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Abstract

Background: The de novo design of a novel protein with a particular function remains a formidable challenge with
only isolated and hard-to-repeat successes to date. Due to their many structurally conserved features, antibodies are
a family of proteins amenable to predictable rational design. Design algorithms must consider the structural
diversity of possible naturally occurring antibodies. The human immune system samples this design space (2 1012)
by randomly combining variable, diversity, and joining genes in a process known as V-(D)-J recombination.

Description: By analyzing structural features found in affinity matured antibodies, a database of Modular Antibody
Parts (MAPs) analogous to the variable, diversity, and joining genes has been constructed for the prediction of
antibody tertiary structures. The database contains 929 parts constructed from an analysis of 1168 human,
humanized, chimeric, and mouse antibody structures and encompasses all currently observed structural diversity of
antibodies.

Conclusions: The generation of 260 antibody structures shows that the MAPs database can be used to reliably
predict antibody tertiary structures with an average all-atom RMSD of 1.9 Å. Using the broadly neutralizing anti-
influenza antibody CH65 and anti-HIV antibody 4E10 as examples, promising starting antibodies for affinity
maturation are identified and amino acid changes are traced as antibody affinity maturation occurs.

Keywords: Antibody structure prediction, De novo protein design, V-(D)-J recombination, IMGTW
Background
Proteins have significant value to society in diverse areas,
such as chemical synthesis (e.g. catalysis), materials (e.g.
silk), and medicines (e.g. antibodies). This typically re-
quires either the successive modification of a naturally
occurring protein or the de novo design of a new one.
There have been a number of recent successes in com-
putational de novo protein engineering [1-4], but the
probability of success is low and lessons learned are dif-
ficult to adapt to other projects. Identifying a single suc-
cessful design still requires experimentally examining
tens of computationally promising proteins [5] (for a full
review of the current state of the art in de novo protein
design, please see [6]). While the de novo design of arbi-
trary proteins remains intractable, antibodies inherently
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have a number of modular features that make them
promising systems for learning how to reliably de novo
design proteins.
Antibodies have been extensively studied and many

experimental methods are available for their construc-
tion, including hybridoma technology [7], phage display
[8], yeast surface display [9], and synthetic libraries [10]
(see [11] for a review). Immunoinformatics tools have
been developed to identify the genes used to create anti-
bodies from nucleotide sequences [12-17], amino acid
sequences [17-22], and three-dimensional structures
[19,23]. Computations have previously been used to pre-
dict antibody structures [24-26], design improvements in
their interactions with antigens [27-29], and reduce their
immunogenicity [30] (see [31] for a review). However,
these computational techniques have primarily focused
on understanding or improving existing antibody struc-
tures instead of the de novo design of new ones. The
OptCDR method [32] addresses the de novo design of
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the antigen binding regions, known as complementarity
determining regions (CDR), of an antibody to bind any
specified epitope of an antigen. However, CDR only cap-
ture part of the binding capacity of an antibody and are
not constrained to fully human designs. In this paper, we
address one of the key challenges associated with the de-
sign of not just the CDR, but fully human, complete
antibody variable domains: predicting initial antibody
structures from a structurally diverse but computation-
ally tractable database.
Computational antibody design must be able to con-

sider the naturally present structural diversity spanning
hundreds of millions (~3 108) of potential antibodies.
The human immune system achieves this diversity
through V-(D)-J recombination, a process where random
variable (V), diversity (D), and joining (J) germline genes
are combined to create an antibody variable domain
[33]. Junctional diversity introduced during V-(D)-J re-
combination and somatic hypermutations considerably
increase the diversity of antibody variable domains, up
to a theoretical limit of 2 1012 (a number that is not
reached due to antibodies that are out-of-frame, not
expressed, etc.) [34]. Thus, by combinatorially shuffling
a number of modular parts, and adding somatic
hypermutations, the immune system can produce bil-
lions of unique antibodies using only a few hundreds of
genes interchangeably.
Inspired by this paradigm, in this paper we describe the

