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Abstract

Background: Segmenting cell nuclei in microscopic images has become one of the most important routines in
modern biological applications. With the vast amount of data, automatic localization, i.e. detection and segmentation,
of cell nuclei is highly desirable compared to time-consuming manual processes. However, automated segmentation
is challenging due to large intensity inhomogeneities in the cell nuclei and the background.

Results: We present a new method for automated progressive localization of cell nuclei using data-adaptive models
that can better handle the inhomogeneity problem. We perform localization in a three-stage approach: first identify all
interest regions with contrast-enhanced salient region detection, then process the clusters to identify true cell nuclei
with probability estimation via feature-distance profiles of reference regions, and finally refine the contours of
detected regions with regional contrast-based graphical model. The proposed region-based progressive localization
(RPL) method is evaluated on three different datasets, with the first two containing grayscale images, and the third
one comprising of color images with cytoplasm in addition to cell nuclei. We demonstrate performance improvement
over the state-of-the-art. For example, compared to the second best approach, on the first dataset, our method
achieves 2.8 and 3.7 reduction in Hausdorff distance and false negatives; on the second dataset that has larger
intensity inhomogeneity, our method achieves 5% increase in Dice coefficient and Rand index; on the third dataset,
our method achieves 4% increase in object-level accuracy.

Conclusions: To tackle the intensity inhomogeneities in cell nuclei and background, a region-based progressive
localization method is proposed for cell nuclei localization in fluorescence microscopy images. The RPL method is
demonstrated highly effective on three different public datasets, with on average 3.5% and 7% improvement of
region- and contour-based segmentation performance over the state-of-the-art.

Background
Microscopic image analysis is becoming an enabling tech-
nology for modern systems-biology research, and cell
nucleus segmentation is often the first step in the pipeline.
Despite recent advances, the segmentation performance
remains unsatisfactory in many cases. For example, on the
popular public databases [1], the state-of-the-art segmen-
tation accuracies are just around 85%.

The challenges of automated cell nucleus segmenta-
tion mainly arise from two imaging artifacts, as shown
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in Figure 1. First, the cell nuclei regions are inhomoge-
neous — the pixels of a cell nucleus exhibit non-uniform
intensities and different cell nuclei also display varying
patterns. Second, the background is also inhomogeneous
and certain regions might have very similar appearance
to the cell nuclei. These problems imply that: (1) pre-
cise delineation of boundaries between cell nuclei and
the background is difficult; (2) some background areas
could be mistaken as cell nuclei; and (3) certain cell nuclei
could be missed. The segmentation problem can be char-
acterized as a localization issue that includes both object
detection and pixel-wise segmentation.

© 2013 Song et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Figure 1 An example image (left) and corresponding segmentation ground truth (right) from data set [1]. It can be seen that besides the
pixel-wise inhomogeneity within a cell nucleus, some cell nuclei exhibit much lower intensities than the others; and although the background looks
generally dark, it is indeed highly inhomogeneous, with some fairly bright areas and also a few noisy regions displaying very high intensities.

Related work

Numerous works have been conducted on segmenting
various structures in cell images [2,3], and unsupervised
approaches appear to dominate. For example, the mor-
phological methods based on thresholding, k-means clus-
tering or watershed [4-8] can be quite effective, as long
as the objects exhibit good contrast with the background.
Watershed methods are also effective in separating touch-
ing cells, although the results might deviate from the
actual contours slightly. A more popular trend of unsu-
pervised segmentation is the energy-based deformable
models, based on active contours [9] or level sets [10-15].
Compared with modeling contours explicitly, level sets
have the advantage of being non-parametric and free from
topology constraints. It is also relatively easy to incorpo-
rate continuous object-level regularization into level sets,
such as shape priors. Another type of energy-based model
is based on graph search [16,17], graph cuts [18,19] or
normalized cuts [20]. Such methods attempt to derive the
segmentation with global constraints, using well-defined
graphical structures to represent the spatial relationships
between regions. Many of these methods require good ini-
tial seeds or contours. However, the usual initialization
techniques, such as thresholding and watershed, would
not handle images with high inhomogeneities well, hence
causing extra or missing detection of cell regions. Such
detection errors during initialization could propagate into
the final segmentation outputs.

It has been shown that intensity inhomogeneities can be
tackled by integrating convex Bayesian functional with the
Chan-Vese model [14], and discrete region-competition
[15] based on the piecewise-smooth Mumford-Shah
model [21]. However, without performing cell detec-
tion explicitly, the deformable models might become
very complicated in order to filter background regions
with cell-like features while keeping cell regions with
background-like features. To detect cells from inhomo-
geneous background, one way is to reconstruct the ideal
image [22,23], which however, requires specific imaging

modeling. Reconstruction can also be built into active
contours with constrained iterative deconvolution with-
out explicitly computing the inverse problem [24,25];
however, it requires the point-spread function of a micro-
scope, which is measured or modeled. Another way is to
enhance the objects using h-dome transformation [26];
however, it might have difficulties with inhomogeneous
foreground. The inhomogeneity can also be reduced with
reference-based intensity normalization [27]; however,
the image-level normalization would not well handle the
intra-image variation. In addition, shape-based nucleus
detection has been proposed, with Laplacian of Gaussian
(LoG) [28] or sliding band filter (SBF) [29]. While the
latter method is less sensitive to low contrast and better
representative of irregular shapes, the detection accu-
racy partially relies on validation from the corresponding
cytoplasm image, which is not always available.

