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Abstract

Background: Motifs are significant patterns in DNA, RNA, and protein sequences, which play an important role in
biological processes and functions, like identification of open reading frames, RNA transcription, protein binding, etc.
Several versions of the motif search problem have been studied in the literature. One such version is called the
Planted Motif Search (PMS) or (/, d)-motif Search. PMS is known to be NP complete. The time complexities of most of
the planted motif search algorithms depend exponentially on the alphabet size. Recently a new version of the motif
search problem has been introduced by Kuksa and Pavlovic. We call this version as the Motif Stems Search (MSS)
problem. A motif stem is an /-mer (for some relevant value of /) with some wildcard characters and hence corresponds
to a set of I-mers (without wildcards), some of which are (/, d)-motifs. Kuksa and Pavlovic have presented an efficient
algorithm to find motif stems for inputs from large alphabets. Ideally, the number of stems output should be as small
as possible since the stems form a superset of the motifs.

Results: In this paper we propose an efficient algorithm for MSS and evaluate it on both synthetic and real data. This
evaluation reveals that our algorithm is much faster than Kuksa and Pavlovic's algorithm.

Conclusions: Our MSS algorithm outperforms the algorithm of Kuksa and Pavlovic in terms of the run time as well as
the number of stems output. Specifically, the stems output by our algorithm form a proper (and much smaller) subset

of the stems output by Kuksa and Pavlovic's algorithm.

Background

Motifs, or sequence motifs, are patterns of nucleotides
or amino acids. Motifs are often related to primer selec-
tion, transcription factor binding sites, mRNA processing,
transcription termination, etc. Sequence motifs of pro-
teins are typically involved in functions such as binding
to a target protein, protein trafficking, post-translational
modifications, and so on. Motif search problem has been
studied extensively due to its pivotal biological signifi-
cance. Several types of algorithms have been proposed
for motif search. In one such class of methods, putative
motifs in an input biological query sequence are predicted
based on a database of known motifs. Examples include
[1-3]. In another class of methods, motifs are assumed to
appear frequently in a set of sequences, like the same pro-
tein sequence from different species. Here the problem of
motif search is reduced to that of finding subsequences
that occur in many of the input sequences. Planted motif
search (PMYS) is one such formulation.
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Numerous algorithms have been proposed to solve the
PMS problem. The WINNOWER algorithm uses a graph
to transform this problem into one of finding large cliques
in the graph [4]. The PatternBranching algorithm intro-
duces a scoring technique for all the motif candidates
[5]. The PROJECTION algorithm repeatedly picks several
random positions and uses a hash table with a threshold
to limit the motif candidates [6]. Bailey 1995 [7] employs
expectation maximization algorithms while Gibbs sam-
pling is used in [8,9]. MULTIPROFILER [10], MEME [11],
and CONSENSUS [12] are also known PMS algorithms.

An exact PMS algorithm always outputs all the motifs
present in a given set of sequences. MITRA employs a
mismatch tree structure to generate the motif candidates
efficiently [13]. RISOTTO constructs a suffix tree to com-
pare sequences [14]. PMS1 [15] considers all the motif
candidates and evaluates them using sorting. Voting uses
a hash table to locate the motifs [16]. PMS2 is based on
PMS1 and it extends smaller motifs to get longer motifs,
and PMS3 forms a motif of a desired length using two
smaller motifs [15]. PMSPrune introduces a tree structure
for the motif candidates and uses a branch-and-bound
algorithm to reduce the search space [17]. PMS4 is a
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speed-up technique that finds a superset of the motifs
using a subset of the input sequences and validates those
candidates [18]. PMS5 employs an Integer Linear Pro-
gramming (ILP) as the branch-bound algorithm for a
speedup [19]. PMS6 uses the solutions of such ILPs to
generate motif candidates [20].