development of a database of human germline Modular
Figure 1 MAPs antibody structure prediction workflow. The MAPs data
a prototype sequence is predicted. In this work, that is accomplished by as
between the prototype and target antibody. However, prototype sequence
In the second step, a prototype model is created by assembling and muta
model of the antibody is created by mutating the prototype structure. The
3ncJ [49] with four of the mutations highlighted.
Antibody Parts (MAPs) for predicting antibody tertiary
structures. Figure 1 illustrates the MAPs workflow, which
allows for predicting the structure of any mutated (usually
affinity matured) antibody. First, a prototype sequence for
the heavy (H) and light (L) chain variable domains is pre-
dicted from germline genes. Next, a model structure of
the prototype sequence is created by identifying and as-
sembling the closest MAPs structures. As detailed below,
the MAPs database has structures for V* (V region Frame-
work Region (FR) 1 to FR3), CDR3, and J* (J region FR4).
Finally, the antibody structure is predicted by incorporat-
ing the amino acid (AA) changes of the antibody com-
pared to the prototype.
The efficacy of the MAPs database to accurately pre-

dict antibody structures is assessed by predicting the
structures of 260 antibodies not used in generating the
database. We found that the experimentally resolved
structures were predicted with an average all-atom root
mean squared deviation (RMSD) of 1.900 ± 0.325 Å.
Subsequently, we analyzed the broadly neutralizing anti-
influenza antibody CH65 and the anti-HIV antibody
4E10 to provide starting points for the design of affinity
matured antibody libraries and examine the frequency
and effect of AA changes accumulated during the affin-
ity maturation process.

Construction and content
An antibody’s antigen recognition site is formed by two
“variable” domains, one each from a H and a L chain.
base can be used to predict an antibody structure in three steps. First,
signing germline genes that minimize the number of AA changes
s from alternative methods that a user has confidence in can be used.
ting the most similar models in the MAPs database. Finally, a predicted
variable domain depicted for steps two and three is the VH of PDB



Figure 2 (See legend on next page.)
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Figure 2 Details of antibody sequence and structure. The IMGTW unique numbering scheme is shown in a vertical orientation. This includes
the start and end points of the FR and CDR, the corresponding structures in the VH of the broadly neutralizing anti-HIV antibody 4E10, and the
approximate start and end points of the V, D, and J regions. The listed starting and ending positions of the V, D, and J regions are only
approximate due to the small variations in the lengths of these genes and/or owing to trimming by exonuclease. The starting and ending
positions of the FR and CDR are shown with a larger font size. VL lack D genes but generally have longer V genes to compensate.
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Each domain contains three CDR (6 total) attached to a
structurally conserved FR. For five out of six CDR (except
for CDR3 in the H variable domain (VH)) there are a lim-
ited number of conformations that their backbones may
assume, known as canonical structures [35]. These struc-
turally conserved features allow for standardized number-
ing schemes describing each position in an antibody. In
this paper, we use the IMGTW unique numbering [36-39]
from IMGTW, the international ImMunoGeneTics infor-
mation systemW http://www.imgt.org [35,40]. IMGTW is a
well-curated source of antibody sequences, genes, struc-
tures, and standards used extensively in this paper. Each
VH is constructed by combining randomly selected V, D,
and J genes from the IGH locus [34]. Light variable (VL)
domains do not have D regions and are constructed by
rearranging V and J genes from the IGK and IGL loci
[34], forming either κ (V-KAPPA) or λ (V-LAMBDA)
antibodies, respectively. Figure 2 shows the IMGTW

unique numbering [36-39], the approximate start and end
points of the V, D, and J regions (which depend on the
length of the germline regions and trimming during V-
(D)-J rearrangement), the conserved start and end points
of the FR and CDR, and the location of FR and CDR
within an antibody variable domain.
The first step in Figure 1 is the assignment of germline

V, D, and J genes to an antibody to identify a prototype
sequence. From the IMGT/GENE-DB [41] we down-
loaded all human germline V, D, and J genes and
retained all complete (i.e., no missing nucleotides) and
unique genes and alleles, spanning a total diversity of ap-
proximately 108 possible antibodies (see Table 1). The
adopted hypothesis for assigning germline genes to an
antibody variable domain is that the gene combination
with the fewest AA changes from the corresponding
Table 1 Human germline V, D, and J genes and alleles