Different from the unsupervised approaches, classi-
fication-based methods have also been proposed to incor-
porate prior information from labeled images. These
classifiers include Bayesian [30], k-nearest neighbor
(kKNN) [31], support vector machine (SVM) [32], and
atlas-based approaches [33]. Since the apparent difference
between the foreground and background is their intensi-
ties, simple intensity-based features, such as histograms
[30], have been widely used. On the other hand, the effec-
tiveness of classification-based methods depends highly
on the separation of feature spaces between foreground
and background. Therefore, approaches based on a bag of
local classifiers [30], and more complex features such as
the local Fourier transform (LFT) [31], spatial information
[33], and combination of appearance, shape and context
features [32], have been proposed.

While most such supervised approaches describe the
pixel- or region-level features, there are methods that
tackle intensity inhomogeneity by explicitly modeling the
inter-cell variations as more structural features. One way
is to perform color standardization within pixelwise clas-
sification [34] to account for the inter-image intensity
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variations. To also address the intra-image variations,
contrast information between an image region and the
global foreground and local interest regions is computed
[35]. A similar approach is to estimate foreground prob-
abilities based on intensity distributions derived from
global images and local detection outputs [36]. While both
approaches introduce cell-adaptive features, the meth-
ods for global feature representation and local region
detection might not work well with large feature over-
lapping between the foreground and the background. An
additional false positive reduction step has also been
proposed to remove bright background regions that are
misidentified as cell nuclei [37]. However, this approach
requires a learned classifier, whose performance could
be affected by inter-image feature variation. More differ-
ently, registration-based approach has also been studied,
by creating a template set from training images and seg-
menting the testing image based on best matches [38];
such templates however, might have difficulties capturing
large varieties of object shapes and textures.

Our contribution

The contribution of our work is to localize the cell
nuclei in images with high intensity inhomogeneity with
various data-adaptive modeling techniques in a progres-
sive manner. Specifically, we design a three-stage cell
nucleus localization method that: (1) salient regions rep-
resenting cell nuclei and cell clusters are extracted with
image-adaptive contrast enhancement; (2) the clusters are
further processed to identify true cell nuclei based on
feature-distance profiles of reference regions with cluster-
adaptive probability estimates; and (3) the contours of
detected cell nuclei are refined in a graphical model with
region-adaptive contrast information. Figure 2 gives an
overview of the proposed method.

We also design distinctive data-adaptive priors that can
be categorized by the level of generalization: (1) global-
level features modeled as support vectors from training
images; (2) image-level features representing the distribu-
tion of varying appearances of the nearby cell nuclei; and
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(3) region-level features computed at all three stages of
the method for interest region detection, candidate val-
idation and contour refinement. Being adaptive to the
specific image or interest region, the image- and region-
level features are especially effective in accommodating
the intensity inhomogeneities.

Compared to localization methods based on global cri-
teria (e.g. thresholding or feature-based classification), our
approach is more capable of accommodating (1) intensity
variations between cell nuclei (intra- and inter-images)
and (2) feature overlapping between cell nuclei and back-
ground areas. Compared to the energy-based techniques
that target pixel-wise segmentation (e.g. level sets and
graph cuts), our method has a stronger focus on cell nuclei
detection with explicit modeling of cell-specific character-
istics, to effectively filter cell-like background regions and
identify obscure cell nuclei.

We suggest that the proposed region-based progressive
localization (RPL) method can be potentially extended
to other localization problems, if the objects of interest
can be modeled as regions with distinct features from the
surrounding background. A similar three-stage approach
would be used, and the application-specific modifications
would mainly focus on the feature design. One example
could be tumor localization in functional images.

Methods
Initial segmentation
While cell nuclei might appear similar to the background,
there is always some degree of contrast between them.
Such an observation motivates us to localize the cell nuclei
by extracting salient regions. During initial segmentation,
we do not have strict requirements about the extracted
regions. In particular, if multiple cell nuclei are tightly
connected, or cell nuclei are surrounded by high-intensity
background and difficult to differentiate, identifying them
as a single region is acceptable. We design a contrast-
enhanced salient region detector for initial segmentation.
Specifically, an iterative approach is developed based
on the maximally stable extremal region (MSER) method

Initial Segmentation

Original Image

Candidate
Identification

Interest Region
Detection

Decluster Processing

Contour Refinement

Output Image

Candidate
Validation

Graphical
Labeling

Figure 2 The high-level flow chart of our proposed region-based progressive localization method. In this example, the cell nuclei and
clusters are first extracted during initial segmentation with contrast-enhanced salient region detector, then missed or falsely detected cell nuclei are
further processed in decluster processing with classification-based candidate identification and probability estimation via distance profile for
candidate validation, and better contour delineation is finally achieved with regional contrast-based graphical model. For easier viewing, a quadrant
of the original image is shown here, and similarly for Figure 3 and 4. The meaning of the color coding is described in Figures 3,4 and 5.
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[39]. Since MSER does not require any initial contour
and the region stability is constrained by local regional
information, it is easy to use and able to accommodate
large intra-image variations. However, the effectiveness of
MSER depends highly on the intensity contrast between
the foreground and background. If the contrast is low,
some regions would not be detected (e.g. Figure 3c). It
is intuitive to add contrast enhancement. However, basic
approaches such as intensity stretching would not work
due to large intensity span. Instead, we design an iterative
approach by alternating between the following two steps.
First, interest regions {R} are detected using MSER, as
shown in Figure 3c. Second, based on the detection result,
the image is enhanced (Figure 3d) by:

1

I=——F——. (1)
0.5({R}o + {R}2)

where {R}yp and {R}; denote the minimum and mean
intensities of the detected interest regions in /, and C is a
scaling constant. The normalization factor 0.5({R}o+{R}2)
is chosen based on: (1) it should normally be smaller than
C so that all pixels in I are scaled up with contrast between
pixels increased proportionally; and (2) it should not be
so small that the image becomes distorted from the orig-
inal patterns with intensities capped at 255 for grayscale
images. The iteration stops when the number of regions
created does not change any further. With such a contrast-
enhanced approach, better region detection output can
be seen in Figure 3e. The resultant regions are either
single-level, or form a hierarchy of lower- and upper-level
regions.
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It is also observed that during each iteration, the param-
eter MaxVariation in MSER (using VLFeat library [40])
needs to vary for individual images to better accommo-
date the inter-image variations. Therefore, the parameter
value is determined at runtime by first setting MaxVari-
ation to v; then gradually reducing it by a certain step
A, until it reaches v, or the number of region levels is
larger than one. Furthermore, while the resultant single-
and upper-level regions are mostly cell nuclei, occa-
sionally under-segmentation happens. In other words,
a single cell nucleus could be divided into two nested
regions and the upper-level region would become a under-
segmented portion of the cell nucleus. To reduce such
under-segmentation, we find that if the combined area of
two nested regions is roughly elliptical with a suitable size,
they can be merged as a single region. The shape and size
criteria are determined using a linear-kernel binary SVM
obtained from the training data. The overall process of
initial segmentation is listed in Algorithm 1.

Decluster processing

As seen in Figure 3e, the detected single- and upper-level
regions usually represent the cell nuclei, and lower-level
regions usually represent the background with elevated
intensities. However, the upper-level regions could con-
tain false positives caused by bright background, and
lower-level regions could also include undetected cell
nuclei. It is also observed that such incorrect detections
are mainly present among the two-level nested regions
(i.e. clusters), while the single-level regions are normally
true cell nuclei. Therefore, in the second stage, we focus

detected cell nuclei.

Figure 3 lllustration of initial segmentation. (a) The original image. (b) The segmentation ground truth. (€) The interest regions detected
without iterative contrast enhancement, and darker blue denotes upper-level regions. (d) The image after iterative enhancement. (e) The final
interest regions detected. After the initial segmentation, decluster processing is performed, with outputs shown in (f) and dark gray indicating the
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Algorithm 1: Initial segmentation

Data: An image I.
Result: Set of interest regions {R}.
repeat
for MaxVariation =vi : —A, : v do
Create MSER regions {R};
if region level > 1 then

break;
end
end
— 1 L C-
I'= g5qmorm

until number of regions does not change;
Merge nested regions if the combined area is roughly
elliptical and of a suitable size;

on further processing on the detected clusters, with two
objectives. First, we expect to identify any cell nucleus
that has not been detected after the initial segmenta-
tion. Such cell nuclei typically exhibit similar intensities
to the surrounding background, and hence would not be
highlighted as salient regions. Second, we need to fil-
ter out high-intensity background regions, which usually
have rounded or irregular shapes, and could be easily
confused as cell nuclei. A two-step approach is designed,
using candidate identification then candidate validation.
An example output is shown in Figure 3f.

Formally, let U = {u; : i = 1,..., Ni;} be a detected clus-
ter, with Ny; pixels u;. Define the set of labels {F, B} rep-
resenting the foreground (i.e. cell nuclei) and background
respectively, and a foreground region as a connected com-
ponent G, C U with Yu; € G, : [; = F. The problem is to
label each pixel u; € U as [; = {F, B}, with the object-level
constraint that any detected foreground region G, should
have suitable characteristics as a cell nucleus.

Candidate identification

In the first step, we try to identify a set of non-overlapping
candidate foreground regions {G,} from each cluster U by
labeling each pixel u; as foreground or background. We
specify that any upper-level region enclosed in a cluster
U is a candidate region G,. To identify more candidates
from the cluster U itself, it is observed that to differenti-
ate between F and B pixels, the texture feature in a local
patch is more discriminative than pixel intensities. For
example, compared with cell nuclei, the background usu-
ally has more homogeneous texture that might be dark or
bright. In this work, we choose to use the scale-invariant
feature transform (SIFT) descriptor [41], which describes
the gradient distribution within a local patch and is invari-
ant to scale, translation and rotation. SIFT feature of each
pixel u; is computed, and then labeled using a binary SVM.
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The SVM kernel is polynomial, with other default settings
in LIBSVM [42]. A connected component of F pixels is
identified as a candidate region G,.

While most of the candidate regions are true cell nuclei,
some are actually bright background areas with round
shapes (e.g. the first example in Figure 4). To filter out the
false detections, we pass them to the candidate validation
stage.

Candidate validation

In the second step, we validate if the identified candi-
date region G, in image [ is a cell nucleus. There are
two reasons that motivate this step. First, there might
be misclassification during candidate identification due
to inter-image intensity variations (e.g. different appear-
ances of the cell nuclei between the two examples in
Figure 4). The labeling performance could be improved
based on reference information gathered from the test-
ing image itself. Second, pixel-level labeling based on SIFT
features has limited spatial information and often does not
represent the overall region G,. We design a probability
estimation via distance profile method to derive the prob-
ability Q(Gy, F) of G, being a valid cell nucleus based on
the feature-distance profiles of other reference cell nuclei,
as detailed below.

Probability inference Although cell nuclei in an image
could have varying characteristics, we expect that Gy, if
representing a true cell nucleus, should have similar fea-
tures to the other cell nuclei in the same image, especially
those spatially adjacent to Gy, as can be seen from the
examples in Figure 4. Therefore, if we have a set of deter-
mined cell nuclei in I, we can use them as references
to validate Gx. To cope with inter-image variations, we
would only select references from the image / in which G,
resides. This means we could not use the ground truths
for reference construction. Instead, we use the single-
and upper-level regions that are detected during initial
segmentation as references.