Most of the work on exact algorithms for PMS has
focussed on DNA or RNA sequences where |X| = 4. Lit-
tle work has been done on larger alphabet sizes, such as
on proteins. A recent work focusses on protein sequences
[21]. However, the stemming algorithm proposed in this
paper does not solve the PMS problem. In particular, it
does not find motifs but rather motif stems. A motif stem
(denoted as stem from hereon) can be thought of as an /-
mer (for some relevant value of /) with some wild cards
present in it. As a result, a stem stands for a set of motifs. A
stemming algorithm generates stems (or motifs with wild-
cards) to represent motifs for large-alphabet inputs [21].
The stemming algorithm of [21] generates a very large
set of stems (and hence a very large superset of motifs).
In this paper we propose two algorithms for Motif Stems
Search, MSS1 and MSS2, which outperform the stemming
algorithm of [21]. The new algorithms generate a much
smaller set of stems. The stems generated by the algorithm
of [21] as well as MSS1 and MSS2 are guaranteed to be
supersets of all the motifs present in a given set of input
sequences.

Methods

Motif search on large alphabets

In this section we provide some definitions pertinent to
PMS and MSS problems.

Definition 1. A sequence x = x[1,2,...,I] (x| = 1) on
X xlile X, 1 <i<l)isanl-mer

Definition 2. Given two [-mers x and y, the Hamming
distance between two [-mer is defined as:

HD(x,y) = [{ilx[i] # yli],1 < i < 1}

Definition 3. Given an [ mer x and a sequence s of length
m, the Hamming distance between x and s is defined as

HD(x,s) = min {HD(x,s[ii+1,...,i+1—1])}.

1<i<m—I+1
Definition 4. (Planted Motif Search (PMS) Problem).
Let S be a set of n sequences of length m each on an alphabet
%. Specifically, let S = {si||si|l = m, 1 < i < n}. The
planted motifsearch problem or (I, d) motif search problem
takes as input S and two integers | and d, and finds every
string x of length | such that for every s;, the Hamming
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distance between x and s; is no more than d. In particular,
we want to compute the following set:

{x| |x| = I,HD(x,s;) < d,for1 <i < mn}.

Any such x is called an (I, d)-motif. Any I-mer of s; that is at
a Hamming distance of < d from x is called an occurrence
or instance of x.

Definition 5. Given an [-mer x, the d-neighbors of x is defi-
ned to be{y : |y| =land HD(x,y) < d}. The d-neighbors
of x in any sequence s is defined to be the intersection of
the d-neighbors of x and the set of I-mers in s.

Observation 1. If the Hamming distance between two [-
mers x1 and xy is larger than 2d (i.e., HD(x1,x3) > 2d)
then no l-mer x3 exists such that HD(x1,x3) < d and
HD(x9,x3) < d.

PMS algorithms are typically tested on random data
with # = 20 and m = 600. Each input string is randomly
generated such that each symbol in each string is equally
likely to be any character from the alphabet. A motif is
generated randomly. Randomly mutated versions of this
motif are planted in the input strings (one mutated motif
per string). For a given value of /, we call the pair (/,d) a
challenging instance if d is the smallest value for which the
number of (/, d)-motifs occurring in the input strings by
random chance is > 1. Some of the challenging instances
are: (9, 2), (11, 3), (13, 4), (15, 5), (17, 6), (19, 7), and so
on. One of the performance measures of interest for any
exact algorithm is the largest challenging instance that it
can solve. MITRA can solve the instance of (13, 4) [13],
and RISOTTO [14] and Voting [16] successfully run on
(15, 5). PMSPrune solves up to (19, 7) [17]. PMS5 [19] and
PMS6 [20] can handle (23, 9). These statistics are based on
DNA sequences where |X| = 4.

The time complexities of exact algorithms typically
depend exponentially on the size of . PMSO takes
O(mznl({é)m 1) time, and PMS1 costs O(mn(fi) |E|dé)
time where w is the word length of the computer
[15]. It needs O(mn*4(')|T|%) time for RISOTTO [14],
O(mn([fl)m 1) for Voting [16], and O(mzn(fi)|2|d) for
PMSPrune [17].

