKv2 procedure (up to 1h).
This is due to the fact that, for most of the complex cases
(i.e. maps with very large overlaps), an upper bound of 1h
for the BKv2 procedure is still not sufficient to explore the
entire space of the possible solutions. Larger time-bounds
are impractical, requiring weeks of computation.
To warrant the comparisons to be as informative as pos-

sible, we performed two different kinds of experiments
on two disjoint subsets of the 56 pathways in Reac-
tome. The first set consists of the 36 human pathways
in Reactome that share a non-empty subset of reactions
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Table 1 Comparison of Reactome biological pathways

Query Reactome MIMO SAGA

Top-Hit(s) Score Top-Hit(s) Score AUC Top-Hit(s) Score AUC

R75829 R11061,R9417, 1.0000 R11061 0.8105 0.99 R11061,R9417, 117 0.88

R16888,R111040, R16888,R111040,

R9470 R9470

R634 R9470,R9417, 1.0000 R9470,R9417, 0.9778 1.00 R9470,R9417, 66 1.00

R498,R16888, R498,R16888, R498,R16888,

R111040,R11061, R111040,R11061 R111040,R11061,

R6900 R6900

R383 R152 1.0000 R152 1.0000 1.00 R152 291 1.00

R111064 R9470,R9417, 1.0000 R9470,R9417, 0.9778 0.96 N/A - -

R16888,R11061 R16888,R11061

R1675 R71 0.8254 R71 0.8087 1.00 R71 504 0.75

R16888 R11061,R9417 0.6875 R11061 0.6600 0.96 R11061,R9417, 399 0.80

R9470 R9470

R9417 R9470 0.5490 R9470 0.5451 0.95 R9470,R16888, 480 0.80

R11061

R1788 R71 0.5333 R71 0.5224 0.99 R71 409 0.75

R111040 R9470,R9417, 0.5068 R9470 0.5160 0.99 R9470, R9417, 360 1.00

R16888,R11061 R16888,R11061

R9470 R9417 0.5000 R11061 0.5196 0.96 R9417,R16888, 534 0.80

R11061

R13552 R604 0.4384 R604 0.4329 1.00 R604 431 0.75

R11061 R9470, R9417, 0.3313 R9470 0.3495 0.96 R9470, R9417, 819 0.80

R16888 R16888

R152 R383 0.3043 R383 0.3067 0.98 R383 870 1.00

R71 R1675 0.2989 R1675 0.2928 0.88 R17015 1275 0.85

R498 R11061 0.2985 R11061 0.4492 1.00 R11061,R6900 315 1.00

R634,R16888 315

R111040,R9417 315

R9470 315

R17015 R71 0.2115 R71 0.2008 1.00 R71 744 1.00

R111057 R6844 0.1667 R6844 0.2333 1.00 N/A - -

R1538 R152 0.1622 R152 0.3102 1.00 N/A - -

R474 R15518 0.1569 R15518 0.2220 0.91 R1505 354 0.60

R13433 R22258 0.1562 R22258 0.2132 0.97 R1698 782 0.54

R6844 R111057 0.1429 R111057 0.2333 1.00 N/A - -

R604 R13552 0.1100 R13552 0.1093 0.99 R13552 1659 0.55

R11123 R17015 0.1071 R17015 0.1454 1.00 R17015 342 1.00

R1505 R474 0.1067 R14797 0.2196 1.00 R474 366 0.56

R17044 R9470,R9417, 0.0909 R9470,R9417, 0.1803 0.94 N/A - -

R16888,R11061, R16888,R11061

R111064,R14797
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Table 1 Comparison of Reactome biological pathways continued.