We use these references by first creating a distance pro-
file per reference, and computing the probability of G,
being a cell nucleus based on its feature distance to each
reference. Specifically, assume within an area near Gy,
there are K reference regions G = {G, : k = 1,..,K}.
Here near is defined as both G, and Gi being in the same
quadrant of image 1. Let f; describe the region-level fea-
ture of G,, and the feature distance between G, and G
as & (fx. fx) (details of f and § in the next two subsections).
Intuitively, the more similar G, and Gy are, the more likely
Gy is a cell nucleus. However, since Gy may be a false pos-
itive detection, decision based on direct feature distance
8(fiofx) might be error prone. Therefore, we devise an
alternative hypothesis that, if §(f, f;) is comparable with
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Figure 4 lllustration of decluster processing. (a) The example image (after iterative enhancement). (b) Newly identified candidate regions are
shown in yellow, with purple indicating the ones detected during initial segmentation, and both gray and purple denoting the reference regions;
here to illustrate the probability inference, the light blue circle highlights one reference G, and pink and orange circles indicate two candidate
regions Gy. (€) The candidates validated shown as yellow. (d) The KDE plot generated for Gy, in which the pink and orange lines represent po (8k)
for the pink and orange circled candidates. (e) The probabilities Q(Gy, F) derived for all candidate regions, with P_1 and Y_4 corresponding to the
orange and pink circled candidate regions, the red vertical line separating the two clusters, and green horizontal lines indicating the thresholds for
1(Gx) = F. (f)-(h): A second example with the same annotations to show that different from the first example, the real cell nuclei here are bright

while the filtered candidate region is darker.

(K = 1,.,K,k # k : 8(fr.fir)}, then Gy is likely a cell
nucleus.

To measure if §(fi,fy) is comparable with {VK’
8(fi-fir)}> we use the non-parametric kernel density esti-
mation (KDE):

A 1 1
Po(Srx) = K_1 Z ;kK(

Sk — Sk
K £k B

k

) 2)

where &y is short for 8 (f¢, fi), KC() is the Gaussian kernel
and /y is the bandwidth approximation following normal
distribution of all data samples {Vk’ : §(f;,fx')}. The den-
sity value po(8g) is then normalized by the maximum
density of the distribution to obtain the comparability
measure in terms of probability p(8x ) €[0, 1]:

P@rex) = Po(Bp)/ maxipo(Siu)} 3)

With this model, p(8x ) is larger when &y , approaches
the Gaussian mean of the samples, which means that G, is

more likely a cell nucleus if the distance between G, and
Gy is similar to how the other references {Gy'} vary from
Gy.

Next, by combining the estimates p(8x ) from all refer-
ences {Gg}, the final probability of G, being a cell nucleus
is derived:

1 N
QGwF) = & ijpwk,x) (4)

The averaging operation helps to ensure that a single
reference Gy with very different features from G, would
not affect the overall probability Q(Gy, F) significantly.

Then, based on Q(Gy, F), we define a thresholding rule
to determine if Gy is a valid cell nucleus:

Q(Gy, F) > a1 maxy Q(Gy, F),

Q(foF) > o, fOI'Gx/ =g (5)

I(Gy) =F,if {

where G, denotes other candidate regions that are within
the same cluster U as G, and &' # x; a; and oy are
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predefined thresholds. Examples of the density compu-
tation and probability derivation are shown in Figure 4,
and the overall process of candidate validation is listed in
Algorithm 2.

Algorithm 2: Candidate validation

Data: An image / with candidate regions {G,} and
reference regions {Gy}.
Result: Labeling of {G,}.
fork=1,..,K do
‘ Extract the appearance features f;
end
fork=1,..,Kdo
fork' =1,.., K, and k' # k do
Compute the pairwise appearance distances
Sk’
end

end
forx=1,..,X do
Extract the appearance features fy;
fork=1,..,K do
Compute the appearance distance 6y 4;
Derive KDE pg (8¢ ) and probability p(8x »);
end
Generate the final probability Q(Gy, F);
end
forx=1,.,Xdo

‘ Obtain the labeling /(G);
end

Appearance feature We observe that a region tends to
comprise patches of similar textures and repetitive pat-
terns. Therefore, we choose to represent G, with bag-
of-features. First, the image I that contains G, is divided
into a grid of patches {P}. Then for each patch, we repre-
sent its texture feature by its minimum, maximum, mean
intensity, standard deviation, and a histogram of intensity
differences between each pair of pixels. Each patch-wise
feature is then assigned a feature word. A histogram
summarizing the occurrence frequencies of such feature
words in G, is defined as f;. Here each feature vector is
normalized by the size of G, to represent the percentages
of various intensities and feature words in G;.

Note that if G, is a newly identified candidate dur-
ing decluster processing, G, might only represent a small
under-segmented portion of the actual cell nucleus due to
the pixel-level labeling. Therefore, to have a good sum-
mary of the actual candidate feature, we first estimate an
elliptical region G, that is a minimum volume ellipsoid
covering G, [43]. To avoid including many background
pixels into G0, we ensure Gyo is part of the cluster U in
which G, is detected: Gyo = Gyo N U. G0 is then used
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in place of G, as the detected candidate, from which f;
is computed. The refined elliptical regions are shown in
Figure 4c.

Appearance distance To compute the distances §(fx, f)
between two histogram features, the diffusion distance
[44] is used. The diffusion distance models the distance
between histogram-based descriptors as heat diffusion
process on a temperature field. Compared to the bin-to-
bin histogram distances, such as Euclidean distance, the
diffusion distance is able to measure cross-bin distances,
avoiding explicit computation of histogram alignment.
While the earth mover’s distance (EMD) [45] has similar
advantages, the computation of diffusion distance is much
faster, with O(H) complexity only, where H is the number
of histogram bins.