When the size of the alphabet is large (e.g., || = 20
for proteins), the above exact algorithms will take a very
long time. Kuksa and Pavlovic have introduced a new ver-
sion of the motif search problem and proposed an efficient
algorithm to solve it on large alphabets. A motif stem is
an /-mer with wildcards. Thus a stem represents a set of
[-mers without wildcards. For example, if gxacc is a DNA
stem, it represents the following 5-mers without wild-
cards: ggaac, gcaac, gtaac, and gaaac. Given a set of strings
from some alphabet, the problem of finding motif stems in



Mi and Rajasekaran BMC Bioinformatics 2013, 14:161
http://www.biomedcentral.com/1471-2105/14/161

them is known as the Motif Stem Search (MSS) problem.
We focus on MSS in this paper.

Definition 6. Motif Stem Search (MSS) Problem. Input
are N sequences and two integers | and d. The problem is
to find a set of stems such that the set of l-mers represented
by these stems is a superset of all the (I, d)-motifs present
in the N sequences.

As stated above, there are many possible solutions to
the MSS problem. The challenge then is to come up with
a superset as small as possible which covers all the (/, d)-
motifs. In other words, we want the number of /-mers
(without wildcards) represented by the stems to be as
small as possible.

MSS1 - A basic Algorithm

Based on OBSERVATION 1, if the Hamming distance
between an /-mer x and a sequence s is larger than
2d, then no [-mer x’ exists such that HD(x,x') < d
and HD(x',s) < d. This leads us to the following
observation.

Observation 2. Given an I[-mer x, if 3s; such that
HD(x,s;) > 2d, then none of x’s d-neighbors can be a motif.

The stemming algorithm of [21] works as follows. It
makes use of OBSERVATION 2 crucially. OBSERVA-
TION 2 states that an /-mer x in any input string cannot
be an instance of an ([, d)-motif if there exists at least one
input string s such that HD(x,s) > 2d. The algorithm of
[21] first identifies a set I of possible motif instances. An
[-mer x in any input string s will be included in I if and
only if HD(x,s') < 2d for every input string s'. Having
found such a set I, the algorithm then uses / to generate
stems. The stems are found as follows: For every x,y € I,
the algorithm generates the common d-neighbors of x
and y as stems. The union of all such stems will consti-
tute candidate motif stems. This union is a superset of
the motif stems. Finally, for each candidate stem, the algo-
rithm checks if this is a correct answer or not. All valid
stems that pass this test are output.

In Algorithm 1 and Algorithm 2 we present a faster
algorithm (than that of [21]) for generating motif stems.
In Algorithm 1 we present an algorithm for generat-
ing the set I. The cardinality of / that we generate is
a much smaller subset of the I generated in the stem-
ming algorithm of [21]. For any pair of /-mers (x, %)
in the set I, we begin with x and replace some char-
acters in x with wildcards to generate MSS candidates.
The positions in which x and " match are referred to
as the matching region and the positions in which x
and &’ differ are referred to as the non-matching region.
The wildcards can be placed in the matching region
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and/or the non-matching region. Any stem ¢ is gener-
ated by placing wildcards in x. Therefore, wildcards in the
generated stem ¢ are always treated as mismatches
between ¢ and x, independent of whether they are in
the matching or the non-matching region. However,
for «/, in the non-matching region, wildcards in the
generated stem ¢ are assumed to be matches between
¢t and &’ while in the matching region they are still
treated as mismatches between ¢ and x’. The num-
ber of wildcards is dependent on the Hamming dis-
tance between x and & and d. Let HD(x,x') = d,.
Table 1 shows how many wildcards should be placed in
different cases.

Assume that i wildcards are placed in the non-matching
region of x to form ¢, resulting in i mismatches between
t and x and (d, — i) mismatches between ¢ and x'. We
consider the following two cases:

1. d, < d: The number of wildcards i can vary from 0
to the size of the non-matching region. To make the
total number of mismatches against x smaller than d,
at most d — i wildcards can be placed in the
matching region of x. Similarly, to make the total
number of mismatches against & smaller than d, at
most d — (d, — i) wildcards can be placed in the
matching region of .

2. dy > d: Atleast d, — d wildcards have to be placed in
the non-matching region to eliminate the
mismatches. Similar to case 1, in the matching region,
at most d — max(i, dy — i) wildcards can be placed.