IGH

Total Retained Tota

V 324 236 97

D 44 37 0

J 13 11 9

Antibodies 1.85 105 9.61 104 873

Total Antibodies 3.21 108

Germline genes and alleles downloaded from the IMGT/GENE-DB [41]. Only the gen
assigning germline genes to an antibody.
portion of the antibody’s sequence is the one most likely
to have been used in V-(D)-J recombination.
Compared to the germline genes, the junctions (in

IMGTW positions 104–118) which result from the V-
(D)-J rearrangement usually show nucleotide (nt) dele-
tions at the 3’ V region and 5’ J region, and for a VH on
both ends of the D region, due to exonuclease trimming.
The junctions also show random nt insertions by the ter-
minal deoxynucleotidyl transferase [34]. For the VH, this
makes the assignment of the D gene only possible at the
nt level [16,17]. Therefore, the determination of the
number of AA changes between a set of V, D, and J re-
gions and a VH or VL is carried out as follows:

1. The total number of AA changes in the V and J
regions outside of CDR3 is counted. Note that AA
insertions and deletions are rare (observed rates of
0.00-0.09% per region) outside of CDR3 and are
penalized as AA changes.

2. The CDR3 nucleotides of the 3’ V and 5’ J regions are
fixed in place at the start and end, respectively, of CDR3.

3. In CDR3, the V and J combination is first evaluated
for the presence of nt gaps or overlaps (i.e.,
insertions or deletions). If there is a gap between the
end of the V region and the start of the J region, the
gap is filled so that the minimum number of AA
changes is introduced. Conversely, if the regions
overlap, deletions that cause the fewest AA changes
are chosen. Then, the total number of AA changes
in CDR3 is counted. Note that nt insertions and
deletions are penalized based on the number of AA
they affect (e.g. 1–3 insertions affect 1 AA, 4–6
affects 2, etc.). This procedure is sufficient for VL
and for the few VH that lack D genes.
IGK IGL

l Retained Total Retained

82 86 75

0 0 0

9 10 8

738 860 600

Retained Antibodies 1.29 108

es and alleles that had no missing nucleotides were retained for use in

http://www.imgt.org
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4. For VH, the D region is positioned at every possible
position from the beginning of CDR3 to the end. For
each possible position, the number of AA changes is
assessed as in Step 3.

The V, D, and J gene combination that results in the
fewest AA changes is selected as the prototype sequence
for the target antibody. In the event that two or more sets
of genes have the same number of AA changes, the mini-
mum number of nt substitutions is used as a tie-breaker
(e.g. mutating Ile (att) to Val (gtt) or Thr (act) requires a
minimum of one nt substitution, but mutating Val to Thr
requires at least two). This procedure is very fast for VL
(< 0.5 s) and reasonably quick for VH (5 – 60 s) due to the
added complexity of considering the D regions.
To test the gene assignment protocol, we downloaded

7,652 VH, 2,247 V-KAPPA and 1,605 V-LAMBDA
unique, human antibodies from IMGT/LIGM-DB [42]
and assigned germline genes to them. The observed
rates and number of AA changes in each of the FR and
CDR along with AA insertions and deletions in CDR3
are shown in Figures 3 and 4. The observed frequencies
Figure 3 Observed AA change numbers in human antibodies. Here w
antibody structure for VH, V-KAPPA, and V-LAMBDA. Panels G and H show
the only region where those events are common.
and locations of AA changes match expected trends.
The average number of AA changes (i.e., VH 17.6,
V-KAPPA and V-LAMBDA both 9.0) compare quite
well with the expected 10–15 AA changes per variable
domain [33]. In addition, the average rate of AA changes
in the “hypervariable” CDR is much higher than in the
FR. This is especially pronounced in the VH CDR3,
which is well-known to often have the most antigen
contacting residues. Interestingly, FR3 also accumulates
a much higher number of AA changes in the VH com-
pared with the VL. The confirmation of expected experi-
mental trends in the average frequency and number of
AA changes alludes to the efficacy of the gene assign-
ment protocol.
With this established gene assignment protocol, we

next turn our attention to determining if antibodies with
the same germline genes assume the same structures.
Reliable prediction of antibody tertiary structures, mod-
eled from their prototype AA sequences, hinges upon
the hypothesis that antibody regions that share the
same prototype sequence assume similar structures. We
downloaded 1,168 human, humanized, chimeric, and
e show the numbers of AA changes in each of the seven regions of
the number of nucleotide insertions and deletions in CDR3, as this is