Contour refinement
At this stage, a detected region could contain a single or
multiple cell nuclei, which could be under-segmented or
include extra background. We thus expect to achieve bet-
ter contour delineation of cell nuclei. Our idea is that,
while the foreground and background are often inhomo-
geneous, there is always relatively good contrast between
them in a local area. Therefore, by performing contour
refinement for each detected cell region G individually,
the foreground and background can be better differenti-
ated by analyzing the localized contrast information. We
employ a regional contrast-based graphical model for the
contour refinement.

Specifically, a conditional random field (CRF) [46] with
the following energy function is designed:

E(LIG) =Y _n) + n(le) + 050> ¢l lg)

+Y Ui} (6)

il

where G denotes the detected region G plus its surround-
ing area of a fixed width (half of the short axis of G)
(Figure 5b), and L denotes the labeling vector of all pix-
els in G. Then, the model attempts to refine the contour
of G by relabeling each pixel u; € G as [; = {F,B).
Here n(J;) is the unary contrast-based intensity term, n(/g)
combined with ¢(-) is the contrast-based detection term
with /g representing the detected region G, and ¢ () is
the spatial term associating neighboring pixels ; and u; .
The constant 0.5 is set to obtain equal contributions from
the unary costs (3 _; n(/;) + n(lg)) and the combined pair-
wise costs (3_; ¢, lg) + ;s ¢, Iy)). Graph cut [47]
method is used to derive the most probable labeling L
that minimizes the energy function, to produce the final
segmentation of cell nuclei from G. Here our customized
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Figure 5 lllustration of contour refinement. (a) Segmentation output after the decluster processing shown with yellow contours. (b) G indicated
with yellow contours. () Visualization of the graphical model, with blue nodes representing /; and green node /s, and the blue and green edges
denoting the pairwise relationships. (d) Results of contour refinement with orange contours.

definition of the intensity term and inclusion of the detec-
tion term are the main distinctions from the other CRF
constructs [35,48,49].

The contrast-based intensity term 7(/;) describes the
unary costs of pixel u; labeled as /; € {F, B}. Basically, the
costs of [; = F and [; = B represent the inverse probabil-
ities, and the probability pr(u;, F) of [; = F is computed
by:

pr(ui, F) = (1+ exp(=2(f; — %)) ™" 7)
fi=1/Ig (8)
‘6 =f — v (fc —  fe) )

where Iz denotes the mean intensity of G, and pr(u;, F)
follows a sigmoid probability distribution based on the
contrast feature f;. We expect pixels with f; > Ag to more
likely represent the foreground. A¢g is computed based on
fc and Lf, which are the mean and minimum of all feature
values {f; : u; € G}, and is adjusted by y for a balance of
foreground and background partitioning in G. The param-
eter yg is calculated at runtime, by gradually increasing
it from y; to y» with a step value A,, and choosing the
smallest yg €[y1, 2] that does not cause the entire G to be
labeled as B. With pr(u;, B) = 1 — pr(u;, F), the cost values
for both labels are:
n(l) =1 —pr(u;, ;) (10)
Note that since Ag would be closer to fg in most cases
with small yg, it would cause portions of G to have
pr(u;, F) < 0.5 (i.e. u; labeled as background), resulting
in possible under-segmentation. It is however not advis-
able to lower Ag, due to considerable overlap between
low-intensity areas in G and the background. Therefore,
we introduce a second contrast-based detection term to
encourage labeling of /; = F. An auxiliary node /g is first
included to the graph with the following unary costs:

0 iflg=F

nile) = {NG otherwise (11)

where Ng is the number of pixels in G, and such a large
cost of [z = B ensures [g is assigned 1. Then for each
pixel u;, a pairwise cost ¢(/;, [g) is computed based on the
contrast v(I;, Ig) between [; and the mean intensity of G:

pilg) = 8(li — lg) - vUi 1G) (12)

with §([; — lg) = 1if [; # Ig and 0 otherwise, and
v(;,Ig) = 1ifI; > Ig, or:

I —Ig|)?
v(li,lc)=exp(—2” el (13)

(M — I 1%)
where (-) denotes the average Euclidean distances of all
such pairwise distances in G. In this way, pixels with
pr(u;, F) =~ 0.5 could be better labeled with the addi-
tional cost factor; and obvious background pixels would
still obtain the correct B label, with ¢(/;, lg) much lower
than n(l;).

The spatial term ¢ (/;,[y) then further enhances the
delineation by encouraging spatial labeling consistencies
between neighboring pixels u; and u;. A pairwise cost for
l; # ly is thus defined as:

dUi by) =8 = Iy) - v, Iy) (14)

where §(-) and v(-) follow Eq. (12). Such a cost function
implies that pixels with more similar intensities would be
more penalized if they take different labels.

Materials and evaluation methods

Three different datasets that are publicly available with
segmentation ground truth are used in this study. Their
main properties are summarized in Table 1. The images
in the first two datasets were acquired with nuclear mark-
ers whereas the third dataset also includes the cytoplasm.
Detailed information can be found in [1,50]. Among the
three, dataset 1 has higher contrast between cell nuclei
and background. Datasets 2 and 3 have large intensity
inhomogeneity and considerable degree of intensity over-
lapping between the cell nuclei and the background. The
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Table 1 Summary of the datasets used

Dataset 1 Dataset 2 Dataset 3
[ [1] [50]
Cell type U20s NIH3T3 Serous
#images 48 49 10
# cells 1831 2178 254
Image size 1349% 1030 1344%x 1024 512x512
Color map Grayscale Grayscale RGB
Structure Nuclei Nuclei Nuclei & Cytoplasm

inclusion of cytoplasm in dataset 3 poses more challenges.
The images in dataset 3 are preprocessed to remove the
pink areas and converted to grayscale. Figure 6 shows an
example image after the preprocessing.