In the matching region, d — max(i,d, — i) is an
upper bound on the number of wildcards. However, it is
not necessary to enumerate all the cases from 0 to
d — max(i,d, — i). Similarly, it is not necessary to
repeat stems generation for all pairs in I. For any x let
xil,xé, .. ,x; € I be x’s 2d-neighbors in sequence s; (i.e.,
I = {x’i, xé, . ,x}‘f}) and let O; be the set of motif instances
in s;. Then, clearly, O; C I;. The motifs form a subset of
stems that can be obtained between x and each of O;. The
motif stems we generate are stems that can be obtained
from [-mer pairs of ((x, x‘i), (x,xé), R x]‘:)). To mini-
mize the number of stems generated from I, we have to
use the sequence with the smallest ;.

Observation 3. For any [-mer x, let its 2d-neighbors in
sequence s; be I; = x’l,xlz,...,x; (for 1 < i < n). Then,

Table 1 Numbers of wildcards

Non-matching region Matching region

dy <d
dy >d

0<i<dy

dy—d<i<d

d — max(i,dy — i)

d—max(i,dy — i)
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the (I,d)-motifs are included in the stems set, which is
generated from the pairs (x,x), (x,x5), . . ., (%, x;),

The detailed MSS1 algorithm is given in Algorithm 1
and Algorithm 2.

In lines 2-18 we find the sequence in which x has the
minimum number of 2d-neighbors. Also, if one sequence
has no 2d-neighbor, the current /-mer x is skipped (line
12). The stems are generated by placing wildcards in each
pair of x X I,iy;, as shown in Algorithm 2.

Hamming distance is called m2n times. Therefore,
excluding wildcards placement, Algorithm 1 takes
O(m?nl) time.

Wildcards placement procedure is called (m — [ + 1)
times and each time |I,;,] = m — [ + 1 in the worst case.
Therefore, in this case, wildcards placement (line 4—16)
in Algorithm 2 is run O(m?) times. The number of wild-
cards is no more than d. So line 4-16 takes O(‘li) time in
the worst case. As a result, wildcards placement in MSS1
takes O(m? (fi)) time. In the best case, wildcards place-
ment procedure is only called once when all other /-mers
in s; have no 2d-neigbhors, and I,;;; = 1. The best case
for line 4—16 is when d, = 2d and it takes 0(2;) time (see
DISCUSSION for more analysis).

In summary, MSS1 takes O(m?nl + |stems|) time, where
|stems| is the total number of stems generated.

Algorithm 1 MSS1
1: procedure MSS1(s, n, m, 1, d)
2 for each /[-mer x € s; do
3: Iipin < ¢
4 fori < 2,ndo
5: I < ¢
6: forj < 1,m—I[+1do
7: X <« slj,....j+1-1]
8: if HD(x,x’) < 2d then
9: I < LUx
10: end if
11: end for
12: if |I;| = O then
13: break
14: end if
15: if |L,i| = 0 or |Ly,| > |I;]| then
16: Lyin < I;
17: end if
18: end for
19: if i = n then
20: PlaceWildcards(x, I;,)
21: end if
22: end for

23: end procedure
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MSS2 - A speedup Algorithm

The computation of the 2d-neighbors of x from s; in a cer-
tain sequence s; can be thought of as the calculation of a
distance matrix between all (m —[+1) [-mers in s; against
those in s; as shown in Figure 1B. A straight forward algo-
rithm takes O(m2]) time. When i ranges from 2 to 7, the
total time will be O(m2nul). In this section we show how
to reduce this total time from O(m?nl) to O(m*n).

Assume that we have computed the Hamming distance
between x; in s; and x]’ in s;. Let this be HD(x1, x]’.) =d.
Then, HD(xg,x]f 1) can be obtained by comparing: 1) the
first characters of x; and xj; and 2) the last characters of
%3 and xjy1. Observe that the (/ — 1)-length prefix of x;
is the (I — 1)-length suffix of x1, and x]’ and x]’-Jr1 also share
the same (/ — 1)-mer.