R14797 R11061 0.0700 R11061 0.0926 0.95 N/A - -

R13685 R14797 0.0682 R14797 0.0969 0.97 R15518 598 0.58

R15518 R474 0.0653 R474 0.0872 0.86 R13685 1067 0.57

R6900 R11061 0.0557 R11061 0.0805 0.98 R11061,R9417, 2909 0.91

R16888,R9470

R9431 R15518 0.0526 R13433 0.1637 0.94 R15518 112 1.00

R22258 R13433 0.0514 R13433 0.0744 1.00 R111083 1511 0.70

R111083 R474 0.0465 R13 0.2151 0.96 R22258 166 0.93

R13698 R15380 0.0385 R15380 0.3333 1.00 N/A - -

R299 R71 0.0345 R71 0.0345 1.00 N/A - -

R13 R474 0.0263 R22258 0.1303 0.97 R11193 688 0.79

R15380 R13698 0.0185 R1505 0.0260 0.98 N/A - -

Validation test. The Reactome score (between 0 and 1) denotes the fraction of reactions in the query map contained in the target map (see “Validation test” Section).
MIMO’s score (between 0 and 1) has been defined in Step (iv) of MIMO’s procedure. SAGA’s score (integer ≥ 0) denotes the level of dissimilarity between two maps:
the lower the score, the higher the similarity (N/A means no hit found). The AUC values have been computed by using as gold standard the Reactome reaction overlap
scores: a Reactome score greater than 0 between two maps means related and a score equal to zero not-related.

Table 2 Comparison of Reactome biological pathways

Query MIMO SAGA

Hits Score Hits Score

R11045 R152 0.2667 N/A -

R11193 R22258 0.2246 R13433 293

R1698 R22258,R11193 0.1439 R13433 454

R12508 R22258 0.1208 N/A -

R22172 R152 0.1203 N/A -

R11044 R14797,R11061 0.1200 N/A -

R21303 R6900 0.0952 N/A -

R21257 R14797 0.0863 N/A -

R6185 R71 0.0800 R71,R1788 667

R12034 R11045,R6844,R21303,R111057 0.0667 N/A -

R111183 R71,R13685,R13433,R13 0.0571 N/A -

R111155 R11061 0.0376 N/A -

R216 R22258 0.0261 N/A -

R578 R634,R498,R16888,R111040 0.0210 N/A -

R6167 R15518 0.0187 N/A -

R75925 N/A - N/A -

R27161 N/A - N/A -

R24941 N/A - N/A -

R12529 N/A - N/A -

R12472 N/A - N/A -

Inference test. MIMO’s score (between 0 and 1) has been defined in Step (iv) of MIMO procedure. SAGA’s score (integer ≥ 0) denotes the level of dissimilarity between
two maps: the lower the score, the higher the similarity (N/A means no hit found).
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with at least one of the other maps in the dataset. Since
reactions in Reactome SBML maps are uniquely identi-
fied by their id attribute, the a priori amount of overlap
between two maps can be assessed by simply counting
the fraction of common reactions (i.e. number of com-
mon reactions/total number of reactions). This set of 36
maps is used to assess the performances of MIMO and
SAGA in detecting similarities between biological path-
ways (validation test, Table 1). The second set consists
of the remaining 20 human pathways for which no triv-
ial relationships can be inferred by using the reaction id
attribute; that is to say that these pathways, if analyzed
by the same overlap principle, share no common set of
reactions with other maps in Reactome. Therefore such
pathways are used to infer possible novel functional simi-
larities between human pathways (inference test, Table 2).
MIMO appears to be able to identify the largest of
such non trivial solutions. A validation and an infer-
ence example are discussed in details in the final part of
each section.
From a computational point of view, both MIMO

and SAGA are extremely efficient (for the benchmark
under test), with a time ratio between MIMO and SAGA
of∼4 when the necessary format conversion time (dataset
upload into the postrgreSQL database) is included and∼5
when excluded. This, however, comes at a cost in terms
of the quality of the overlaps identified, including a num-
ber that is totally or partially missed by SAGA (Tables 1
and 2).

Validation test
The results of the biological validation test are summa-
rized in Table 1. For visualization purposes, we show only
the top-scoring hit for each query pathway. Multiple hits
are shown only when the comparison score is exactly the
same. The full list of comparisons is available as supple-
mentary data (see Additional file 3: Table S2). Overlaps for
which SAGA does not return any hits (9 out of 36), are due
to: (i) the quality filtering used (a match is not returned
if it has P-value ≤ 0.01) and (ii) the fragment procedure
which forbids the match between linear pathways in two
graphs. As a consequence, non-trivial overlaps (i.e. > 16%
common reactions) such as the ones related to the pairs
(R111064, R9470), (R111057, R6844) and (R1538, R152)
are lost (see Table 1). In general, from a qualitative point
of view SAGA always identifies overlaps smaller than the
ones identified by MIMO. One notable example is the
query R383 which is a subgraph of map R152 (correctly
identified byMIMO) and for which SAGA is able to detect
a mapping for only 12 out of 109 nodes. From a quan-
titative point of view, MIMO is able to correctly detect
the best hits for 29 out of 36 queries against 20 out of
36 identified by SAGA. Moreover, when -due to the time-
bound constraints imposed to the algorithm- the optimal