Most parameters used in this study are set to the same
values for all three datasets: (1) in Initial Segmentation,
vl = 07, v2 = 04 and A, = 0.1; (2) in Probabil-
ity Inference, &1 = 0.6 and oy = 0.4; (3) in Appearance
Feature, the number of histogram bins is 64, and the num-
ber of feature words is 12; and (4) in Contour Refinement,
y1 = 0.25, 5 = 1 and A, = 0.25. While these settings are
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chosen empirically, using a common setting for all three
datasets suggests that the method is robust to different
image acquisition and manual tuning of parameters can
be minimal. There are only two dataset-specific parame-
ters. One is the patch size in Appearance Feature, which
is 8 x 8 pixels for datasets 1 and 2, and 4 x 4 pixels for
dataset 3. The smaller size for dataset 3 is chosen due to its
smaller cell nuclei compared to datasets 1 and 2. The other
parameter is C in Initial Segmentation, which is set to 128
for datasets 1 and 2, and 64 for dataset 3. This ensures the
contrast enhanced images in dataset 3 would not become
too bright to cause distortion.

For dataset 1, four representative images are selected
to train two SVM classifiers, for the cell-cluster differ-
entiation and candidate identification. While testing is
performed on all images to make the results directly
comparable with the state-of-the-art [14,38], we note that
the testing results are not sensitive to the selection of
training data, with very similar testing results observed
based on different training sets. Similar procedures are
performed for dataset 2. For dataset 3, in order to have
comparable performance evaluation with [32,35], half of
the images are used for training (images # 2, 3, 4, 5, and 7)
and the rest for testing.

Figure 6 Example localization results. The top row from dataset 1, the middle row from dataset 2 and the bottom row from dataset 3. (a) Image
with ground truth contours in orange. (b) Results using our proposed RPL method. (€) Results using OT. (d) Results using LS.
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Table 2 Detection results

Page 10 0f 16

Dataset 1 Dataset 2 Dataset 3
S-1 S-2 S-3 S-1 S-2 S-3 S-1 S-2 S-3
R 0.967 0.973 0.975 0.814 0.834 0.886 0.734 0.770 0.957
p 0.929 0.935 0.940 0933 0.941 0.955 0915 0.941 0.975
A 0.908 0914 0916 0.769 0.792 0.852 0.691 0.736 0.934

After initial segmentation (S-1), decluster processing (S-2), and contour refinement (S-3).

We evaluate the localization of cell nuclei by two mea-
sures. First, performance of object-level detection is eval-
uated by recall (R), precision (P), and accuracy (A):

R = TP/(TP + EN) (15)
P = TP/(TP + FP) (16)
A = TP/(TP + EN + EP) (17)

where TP, FN, and FP are the numbers of true positive,
false negative and false positive detections of cell nuclei.
Given a detected region O, and the ground truth mask
Oy, if the overlap ratio R(Oy) is at least 0.5:

R(Og) = 10g N Ogt|/104 U Ogt| (18)

then the detection is considered TP [51]; and correspond-
ingly FN and FP are determined.

Second, the segmentation performance is evaluated by
both region- and contour-based measures, including Dice,
normalized sum of distances (NSD) and Hausdorff dis-
tance (HD):

Dice = 2|F N M]|/(|F| + |M|) (19)
NSD= ) D)/ ) D) (20)
u;e(FAM) w;e(FUM)
HD = max D(u;) (21)
u;i€dF

Here F represents the foreground pixels identified, M
is the ground truth mask, and D(x;) is the minimal
Euclidean distance of pixel ; to M of the corresponding
reference nuclei, with 9 indicating the contour.

We have compared with popular cell imaging segmen-
tation techniques, including Otsu thresholding, k-means
clustering and watershed [8]. Furthermore, in view of the
popularity of level set for cell imaging and our design on

Table 3 Segmentation results

tackling the intensity inhomogeneities, we have experi-
mented with a level set method that has a similar focus,
using the authors’ released code [52], with initial contours
generated using watershed method. For all methods, post-
processing is conducted to remove isolated segments that
are smaller than 1/10 of the average size of foreground
regions detected in the image. In addition, we report
direct performance comparisons with the state-of-the-art
results reported on the same datasets [14,32,35,38], by
including the same performance measures as used in these
works.

Results and discussion

Cell detection

We report the object-level detection results in Table 2.
Comparing the results at various stages of the methodol-
ogy, the improvement is larger on dataset 2 than dataset
1, e.g. 8.3% increase in detection accuracy on dataset 2
vs 0.8% increase on dataset 1. This is because inhomo-
geneity is more prominent on dataset 2 while dataset 1
exhibits clearer contrast between the cell nuclei and the
background in most images. In our evaluation, a detection
is only considered as TP if the overlap ratio in Eq. (18) is
at least 0.5. Therefore, a largely over- or under-segmented
object would be counted as FN for the second stage,
and corrected after the contour refinement. This explains
why although cell nuclei are detected after the decluster
processing, the recall results only improve significantly
after the third stage. On dataset 3, the presence of cyto-
plasm causes many cell nuclei to clutter into one region
during the initial segmentation; this leads to FN. The
third stage better differentiates the cell nuclei and cyto-
plasm, and the improvement is significant with 18.7% and
3.4% increase in detection recall and precision. Figure 7a
gives a better overview of the overlap ratios obtained

Dataset 1 Dataset 2 Dataset 3
S-1 S-2 S-3 S-1 S-2 S-3 S-1 S-2 S-3
Dice 0.948 0.954 0.958 0.847 0.876 0.906 0.815 0.853 0.924
NSD 0.026 0.023 0.017 0.175 0.141 0.090 0338 0327 0.052
HD 10.72 10.60 10.01 2255 20.76 14.10 20.96 18.03 551

After initial segmentation (S-1), decluster processing (S-2), and contour refinement (S-3).
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Figure 7 Cell detection results. Histograms with y-axis as numbers from per 100 cell nuclei, and x-axis as (a) the object-level overlap ratio and (b)
the Hausdorff distance, both between the segmented foreground and ground truth.
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from the final localization outputs. While most cell nuclei
exhibit ratios not less than 0.5, less optimal results are
observed on dataset 3 again due to the influence from the
cytoplasm.