If the first characters of x1 and x; match, then the
di; mismatches happen in the remaining (/ — 1)-long
suffixes of x1 and x;. In this case, HD(x2,%j11) = di
if the last characters of x and x;;; match; otherwise
HD(x3,%j11) = di + 1. Similarly, if the first characters
of x1 and x; do not match, then there are (d; — 1) mis-
matches in the remaining (/ — 1)-long suffixes of x; and
;. In this case, HD(x2, xj11) = d1 — 1 if the last characters
of xp and xjy1 match; otherwise HD(x3,x;1) = d1. This
observation is also mentioned in [4].

Observation 4. Given HD(xl,x}) = dy where x1 and xl’
are two l-mers in s1 and s;, the Hamming distance between

Algorithm 2 PlaceWildcards

1: procedure PLACEWILDCARDS(X, [i)
2 for each [-mer x’ € I, do
3: dy < HD(x,x"), M < matching region of (x,x'),
NM <« non-matching region of (x, x")
if d, < d then
fori < 0,d, do

t<x

generate stems by placing i wildcards in NM
of t, (d — max{i, d, — i}) wildcards in M of ¢

N ook

8: output the stems
9: end for
10: else
11: fori < d, —d,d do
12: t<—x
13: generate stems by placing i wildcards in NM
of t, (d — max{i, d, — i}) wildcards in M of ¢
14: output the stems
15: end for
16: end if
17: end for

18: end procedure
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the next two [-mers of s and s; HD(xz,x;+1), can be
calculated in O(1) time as in (1):

di — 1 ifs[1] £ %[ 1], x00[ ] = x4
di i1 # x[1], %0 # %,
di ifa[1]=x[1],x[]=x,
di+1 ifsi[1]=[1], 4[] # x4

1)

HD(x2,%},1) =

However, HD(xp,x;) where p > ¢ is left out when
OBSERVATION 4 is used repeatedly and reaches the end
of s;. We simply append a copy of s; to s; to cover all
the pairwise alignments (Figure 1A). Then, by calculating

A :

X(m-1+1) —

B 5

X1 Xp Xq X(l-m+1)

X'(met1y

X' (m-1+2)

[ rows|

X‘(m-HI)

Figure 1 lllustration of speeding up the 2d-neighbors
computation. A: -mer alignments. B: computation order in the
matrix.
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the Hamming distance only once and applying OBSER-
VATION 4 repeatedly, each diagonal in the matrix of
Figure 1B can be computed in O(/ + m) time.

We do the above for m diagonals from cell (x1,%}) to
(x1,%,,) in Figure 1B. Then the first and last (m—[+1) rows
are used to form a complete (m—[+1) X (m—[+1) matrix.
The [ rows in the middle were eliminated since they are
the extra rows caused by appending a copy of s;. Therefore,
the computation of the 2d-neighbors of x from s; in any
sequence s; can be computed in O(m * (m + 1)) = O(m?)
time. The computation for all the sequences from s; to s,
takes a total of O(m2n) time.

The pseudocode is given in Algorithm 3. In lines 6-10,
the Hamming distance is calculated for the alignment of s;
with the j, position of s;. Each of the remaining Hamming
distances in this alignment is obtained in constant time
by OBSERVATION 4 (line 12—-26). Instead of appending a
copy of s;, the mod operation is used.

Noy[ k] [ ] keeps the 2d-neighbors of the ky, [-mer in s;
in the iy, sequence s;. To build the matrix of 2d-neighbors
of all the I-mers of s; (Noy[ k] [i]), it takes O(m%n) time
(lines 3—28). Lines 29-41 search the 2d-neighbors of each
[-mer of s;. If some sequence s; has no 2d-neighbors, the
current iy, [-mer of s is skipped (lines 32—34). Otherwise,
the 2d-neighbors in the sequence with the smallest size,
Lyin, are used and the wildcards are placed.

MSS2 takes O(m2u + |stems|) time.

Optionally, a post-process phase is used following both
MSS1 and MSS2 algorithms to refine the output stems. In
the post-process phase, a stem is retained only if this stem
has at least one neighbor in each sequence at a distance
of < d. This phase takes a total of O(mnl % |stem]|) time.