Figure 4 Observed AA change frequencies in human antibodies. Here we show the percent of AA that are changed in each of the seven
regions of antibody structure for VH, V-KAPPA, and V-LAMBDA. Panels G and H show the percentage of nt insertions and deletions in CDR3, as
this is the only region where those events are common.
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mouse antibody structures from the IMGT/3Dstructure-
DB [19,23] as well as all complete mouse IGH, IGK, and
IGL V, D, and J genes from the IMGT/GENE-DB [41].
Prototype sequences were identified for all antibodies,
with human genes used for human antibodies and
mouse genes used for mouse, chimeric, and humanized
antibodies. Note that chimeric antibodies have mouse
variable domains and humanized antibodies have mouse
CDR attached to human FR. Mouse genes were used for
the humanized antibodies so that CDR3 were modeled
using the appropriate genes.
With the prototype sequences determined for the anti-

body structures, a clustering procedure similar to one
used in a previous work for just the CDR [32] was used
to determine if identical regions give rise to similar
structures. At the end of the clustering procedure, the
structure with the smallest average backbone atom (N,
Cα, C) RMSD with all other structures in a cluster was
selected as the model structure. The clustering was
carried out so that all members of a cluster have a
backbone atom RMSD of no more than 2.0 Å with
the model structure. This distance cutoff was also
used to assess previous antibody structure prediction
methods [24-26].
An initial analysis was conducted to determine if using

models of the V, D, and J genes was an effective ap-
proach to generate the MAPs database. Figure 5 gives
representative results of the clustering process. For the
V regions and the light J regions the procedure led to al-
most entirely unique inferences for structure, but for the
VH D and J regions antibodies with identical regions
often had different structures. This implies that assign-
ment of the germline regions may be sufficient to predict
the structures of VL but is insufficient for VH. However,
we observed that for both VH and VL the clustering
procedure appeared to work well outside of CDR3 and
poorly within CDR3. This includes the 3’ V regions
where “fraying” of the clusters was observed in the last
few residues. This suggests that a modified description,
listed in Table 2, utilizing CDR3 as a structural compo-
nent instead of D regions may improve the description
of antibody structures. We therefore selected an alterna-
tive delimitation of structures for both VH and VL: (i)
V* (FR1-FR3, IMGTW positions 1–104), containing all



Figure 5 Clustering of V, D, and J region structures. These panels show representative clusters of structures with the same V (Panel A), D
(Panel B), and J (Panel C) regions, respectively. All structures in the same cluster have the same color. For the VH V region and VL, the clustering
worked well. However, for the VH D and J regions the clustering procedure did not work (i.e., antibodies with the same germline regions have
different structures). Interestingly, all of the deviations occur within CDR3. This observation led to the development of an alternative delimitation
of structure: V* (everything before CDR3, FR1-FR3, IMGT positions 1–104), CDR3, and J* (everything after CDR3, FR4, IMGT positions 118–128).
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the sequence before CDR3 (i.e., most of the V region),
(ii) CDR3 (IMGTW positions 105–117), and (iii) J* (FR4,
IMGTW positions 118–128), encompassing everything
after CDR3 (i.e., most of the J region). This alternative
concatenation of the genetic information provides a
more succinct description of structural diversity.
When the clustering procedure is applied to the anti-

bodies based on the prototype V*, CDR3, and J* se-
quences the clustering results show one structure per
one prototype sequence. After discounting obvious ex-
planations for structural differences (e.g. unusual anti-
body structures like light chain dimers or triabodies,
mutations known to alter crystal packing, structural per-
turbations caused by the linkers in single-chain variable
fragments, antigen binding causing conformational
changes, etc.), only 9 VH V*, 18 VH CDR3, and 6
V-KAPPA CDR3 structures out of the 1168 antibodies
used were found to differ from other structures with the
same prototype sequence. All other regions had at most
a single outlier. Most of the differing CDR3 structures
were those that were naturally diverse, owing to the
expected high diversity of their junctions, suggesting
that larger structural changes are to be expected.
The observation that each prototype V*, CDR3, and J*

sequence has a single structure indicates that a database
of these structures can be used to model antibody vari-
able domains. The MAPs database was constructed to
contain as much structural diversity as possible. For each
V*, CDR3, and J* prototype sequence, the antibody from
the 1168 structures that required the fewest AA changes
Table 2 Alternative delimitation of structure