The performance improvement introduced by the iter-
ative process of interleaving interest region extraction
and image enhancement are shown in Figure 8a. The
higher recall (i.e. on average 3.6% increase) suggests that
such an approach is especially useful for identifying fore-
ground regions that originally display low contrast from
the background. The benefits of having candidate val-
idation are shown in Figure 8b. By filtering out inter-
est regions that are very different from the reference
regions, the detection precision thus improves by on aver-
age 2%. The recall improves by on average 0.7% only,
mainly because of the same constraints imposed by the
overlap ratio.

To evaluate the effect of the default threshold setting o
for candidate validation, the receiver operating character-
istics (ROC) curves are plotted by varying the threshold
value. The probability estimates Q(Gy, F)/ max, Q(Gy, F)
from all candidate regions are included in the plot, and
candidate regions with at least 0.5 overlapping ratio with
the ground truth are marked as foreground class and the
rest as the background class. As shown in Figure 9, the
0.6 threshold setting provides a good balance between the

TP and FP detections, with close to maximum TP rates.
Note that the numbers of true negatives here are small
(about 1/5 of positive samples), hence the FP rates appear
relatively high.

Nucleus segmentation

Table 3 summarizes the region- and contour-based seg-
mentation results. On datasets 2 and 3, the declus-
ter processing improves the Dice measure by about 3%
and 4%, due to better object-level labeling of candi-
date regions. The contour-based measures, however, are
mainly enhanced at the third stage of the methodology,
with on average more than half reduction in NSD and
HD. This is attributed to better contour delineations based
on the detection results from the first two stages. Besides
the mean values listed in the table, the distributions of
Hausdorff distances on the final localization results are
also shown in Figure 7b.

To further evaluate the design of the graphical model
for contour refinement, the foreground probabilities for
all pixels of interest are computed with the intensity
term, as summarized in Figure 10. While many pixels
exhibit suitable probabilities, some background pixels,
especially those in datasets 2 and 3, have larger fore-
ground probabilities and would lead to misclassification.
The pixel-level classification is improved by introducing
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a

Figure 8 Cell detection results. Improvement on detection from (a) iterative image enhancement and interest-region extraction, and (b)

candidate validation.
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Figure 9 ROC curves of candidate validation. The purple dots
indicate the position with the decision threshold ey = 0.6.

the contrast-based detection and spatial terms, as shown
in Figure 11.

Performance comparison

The localization results using the standard approaches
are listed in Table 4, with example outputs shown in
Figure 6. Compared to our proposed method, the level
set and watershed techniques produce the second best
results for dataset 1, especially with good contour-based
measures. However, without explicitly handling high-
intensity background regions, both methods result in
about 3% lower detection precision. On dataset 2, our
proposed method demonstrates stronger advantages, with
8.5% increase in detection accuracy,10.2% increase in Dice
coefficient and 10.8 decrease in HD over the second best
approach (i.e. level set). Both the level set and watershed
approaches face the following challenges: (1) difficulty
separating cell nuclei from surrounding background areas
with low contrast, and (2) incapability of classifying back-
ground regions that resemble cell nuclei. On dataset 3, the
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intensity inhomogeneities within the cell nuclei and the
cytoplasm make it particularly difficult to achieve good
segmentation. As a result, the watershed method tends
to largely over-segment the cell nuclei, generating many
clusters and cause low detection recall and more errors
in contour delineation. The level set method based on
localized energy optimization is quite effective in split-
ting the clusters, but is less optimal for areas with high
similarity between the cell nuclei and cytoplasm. The
thresholding method does not perform as well as the
level set or watershed approaches, but it does outperform
the clustering-based approach. Compared to level set,
our method achieves 7% increase in detection accuracy,
2.7% increase in Dice coefficient and 1.8 decrease in HD.
Tables 2, 3 and 4 show that our proposed method delivers
better localization even using only the initial segmenta-
tion step. Higher performance margins are obtained with
decluster processing and contour refinement, especially
on datasets 2 and 3.

A comparison with the state-of-the-art results reported
for the same datasets is summarized in Table 5. Our
method achieves better results in most measures, as
bold-faced in the table. On dataset 1, 0.93 more FP cell
nuclei are detected compared to the level set method
[14]. Tt is possible that such false detections are caused
by accidental highlighting of background regions during
the iterative image enhancement for the initial segmen-
tation stage. However, our method exhibits overall much
better detection performance with minimal numbers of
FNs (3.68 fewer than [14]) and only 1.43 FPs. The accu-
racy of pixel-level segmentation on dataset 2 improves
significantly, as indicated by the 5% increase in Dice
and Rand indices over [14]. 4.1% performance improve-
ment of object-level accuracy over [35] on dataset 3
is also obtained. These observations suggest that our
method is indeed quite effective in handling the inten-
sity inhomogeneity issue that is the major cause hin-
dering satisfactory segmentation on datasets 2 and 3.
The improvement on the contour-based measures, i.e.
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Figure 10 Nucleus segmentation results. Histograms with x-axis as the foreground probability derived from the intensity term,and y-axis as the
numbers from per 100 pixels in G for (a) the real cell nuclei and (b) background.