An estimation on the number of stems We can com-
pute the expected number of stems generated by our
algorithms as follows. Let g be any /-mer in s;. What
can we say about || corresponding to g? Consider any

sequence s other than s;. Let Q be any /-mer of s. The
probability p that HD(¢, Q) < 2d is Y24, (f) (%ﬂ)t (é)l_l
where 0 = |X|. This implies that the expected number

Table 2 Example values of p given |X| =4 and || = 20

0, d) Izl =4 [Z] =20
A 129% 1072 6.03 % 107°
9,2) 489% 1072 332%107°
(11,3) 1.15% 107" 111 %1074
(13,4) 6.38 % 1072 8.88 % 1072
(15,5) 427 %1074 822 %107/
(17,6) 582 %1010 276 % 10720
(19,7) 3.64 % 10712 191 %1072
(21,8) 143%1073 121 %1075
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Algorithm 3 MSS2

1: procedure MSS2(s, n, m, [, d)
2: xl<_Sl[1!21---:l]7N2d[][]<_¢

3 fori < 2,ndo
4 currHD < —1
5 forj < 1,mdo
6: if currHD = —1 then
7 currHD = HD(x1,s;[j,j+1,...,j+1—1]
8 if currHD < 2d then
9: Noa[1] [ 1] <= Nog[ 1] [ ] U{j}
10: end if
11: end if
12: fork < 2,m—1+1do > ky, [-merin sy vs. (j + k — 1)y, [-mer in s;
13: p<—j+k—1
14: if s;[k — 1] # s;[ (p — 1) mod m] then
15: currHD < currHD — 1
16: end if
17: ifs)[k+1—1]#s;[(p+!—1) mod m] then
18: currHD < currHD + 1
19: end if
20: if(p+!{—1)modm) <mV ((p — 1) mod m) > m then
21: if currHD < 2d then
22: Nogl k] [i] < Nog[ k] [i] U{p mod m}
23: end if
24: end if
25: end for
26: end for
27: end for
28: fori < 1,m—1[+1do
29: Lyin <— @
30: forj < 2,ndo
31: if Noy[i] [j] = ¢ then
32: break
33: end if
34: if Lnin = ¢V Umin| > [N2al 1] [j] | then
35: Liin < N2d[ i] []]
36: end if
37: end for
38: X< silii+1,...,i+1—1]
39: PlaceWildcards(x, I;,)
40: end for

41: end procedure

of such Q’s is mp. When o increases, p decreases dras-
tically, as examples are shown in Table 2 for ¢ = 4 and
o = 20. In all the previous works (see e.g., [6]), analy-
ses have been done assuming that all the /-mers in any
sequence are independent. If we assume this, then we
can apply Chernoff bounds and show that the number of
such Q’s is O(mp) with high probability. This in turn will
imply that |I,,;,] = O(mp) with high probability. Nses,
the number of stems generated between any two /-mers

with the hamming distance dpy, is given in (2), which is
crudely bounded by 0(2'1%). As a result, it follows that the
expected number of stems generated by our algorithms is
O(m?p2'1%).

Z;Zlgl (f) (d—maxl{i,dx—i}) O<duym <d

N =
stems Z?:dHM*d (f) (d—maxl{i,dx—i}) d<dpm < 2d
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Table 3 Time comparison of MSS, RISOTTO, and stemming algorithms

,d) MSS1(s) MSS2(s) Post-process(s) RISOTTO(s) Stemming(s)
7, 1) 232 3.7 0.03 4.7 480
9,2) 24.64 3.7 0.3 2423 3599
(11,3) 27.5 3.7 20 7166.1 4674.2
(13,4) 34.5 39 504 - -
(15,5) 388 4.7 74.5 - -
(17,6) 60.2 153 1459.0 - -
19,7) 200.8 1173 18364.1 - -
(21,8) 7196 563.2 69340.8 - -