IMGT start IMGT end

V* (FR1-FR3) 1 104

CDR3 105 117

J* (FR4) 118 128

Positions are according to the IMGTW unique numbering. Positions 104 (2nd-
CYS) and 118 (J-PHE or J-TRP) belong to FR3 and FR4, respectively, and are the
anchors of CDR3.
was selected as the model. In the event that two or more
antibodies shared the same minimum number of AA
changes, the structure with the smallest average back-
bone atom RMSD with the other possible models was
chosen. The model structures had their sequences mu-
tated to the germline sequence using a previously pub-
lished optimal rotamer selection procedure [43,44] and
any structural inconsistencies were then corrected with
a CHARMM energy minimization [45]. All CHARMM
energy minimizations in this publication were molecular
mechanics minimizations and were carried out using the
“all27_prot_na” topology and parameter files, the angl,
bond, dihe, elec, impr, urey, and vdw energy terms, and
no solvation. The created models were stored in the
MAPs database as PDB files using the IMGTW unique
numbering for the V domain [36-39].
Each unique human J* prototype in Table 1 was mod-

eled using this procedure. All J* models required two or
fewer AA changes. Human V* prototypes shown in
Table 1 were also similarly modeled using a cutoff on
the maximum number of AA changes allowed. No V*
prototype was selected if it required more than one
standard deviation greater than the average number of
AA changes expected (cutoffs of 16 AA changes for
IGHV and 14 for IGKV and IGLV, as determined from
the data in Figure 3). This cutoff was imposed to ensure
that the V* models were accurate structural representa-
tions of their sequences.
Each CDR3 prototype was modeled using a cutoff on

the maximum number of allowable AA changes. An
analysis of the RMSDs between all pairs of VH CDR3
with the same number of AA shows that on average one
extra AA change gives rise to a 1/3 Å increase in back-
bone RMSD (R2 = 0.97). Therefore a cutoff of six AA
changes was used, as this number of changes would
likely cause an average change of 2.0 Å in backbone
RMSD, which is the similarity cutoff used during the
clustering procedure and in previous antibody structure
prediction methods [24-26]. Prototype CDR3 whose



Table 3 Number of model structures in the MAPs
database

VH V-KAPPA V-LAMBDA

V* 141 67 38

CDR3 428 199 39

J* 5 5 7

Total 3.0 105 6.7 104 1.0 104

Possible Antibodies 2.3 1010

The number of models for each region of structure for each type of antibody
variable domain is tabulated.
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model required six or fewer AA changes were changed
to the predicted sequence in the same manner as the V*
and J* models, while those requiring seven or more
changes were included using the experimentally deter-
mined model structure. The modeling of the CDR3 en-
sured that the maximum amount of structural diversity
was included in the MAPs database for this essential
binding feature, at the expense of introducing some
mouse and non-prototype sequences.
The size statistics of the MAPs database are presented

in Table 3. The MAPs database is composed of 929
“parts” that can be assembled to create 2.3 1010 unique
antibodies. This is in fact more antibodies than can be
assembled by the human immune system through re-
arrangement of the V, D, and J genes. However, the com-
plex mechanisms and junctional diversity of V-(D)-J
recombination significantly increases the number of
antibodies that the immune system can potentially gen-
erate. The MAPs database contains all currently ob-
served structural diversity of antibodies with CDR that
can encompass a wide range of possible positions.
The MAPs database can be used to model antibody

structures as shown in Figure 1. For a target affinity ma-
tured antibody with an unknown structure, a prototype
sequence is first computationally identified. Next, the V*,
CDR3, and J* structures in the MAPs database that have
the closest sequence to the prototype are identified. The
Figure 6 The experimental and MAPs predicted structures of antibod
gray and the MAPs predicted structures are shown in black. CH65 has an a
models are mutated to the prototype sequence using the
optimal rotamer selection protocol based on the Iterative
Protein Redesign & Optimization (IPRO) method [43,44]
and relaxed using a CHARMM energy minimization [45]
step. Finally, mutating the prototype antibody followed by
another CHARMM energy minimization generates the
predicted structure of the target antibody.