80
2 60 I W Dataset1
“
g M Dataset 2
240 -
§ Dataset 3
$20
[-9
2%

0 ll,-l_.l__l.,J_ . J

010203040506070809 1
pr{ui,F)




Song et al. BMC Bioinformatics 2013, 14:173
http://www.biomedcentral.com/1471-2105/14/173

Page 13 of 16

0.5 0.12
o4 ‘ m Dataset 1 W Dataset1
03 1 mDataset2 0.08 m Dataset 2
Dataset 3

0.2 - Dataset 3
o2 | 0.04 | l

O ! - — - O T -— B o

Dice NSD HD/10 Dice NSD HD/10
a b

Figure 11 Nucleus segmentation results. Improvement on segmentation from (a) contrast-based detection term and (b) spatial term.

on average 0.03 NSD decrease and 1.45 HD decrease
over [14], also demonstrate the suitability of boundary
delineation using region-based designs, i.e. the salient
region extraction and graphical model-based contour
refinement.

Our method is currently implemented in Matlab, run-
ning on a standard PC with a 2.66-GHz dual core CPU
and 3.6 GB RAM. The computational time is related to
the number of cells and the size of cells in an image. On a
1344:x 1024 pixel image with about 40 cell nuclei, an aver-
age 35 s is needed for the entire localization process. This
is faster than applying the level set method [52], which
requires about 45 s with 10 iterations.

Conclusions

A fully automatic localization method for cell nuclei in
microscopic images is presented in this paper. Intensity
inhomogeneities in cell nuclei and the background often
cause unsatisfactory localization performance. Not many
works have been reported to address this problem in a
robust manner. We propose a method that exploits var-
ious scales of data-adaptive information to tackle the
intensity inhomogeneity. First, the regions of interest, i.e.
cell nuclei or clusters, are extracted as salient regions
with iterative contrast enhancement. Then with feature-
based classification and reference-based probability infer-
ence, the clusters are further processed to detect more

Table 4 Comparison of localization results

Dataset 1
R P A Dice NSD HD
RPL 0.975 0.940 0.916 0.958 0.017 10.01
or 0.928 0.807 0.767 0.876 0.068 1752
KM 0.758 0.657 0.626 0.727 0.237 19.11
S 0.974 0915 0.893 0.945 0.022 11.21
LS 0.970 0.910 0.886 0.932 0.022 9.58
Dataset 2
R P A Dice NSD HD
RPL 0.886 0.955 0.852 0.906 0.090 14.10
oT 0.598 0.750 0.530 0.601 0419 36.72
KM 0.508 0.601 0437 0.521 0.503 134.5
WS 0.714 0.817 0.636 0.789 0337 4767
LS 0.832 0.899 0.767 0.804 0.207 24.96
Dataset 3
R P A Dice NSD HD
RPL 0.957 0.975 0.934 0.924 0.052 5.51
oT 0.712 0.961 0.685 0.873 0.188 31.80
KM 0.722 0.824 0.604 0.872 0.189 38.12
WS 0.584 0.989 0.575 0.819 0335 34.53
LS 0914 0.939 0.865 0.897 0.094 735

Comparison between our proposed region-based progressive localization method (RPL), Otsu thresholding (OT), k-means clustering (KM), watershed (WS) and level

set [52] (LS).
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Table 5 Comparison with the state-of-the-art results
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Dataset 1
Dice Rand NSD HD Add Miss
RPL 0.958 0.959 0.017 10.01 143 0.12
[14] 0.94 - 0.05 128 0.5 3.8
[38] - 0.94 0.086 95.8 1.6 43
Dataset 2
Dice Rand NSD HD Add Miss
RPL 0.906 0.932 0.090 14.10 1.47 1.17
[14] 0.85 - 0.12 14.2 2.8 6.1
[38] - 0.88 0.29 134.1 33 3.8
Dataset 3
Pix Obj
RPL 0.862 0.934
[32] 0.851 0.840
[35] 0.856 0.893

'~ means not available.

cell nuclei and filter out spurious regions. Lastly, based
on regional contrast information encoded in a graphical
model, the pixel-level segmentation is enhanced to create
the final contours. This region-based progressive localiza-
tion (RPL) method has been successfully applied to three
publicly available datasets, showing good object-level
detection and region- and contour-based segmentation
results. Compared to popular approaches in this problem
domain such as level sets, our method achieved consis-
tently better performance, with on average 5.2% increase
in Dice coefficient and 6% increase in object-level detec-
tion accuracy. Our method also outperformed the state-
of-the-art with on average 3.5% and 7% improvement of
region- and contour-based segmentation measures. We
also suggest that the proposed method is general in nature
and can be applied to other localization problems, as long
as the objects of interest can be modeled as salient regions
with measurable contrast from the background.

As a future study, we will investigate improving the
graphical model for better contour delineation. A poten-
tial approach is to incorporate an additional term as
the cost of difference between the model image and the
measured image, as inspired by [24]. The model image
could be derived as a convolution of a point-spread func-
tion of the microscope with an object intensity function
defined based on the pixel labels. We will also investigate
replacing the pixel-wise labeling with region-level pro-
cessing for computational efficiency while maintaining the
segmentation accuracy. Other future work could explore
the applicability of the proposed method on other types
of images. Images with nuclear membrane marker and
different nuclear markers such as the green fluorescent

protein (GFP), and those with higher resolution or dimen-
sion, are of particular interest. To accommodate the spe-
cific characteristics of these images, possible changes to
the method are to design more comprehensive intensity
and texture features to differentiate among cell structures
and background, and to enhance the contour refinement
with boundary constraints.
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