Challenging instances Consider a PMS instance with
n sequences of length m each. For a given value /, let d
be the smallest integer such that the expected number
of (/,d) motifs that occur by random chance is > 1. We
refer to (/,d) as a challenging instance. We can com-
pute challenging instances as follows. Let the alphabet
under concern be ¥ with |X| = o. The probability that
two random characters in this alphabet match is 1/ |o]|.
Then assuming an IID background, the probability that
the Hamming distance between two /-mers is no more
thand isp = Z?:o (5) (”7_1)1 (%)l_l. For each sequence,
the probability that a random /-mer has at least one d-
neighbor (i.e., an /-mer with a Hamming distance of no
more than d) in this sequenceis P = 1 — (1 — p)m_H‘l.
This means that the expected number of randomly occur-
ring (/, d) motifs in the n sequences is o!P". From this we
can calculate the challenging instances. For ¢ = 4, the
challenging instances are (7, 1), (9,2), etc. When o = 20,
the challenging instances are (7,4),(9,5), etc. Because
of Observation 1, in our tests of challenging instances of
protein sequences, we have used the cases of (7, 3), (9, 4),
and (11,5).

Results
We have evaluated our algorithms on the standard bench-
mark where n = 20, m = 600. Let | 2| = 20 (for proteins).

Table 4 Number of stems generated by MSS and stemming
algorithms

We have used (/, d) values starting from (7, 1) going up to
(21, 8).

The testing data was generated as follows: 1) 20
sequences of length 600 each were generated such that
each character in each sequence is equally likely to be
one of the characters from the alphabet; 2) a motif of
length [/ was generated randomly; 3) a random number
of mismatch positions which is smaller than or equal
to d was selected and the characters in these posi-
tions were replaced by other amino acids randomly to
form a motif instance; 4) step 3) was done 20 times to
generate 20 such instances and these were planted in
the 20 sequences (at random places with one instance
per sequence).

We have implemented and compared our algorithms
with RISOTTO [14] and the stemming algorithm of
[21]. Please note that we have implemented the algo-
rithm of [21] since we have no access to a running ver-
sion of the corresponding program. Both the running
time and the number of stems generated were used as
performance measures. The machine used had an Intel
Core i7-2760QM 2.40GHZ processor with a memory
size of 4GB, as shown in Table 3 and Table 4. In these
tables ”-” indicates that the algorithm took too long to fin-
ish. These tables show that MSS1 and MSS2 run faster
than RISOTTO [14] and stemming [21]. Since the set
of stems is a superset of the true motifs, the stems
set contains true motifs and false motifs (or false pos-
itive predictions). A smaller number of stems indicates
less false predictions. The proposed algorithms gen-

¢4 MSS1/MS52 Post-process Stemming  orate a much smaller subset of the stems generated
.1 2 ! 928 by the stemming algorithm [21]. Since instances such
9,2) 22 2 17894

an3 130 a4 265587 Table 5 Comparison of MSS, ROSOTTO, and stemming
(13,4 2250 1452 - algorithms on challenging instances

(15,5) 5222 1032 - ,d) MSS1(s) MSS2(s) ROSITTO Stemming
(17,6) 60168 23829 - (7,3) 2259 615.7 7068.6 >4hours
19,7) 521658 422019 - 9,4) 1051.0 14774 >4hours >4hours
(21,8) 2255690 1297576 - (11,5) 51294 5503.0 >4hours >4hours
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Table 6 Statistics on different alphabet sizes

Page 8 of 9

1Z| MSS1(s)/|stems| MSS2(s)/|stems| Post-process(s)/|stems| Stemming(s)/|stems|
40 25.1/190 3.6/190 2.4/45 2125.5/16669665
60 26.2/400 3.6/400 6.9/169 3023.4/18465345
80 23.6/50 3.6/50 0.4/4 3493.0/11380993
100 27.1/260 3.6/260 5.6/216 4464.9/17733385

as (7,1),(9,2), (11, 3), etc. are commonly used in DNA
sequences, we have also tested the algorithms on more
challenging cases such as (7, 3), (9, 4), and (11, 5) as shown
in Table 5. In addition to the case of ¥ = 20, we have also
tried different alphabet sizes: 40, 60, 80, and 100. Table 6
displays the running time for various alphabet sizes. The
fact that the rune times are nearly the same for different
alphabet sizes indicates that the running time of all the
algorithms are independent of the alphabet size. The post-
processing phase takes longer time as the alphabet size
increases since the number of stems increases.