Utility and discussion
The efficacy of the MAPs database for predicting anti-
body tertiary structures from their AA sequences was
assessed. A cross-validation set of 260 antibodies from
the 1168 downloaded was selected. These 260 antibodies
were not used in creating any of the model structures of
the database, contained both VH and VL, and had ex-
perimental resolutions no worse than 2.5 Å. The struc-
tures were predicted using the workflow from Figure 1
with a mean RMSD of 1.900 ± 0.325 Å accounting for all
atoms in all residues in both variable domains. The
mean experimental resolution of the structures was
2.074 ± 0.274 Å. Additional file 1 lists the all-atom
RMSDs of each of the 260 predicted antibody models.
As the V* and J* model structures are based on human
genes, it is to be expected that the predicted human
antibodies (56 out of 260) had a slightly better mean
RMSD than the predicted mouse, chimeric, and human-
ized antibodies (i.e. 1.771 ± 0.184 Å versus 1.933 ±
0.345 Å). In contrast, there is no significant difference
between the mean RMSDs of the 207 bound antibody
complexes (i.e. 1.876 ± 0.320 Å) and the 53 unbound
complexes (i.e. 1.992 ± 0.330 Å).
We relied on three popular online servers for

predicting antibody structures (i.e., Web Antibody
Modeling (WAM) [26], Prediction of ImmunGlobulin
Structure (PIGS) [24], and RosettaAntibody [25]) to
benchmark the effectiveness of the introduced method.
WAM’s published results show that 16 out of 19 (i.e.,
84%) predicted antibodies had VH CDR3 backbone
RMSD values no worse than 2.0 Å. Our results meet the
ies CH65 and 4E10. The experimental structures are shown in light
ll-atom RMSD of 2.046 Å and 4E10 has an all-atom RMSD of 2.099 Å.
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same RMSD criterion for a much larger set (i.e., 249 out
of 260) and percentage (i.e., 96%) of predicted structures.
PIGS provided the backbone RMSD of all AA in four
antibodies (i.e., 1.08, 1.11, 1.16, and 1.42 Å). The corre-
sponding mean and median using the MAPs database
are comparable (1.134 ± 0.365 Å and 1.022 Å, respect-
ively). RosettaAntibody published RMSD results for the
backbone atoms of all AA in the CDR of 54 antibodies
that have a median RMSD of 1.4 Å with 80% of them less
than 2.0 Å. MAPs based structure prediction yields a
Table 4 AA changes in the ten best predicted prototypes for

Position Antibody P1 P2 P3

VH

1 E Q Q Q

36 D G G G

38 H Y Y Y

39 I M M M

40 N H H H

57 H N N N

64 D G G G

83 A S S S

91 V L L L

92 N S S S

93 G R R R

95 K R R R

107 G V G G

108 G Q S I

109 L L I V

110 E E A G

111 P R A A

111A R R R T

111B S S P T

111C V D D D

112C D Y Y Y

V-LAMBDA

2 S Y Y Y

17 Q Q K K

27 D N N N

36 R S S S

42 N Y Y Y

54 V V I V

55 C Y Y Y

56 Y D Y D

116 V V V V

117 I V V V

123 K K K K

126 V V V V

The AA changes of the top ten prototype (P) sequences (21 VH, 12 V-LAMBDA posi
because the same V gene was selected. Within CDR3 different D gene selections gi
give rise to different AA changes throughout the entire domain. Sequence number
median RMSD of 1.256 Å with 209 out of 260 (80%) better
than 2.0 Å. These results demonstrate that using the
MAPs database to predict antibody structures is at least as
accurate as existing methods and in most cases better.
We also briefly explored the efficacy of using the

MAPs database to support antibody engineering and
design using two broadly neutralizing antibodies: the
anti-influenza antibody CH65 (PDB: 3sm5) [46] and the
anti-HIV antibody 4E10 (PDB: 2fx7) [47]. The experi-
mental and MAPs predicted structures for CH65 and
the broadly-neutralizing anti-influenza antibody CH65