solution is not the top ranking, MIMO always identifies it
in the top four positions (see Additional file 3: Table S2).
Finally, performance comparison in terms of Areas Under
the ROC curves (AUC) for each single query (Table 1) and
on the entire set of 36 maps (Figure 1) confirms that the
classification performance of MIMO is superior to that of
SAGA.
When querying map R111083 (see Table 1) MIMO

detects a non-trivial overlap with R13 (scoring hit 0.2151
in Table 1). ForMIMO, the similarity of R111083 with R13
is higher than with R474 (as expected by inspecting Reac-
tome’s hit, see Table 1). Interestingly, this overlap detects a
non-trivial relationship between R111083 and R13 which
cannot be directly inferred from Reactome, as in fact, such
maps have no common reactions (see Additional file 3:
Table S2).

The citric acid (TCA) cycle and respiratory electron transport
(R111083) vsMetabolism of amino acids and derivatives
(R13)
The matched subgraph of these two pathways is shown
in Figure 2. The overlap involves entities located into
the “mitochondrial matrix” and “cytosol” compartments.
The most interesting biological relationship regards the
set of matched reactions in the “mitochondrial matrix”
and the role of the “alpha-ketoglutarate dehydrogenase
complex”, which is an enzyme complex involved in lysine
degradation and tryptophan metabolism.

Figure 1 ROC curve for the comparative performances of MIMO
and SAGA over the 36 pathways in the validation test. The test
scores are the ones obtained from each algorithm and the gold
standard is the overlap detected directly in Reactome: a Reactome
score (see “Validation test” Section) greater than 0 between two maps
means related and a score equal to zero not-related. SAGA ROC curve’s
shape is due to the numerous missing overlaps. AUC MIMO = 0.89,
AUC SAGA = 0.73.
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Figure 2 R111083 vs R13. The citric acid (TCA) cycle and respiratory electron transport (R111083) vs Metabolism of amino acids and derivatives
(R13).

The junction between the two original maps in the
“mitochondrial matrix” derived from a chain of events
that link the two reactions. The citric acid cycle (in
R111083) comprises a series of enzyme-catalysed chemi-
cal reactions of central importance in all living cells that
use oxygen as part of cellular respiration. In eukaryotic
cells, the citric acid cycle occurs in the matrix of the mito-
chondrion [30] and starts with acetyl-CoA. In particular,
pyruvate is derived primarily from glucose 6-phosphate,
alanine, and lactate and is converted into acetyl-CoA, the
main input for the citric acid cycle. In a separate pro-
cess, protein catabolism (part of proteins metabolism,

R13), proteins are broken down by proteases into their
constituent amino acids, in a complex process due to the
large number of enzymes and metabolites involved. Fol-
lowing the metabolic fate of carbon atoms in the amino
acids, it is possible to trace all the major metabolic inter-
mediates because of the close interaction of amino acid
metabolismwith the citric acid cycle. In fact, carbon back-
bones of amino acids become a source of energy once they
are converted to acetyl-CoA, either directly (Ketogenic
amino acids) or indirectly via degradation to pyruvate
(Glucogenic amino acids) and enter into the citric acid
cycle [31]. Acetyl-CoA is then the junction between the
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citric acid cycle and the metabolism of amino acids. As it
is visible from the overlap of these two pathways, most of
the species and reactions are located in themitochondrion
and themain reaction: alpha-ketoglutarate dehydrogenase
complex + NAD + CoA + Succinyl CoA + CO2 + NADH
was successfully identified by MIMO. Clearly, the over-
lap between these two pathways shows how amino acids
enter the citric acid cycle and follow the different steps
of the citric acid cycle. Interestingly, this could not be
inferred in SAGA, the reason being that two very impor-
tant species, alpha-ketoglutarate dehydrogenase complex
and CoA, were not highlighted in this overlap (data not
shown).