Due to better performance, we have used MSS2 in real
biological protein data. In Minimotif Miner 3.0 database
[1], we randomly sampled 14 protein motifs. Each of these
motifs has multiple source proteins. Comparison of MSS,
RISOTTO, and stemming is shown in Table 7.

Finally, we have compared the MSS2 algorithm with
PMSPrune, a well-known Plant Motif Search (PMS)
algorithm on DNA sequences [22]. As is clear from
Table 8, MSS2 is not as fast as PMSPrune. On DNA
sequences, the number of spurious motifs is very large.
Therefore, the Motif Stems Search algorithms, which
are efficient for large alphabets are not as efficient for
small alphabets.

Table 7 Motif search on protein data

Discussion and conclusions

The analysis in [21] shows that, assuming IID back-
ground, the expected number of the (/,2d)-motifs
depends highly on the alphabet size |X|. There-
fore, when |X| is large, the expected number of
2d-neighbors in the n m-length sequences is very
small in comparison with the total number of /-mers
(n(m — 1+ 1)).

The proposed algorithms consider an even smaller size
of candidates by introducing I,,;,. In particular, for any
given [-mer x, we focus on the sequence that has the small-
est number of 2d-neighbors for x. The expected size of
Lyin is % times the total number of 2d-neighbors of x in all
the sequences. Please note that we do not miss any of the
valid motifs.

On the other hand, when generating the stems, as shown
in Table 1, once i wildcards in the non-matching region
are placed, it is known that the upper bound of wildcards
in the matching region is d — max(i,d, — i). However,
it is not necessary to enumerate all the cases from 0
to d — max(i,dy — i) in the matching region. As long
as the case of (d — max(i,d, — i)) wildcards cannot be
eliminated, 0 to (d — max(i, d, — i) — 1) wildcards are con-
tained in the (d — max(i,d, — i)) wildcards placement.

Protein motifs #Source proteins (I, d) MSS2(s) RISOTTO(s) Stemming(s)
CPTINEPCC 7 9,2) 20 100.0 244.0
CRFYNCHHLHEPGC 10 (14,4) 222 >4hours >4hours
HTHPTQTAFLSSVD 8 (14,4) 10.3 >4hours >4hours
ILPPVPVPK 14 9,2) 38 105.8 5820
PEPNGYLHIGH 134 (11,3) 51.1 12827.0 >4hours
PSPTGFIHLGN 36 (11,3) 6.5 4336.6 4561.0
PTVYNYAHIGN 19 (11,3) 36 33589 4917.0
PYANGSIHLGH 110 (11,3) 52.1 11363.2 >4hours
PYPSGQGLHVGH 18 12,3) 104 >4hours >4hours
QELFKRISEQFTAMF 9 (15,4) 476 >4hours >4hours
QIKTLNNKFASFIDK 9 (15,4) 20.3 >4hours >4hours
SGYSSPGSPGTPGSR 9 (15,4) 326 >4hours >4hours
SSSSLEKSYELPDGQ 10 (15,4) 413 >4hours >4hours
VTVYDYCHLGH 8 (11,3) 29 31458 22350
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Table 8 MSS2 vs. PMSPrune on DNA data

(l,d) MSS2(s) PMSPrune(s)
7, 1) 4.1 33
9,2) 10.7 34
(11,3) 87.2 8.1

Therefore, the proposed algorithms do not enumerate 0 to
(d—max(i, d;—i) —1) wildcards placements in the output.

In the computation of the 2d-neighbors, MSS1 takes
O(m?*nl) time and O(m) space. MSS2 takes O(m?n) time
and O(m?) space. The stemming algorithm of [21] uses
sorting to compute the set I.

The proposed algorithms MSS1 and MSS2 provide an
efficient way to solve the Motif Stems Search problem in
terms of both time and space. Also, the stems generated
by MSS1 and MSS2 form a much smaller subset, with less
false predictions, of the stems generated by the algorithm
of [21].
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