P4 P5 P6 P7 P8 P9 P10

Q Q Q Q Q Q Q

G G G G G G G

Y Y Y Y Y Y Y

M M M M M M M

H H H H H H H

N N N N N N N

G G G G G G G

S S S S S S S

L L L L L L L

S S S S S S S

R R R R R R R

R R R R R R R

G G G G G G G

W G G G G G Y

I I I I I I S

Q A T T T T S

L A G G G G S

W A T T T T W

L T T T T T Y

H D D D D D D

Y Y Y Y Y Y Y

Y Y Y Y Y Y Y

Q Q K K Q K K

N N N N N N N

S S S S S S S

Y Y Y Y Y Y Y

V V I V V I V

Y Y Y Y Y Y Y

D D Y D D Y D

W A W W A A A

V V V V V V V

K Q K K Q Q Q

V V V V A V V

tions) are listed. In VH all positions outside of CDR3 have the same AA listed
ve rise to different AA changes. In V-LAMBDA different V and J gene selections
ing is according to the IMGTW unique numbering [36-39].



Table 5 Predicted changes in interaction energy for AA
changes in the broadly-neutralizing anti-HIV antibody
4E10

Domain Mutation ΔΔG (kcal/mol)

VH K 14 R −2.54

VH K 20 T −1.975

VH T 29 S −3.071

VH S 36 T −2.343

VH I 39 L −3.495

VH Q 48 R −2.846

VH I 56 V −1.889

VH I 59 L −3.449

VH G 63 T −2.573

VH A 65 T −1.801

VH Q 69 P −1.691

VH K 70 R −2.226

VH V 76 I −1.678

VH K 82 R −2.143

VH M 89 L −2.158

VH S 92 N −2.549

VH S 96 P −2.451

VH I 109 T −0.923

VH I 111 G −1.026

VH F 111a W −2.648

VH V 111c W −3.922

VH V 112d L −2.517

VH I 112c G −3.328

VH I 112b K −45.027

VH D 113 G −45.886

VH D 116 A 5.989

VH V 117 H −0.445

VH M 123 L −1.908

V-KAPPA L 11 Q −2.11

V-KAPPA S 30 G −3.713

V-KAPPA S 36 N 0.412

V-KAPPA S 37 N −2.128

V-KAPPA Y 38 K −55.314

V-KAPPA K 45 R −2.614

V-KAPPA A 68 P −2.604

V-KAPPA T 69 S −2.681

V-KAPPA I 71 V −2.177

V-KAPPA P 72 A −2.41

V-KAPPA S 109 Q −2.969

Table 5 Predicted changes in interaction energy for AA
changes in the broadly-neutralizing anti-HIV antibody
4E10 (Continued)

V-KAPPA P 115 L −4.398

V-KAPPA W 116 S −5.325

V-KAPPA I 126 V −2.531

Note that 37 of 42 AA changes are predicted to be weakly beneficial, 3 are
predicted to be strongly beneficial, and 2 are predicted to be weakly
detrimental to antigen binding. Sequence numbering is according to the
IMGTW unique numbering [36-39].
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4E10 (see Figure 6) have an all atom RMSD of 2.046 and
2.099 Å, respectively. Due to its recent publication
date, the structure of CH65 was not one of the 1168
considered when creating the MAPs database. The
overall quality of its MAPS based predicted structure
is comparable to that of 4E10 with some structure
prediction discrepancies only within the VH CDR3.
This CDR is 20 AA long and has at least a ten AA
difference from any VH CDR3 structure in the MAPs
database. Nevertheless, the backbone atom RMSD of
the VH CDR3 from the experimental structure is only
2.160 Å.
The first step in the proposed workflow for anti-

body structure prediction in Figure 1 is the prediction
of the best prototype sequences for any given anti-
body. Table 4 lists the AA changes in the ten best
prototype sequences for antibody CH65, containing
21 positions in VH and 12 positions in V-LAMBDA.
The VH AA changes are predominantly allotted
within FR3 and CDR3 while the V-LAMBDA AA
changes are distributed throughout the sequence. A
more uniform distribution of AA changes in VH
could be obtained, at the expense of introducing
more total AA changes, by limiting how often each
gene is used in the predicted results. For example,
this may be desirable in the construction of a com-
binatorial library to bind a particular antigen epitope.
The identification of the prototype sequence and the