Inference test
The results of the biological inference test are summarized
in Table 2. For visualization purposes, as for Table 1, only
the top-scoring hit for each query pathway are shown. The
full list of comparisons is available as supplementary data
(see Additional file 3: Table S2).
From Table 2, SAGA detects some similarities only for

three out of 20 queries in the dataset, compared to 15 of
MIMO. This suggests that MIMO is more sensitive than
SAGA in detecting similarities among biological graphs.
However, most of such overlaps, though effective from a
computational point of view, do not highlight functional
markers, but are, in most of the cases, confined to very
common molecules (H+, H20, Oxygen, NAD+, NADH).
The impact of such common molecules in the compu-
tational analyses of biological networks can represent
indeed an issue as it distorts the evaluation of topological
network parameters such as centrality or pathway length
[32]. However, the biological interest of such overlaps may
not be discarded a priori, and since non-interesting over-
laps can be easily detected by visual inspection of the
outputs we here chose to maintain them (like tha authors
of SAGA did), and give the end-user the option to keep or
remove them. Nevertheless, in this inference test at least
in one case, namely for maps R11045 and R152, MIMO
identifies a non-trivial overlap, which is not identified by
SAGA (see Table 2). This example is discussed in detail
below.

Signaling byWnt (R11045) vs Cell Cycle, Mitotic (R152)
The matched subgraph of these two pathways is shown
in Figure 3. The overlap involves entities located into the
“cytosol” and it is related to the role of the “SCF-β-TrCP1
complex” and the “26S proteasome”.
The Wnt signaling pathway (R11045) is critically

involved in the early development of complex, multi-
cellular organisms controlling early axis formation,
limb patterning and organogenesis [33]. Abnormal Wnt
signaling is often related to severe human diseases,
including cancer, osteoporosis and other degenerative

Figure 3 R11045 vs R152. Signaling by Wnt (R11045) vs Cell Cycle,
Mitotic (R152).

disorders [34]. The replication of the genome and the sub-
sequent segregation of chromosomes into daughter cells
(R152) are controlled by a series of events collectively
known as the cell cycle. In particular, a family of protein
(serine/threonine kinases) known as the cyclin-dependent
kinases (CDKs) controls the progression through the cell
cycle [35]. Recent work has implicated Wnt components
in regulating mitotic events, suggesting that cell cycle
and Wnt signaling are directly linked [36]. Interestingly,
MIMO can highlight this connection and additionally it
can also provide details regarding the molecules involved.
In fact, by reading the output file, it is possible to argue
that this happens via the activity of SCF-β-TrCP1 complex
(an ubiquitin ligase) whose substrates can be divided into
two main groups: direct regulators of CDKs, regulators of
gene transcription or both. β-catenin is the substrate of
SCF-β-TrCP1 in the Wnt signaling pathway [37] where it
plays a key role. In particular, phosphorylated β-catenin
is recognized and ubiquitinated by the SCF-β TrCP ubiq-
uitin ligase complex and is subsequently degraded by the
proteasome [38]. Similarly, some of the CDKs, such as
cdc20, are also the substrate of SCF-β TrCP in the cell
cycle. From there, once they have been identified by SCF-
β TrCP, all substrates enter the process of proteasomal
degradation, the identified common process.

Conclusions
MIMO (Molecular Interaction Map Overlap) is a tool for
biological graph matching. The main features of MIMO
are: (i) Easy-to-use: MIMO takes as input biological net-
works encoded with the Systems Biology Markup Lan-
guage (SBML) standard. The SBML standard is widely
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adopted for biological network modeling and is flexible
enough to allow the encoding of quite complex molecu-
lar interactions. Most importantly, the choice to adopt a
standard format as input avoids the pre-processing phase
needed to convert molecular interaction maps in a non-
standard format removing all the consequent burden. (ii)
Flexibility: MIMO implements a flexible procedure for
sub-graph matching, which naturally allows the introduc-
tion of gaps and mismatches and permits (if required)
supervised queries incorporating a priori biological infor-
mation. (iii) Computational efficiency: while the subgraph
matching problem is computationally intractable, MIMO
implementation is fast enough to allow multiple queries
on graph databases.
The capabilities of MIMO have been highlighted by per-

forming a one-to-one comparison on all human pathways
in the Reactome database. The experimental tests prove
that MIMO is flexible and efficient enough to make it a
suitable tool for biological pathway comparisons.

Availability and requirements
Project Name: Molecular Interaction Map Overlap;
Project home page: http://www.picb.ac.cn/ClinicalGeno
micNTW/software.htm ;
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Any restrictions to use by non-academics: No.
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