generation of prototype and affinity matured models
simplifies the assessment of interesting AA changes rele-
vant to a particular antibody. The anti-HIV antibody
4E10 contains 28 VH and 14 V-KAPPA AA changes
from the prototype sequence. Table 5 reports the
changes in the computed interaction energy between
the antibody and antigen for each one of the 42 AA
changes accumulated during affinity maturation. A
detailed description of these calculations is available
in Additional file 2. The computed interaction ener-
gies should be considered for the qualitative trends
they imply rather than their absolute values. Only
two of the observed AA changes are computationally
predicted to be detrimental to binding while 37 are
predicted to be weakly and three strongly beneficial.
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This suggests that the AA changes needed to convert
the prototype structure to the affinity matured anti-
body generally improve binding. This lends credibility
to the computational identification of prototypes be-
cause affinity maturation, as expected, led to binding
improving whereas random mutations would have
been detrimental to binding.

Conclusions
This paper introduced a modular database of antibody
parts that can be used in the de novo design of anti-
bodies in an analogous fashion to V-(D)-J recombin-
ation. Using the structural diversity encompassed within
1168 experimental antibody structures we compiled the
MAPs database that contains 929 parts that can be com-
bined to create 2.3 1010 unique antibodies. The predic-
tion of 260 antibody structures not used in making any
of the MAPs database models revealed that this database
can be used to reliably predict antibody tertiary
structures. In contrast to previous antibody structure
prediction methods [24-26], MAPs allows for antibody
structure prediction without the need for de novo folding
calculations every time. The all-atom, modular nature of
the MAPs database allows for the pre-calculation of
pairwise structural component interaction energies. The
computational savings do not come at the expense of
accuracy of prediction as the RMSD of the predicted
structures is at least as accurate as earlier methods.
Antibody structures are known to be affected to some

extent by the relative orientation of the VH and VL, the
specific canonical structures used, and the FR to which
they attach. However, despite ignoring all these factors the
procedure described in Figure 1 operating on the MAPs
database provides very high fidelity of antibody structure
prediction (see also Additional file 1), alluding to a high
degree of modularity of available conformations.
The broadly-neutralizing anti-HIV antibody 4E10 was

used to demonstrate the ability of the MAPs database to
model the nature of AA changes upon affinity matur-
ation. Almost all of the accumulated AA changes were
predicted to be beneficial to binding, thus providing indir-
ect evidence regarding the validity of the prototypes. The
proposed workflow is generally agnostic to the method
used to identify prototypes for an antibody. If a user has
higher confidence in a prototype sequence different from
the one identified by the method described here, it is pos-
sible to directly import it in the calculations.
Currently, almost all antibodies are designed entirely

using experimental methods. Once a promising antibody
is identified additional affinity improvements are sought
after using random mutagenesis and directed evolution
protocols. Knowing where to target mutations and what
type of mutations to explore can greatly improve the ef-
ficiency of experimental methods. In the germline
repertoire of V, D, and J genes, evolution has retained
many similar genes with AA changes at key positions
that are likely to influence binding to a range of sub-
strates. As described for the broadly neutralizing anti-
influenza antibody CH65, it is possible to rapidly identify
multiple potential prototypes for any given antibody. By
contrasting the mutations between the target antibody and
the prototypes both promising positions and AA combina-
tions likely to confer improved binding affinity can be
quickly compiled providing cues for combinatorial library
design.

Availability and requirements
The MAPs database has been incorporated into the
IPRO suite of programs [32,43,44,48], available on our
website (http://maranas.che.psu.edu). It is only freely-
available to academic users and all others should contact
the corresponding author for more information.

Additional files

Additional file 1: The all-atom RMSD results for each of the 260
antibody structures used in the cross-validation of the MAPs
database.

Additional file 2: Description of the calculation of the interaction
energies reported in Table 5 for the broadly-neutralizing anti-HIV
antibody 4E10.
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