Ruths and Nakhleh BMC Bioinformatics 2013, 14:192
http://www.biomedcentral.com/1471-2105/14/192

BMC
Bioinformatics

METHODOLOGY ARTICLE Open Access

Boosting forward-time population genetic
simulators through genotype compression

Troy Ruths” and Luay Nakhleh

Abstract

that would cripple existing tools.

memory usage.

Background: Forward-time population genetic simulations play a central role in deriving and testing evolutionary
hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling
them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node.

Results: We develop a novel and general method for addressing the memory issue inherent in forward-time
simulations by compressing and decompressing, in real-time, active and ancestral genotypes, while carefully
accounting for the time overhead. We propose a general graph data structure for compressing the genotype space
explored during a simulation run, along with efficient algorithms for constructing and updating compressed
genotypes which support both mutation and recombination. We tested the performance of our method in very
large-scale simulations. Results show that our method not only scales well, but that it also overcomes memory issues

Conclusions: As evolutionary analyses are being increasingly performed on genomes, pathways, and networks,
particularly in the era of systems biology, scaling population genetic simulators to handle large-scale simulations is
crucial. We believe our method offers a significant step in that direction. Further, the techniques we provide are
generic and can be integrated with existing population genetic simulators to boost their performance in terms of

Background

Forward-time population genetic simulators are critical
research tools in evolutionary biology, as demonstrated by
both the growing number of available simulators and the
collection of high-impact studies that employ them [1].
These simulators allow for in-silico generation and test-
ing of evolutionary hypotheses that would otherwise be
intractable to generate or test in a laboratory setting due
in large part to the nature of the process. Evolution “is
a loose and complex process, the result of a number of
interacting, individually weak forces with many alternative
outcomes” [2]. Consequently, forward-time simulators are
ideal for tinkering with these weak forces—changing the
ones that are modeled and their relative strengths or
rates—in order to observe the many alternative evolution-
ary outcomes. Unlike backward, or coalescent, approaches
to evolutionary analysis, forward-time simulators can

*Correspondence: troy.ruths@rice.edu
Department of Computer Science, Rice University, Houston, USA

() BiolVled Central

handle the growing bevy of known evolutionary processes
and environments [3].

But forward-time simulations have their limitations: a
critical design pivot exists around execution speed, mem-
ory usage, and flexibility [1]. Available simulators necessi-
tate a trade-off between flexibility and speed for realistic
simulations to be feasible, and often require the user to
adjust the evolutionary scenario to fit the capability of
a certain simulator using scaling factors. This results in
a large collection of simulators that require a decision
flowchart to choose an appropriate simulator [4]. For
example, methods were recently developed to increase
the execution speed of simulations; however, these gains
in speed come at the expense of reduced flexibility [5].
Because forward-time simulations track complete ances-
tral information, including all alleles which arose but were
lost, the imposed computational burden limits the poten-
tial scope of the problem [3]. Even leveraging rescaling
techniques that they employ, such as altering the input
parameters to diminish the population size and number of

© 2013 Ruths and Nakhleh; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Ruths and Nakhleh BMC Bioinformatics 2013, 14:192
http://www.biomedcentral.com/1471-2105/14/192

generations, to improve computational efficiency does not
evade this critical issue of computation time and mem-
ory usage. Simulating large sequences on the order of 10
Mb “tends to make forward simulators crash due to mem-
ory usage” [3], which is compounded by the stochastic
and unpredictable nature of these simulations. Further,
more complex genotypes, such as protein and RNA struc-
tures, regulatory pathways, and epigenetic mechanisms,
are studied using forward time simulators [6,7]. Although
current simulators exist for efficiently simulating large
genomic regions — FREGENE, SimuPOP, or GenomePop
— the memory management techniques do not extend
to arbitrary genotype representations like pathways or
metabolic networks or other mutation types like inser-
tions or rearrangements [8,9]. For instance, SimuPop pro-
vides a compression module which efficiently encodes
long sequence regions with rare mutant variants [10].
In addition, general lossless data compression algorithms
cannot scale to forward-time simulator scenarios where
very large (> 100 MB) data strings must be compressed
and decompressed thousands of times per generation for
thousands or millions of generations. Compression and
decompression that require on the scale of minutes —
as is the case for general lossless compression algorithms
— is completely infeasible as a general solution. Ulti-
mately, the constraint on memory is a major roadblock to
the application of forward-time simulators to both com-
plex biological structures and processes and large problem
scopes.

In this work, we develop novel methods for addressing
the memory issue inherent in forward time simulations
by compressing, in real-time, active and ancestral geno-
types. We propose algorithms which can be implemented
in any current simulator and are independent of the evo-
lutionary model (our algorithms work for both the Moran
and Wright-Fisher models). Specifically, our contributions
are two-fold: the operation graph, a compression data
structure for forward-time simulators, and Greedy-Load,
an algorithm for improving the decompression perfor-
mance of the operation graph by managing a strategic
cache. The algorithms we present work equally to com-
press the whole ancestral information or just the active
alleles of a simulation. Compressing the ancestral infor-
mation of extant genotypes retains important information
that would otherwise be lost without our compression
algorithm.

Computer simulations have long played a central role
in deriving and testing hypotheses in evolutionary biology
and population genetics. Thus far, population genetic sim-
ulations have for the most part employed either abstract
genotype constructs or very short sequences. As biology
ushered in the post-genomic era, and more specifically
the systems biology era, understanding whole systems and
organisms has leaped to the forefront of research. The

Page 2 of 12

availability of data from different species, and even dif-
ferent individuals in a population, has led to efforts to
incorporate evolutionary analyses in systems biology [11]
and synthetic biology [12]. To scale population genetic
simulators to this new era, where genotypes can encom-
pass an entire genome, interactome, or organism, it is
imperative to address the computational requirements
of existing simulators so as to enable handling such
large-scale genotypes and flexible genotype representa-
tions. Our work offers a significant step in this direction.
Further, our methods are generic so as to allow inte-
gration with other existing, popular population genetic
simulators.

Methods

In this work, we propose a real-time compression
algorithm for reducing the memory footprint of a
forward-time population genetic simulation, composed of
two components: the compression technique (operation
graph) and the decompression accelerator (Greedy-Load).
The operation graph represents each genotype by the
sequence of evolutionary events that gave rise to it, and
Greedy-Load maintains a “small” set of explicit genotypes
that accelerates the decompression of compressed geno-
types in the operation graph. Whenever the simulation
or analysis requires access to the genotype information,
genotypes can be retrieved on-the-fly by applying the evo-
lutionary events to an explicitly represented genotype. We
now describe the algorithm and data structure we use
in detail, including the decision on which genotypes to
represent explicitly, how to decompress a genotype, and
how to build/augment the compression data structure. We
begin with the compression technique, which we call the
operation graph.

The operation graph
As evolutionary operations — such as mutation or recom-
bination — occur in the population genetic simula-

tion, the dependency of each operation on the previous
genetic history is encoded in the operation graph
(OG). Operations are stored as nodes in the OG, a
directed acyclic graph (DAG) structure, where opera-
tions with one incoming edge correspond to mutations
and with two incoming edges correspond to recombi-
nations. Each operation that arises over the course of
the simulation is encoded as a distinct node in the
OG, along with the genetic material produced by the
operation.

Let F denote the set of evolutionary operations allow-
able in a simulation, and let G denote the set of genotypes
that arise during a simulation. For mutational evolution-
ary events, each element op € F is a function op
G x ® — §, where op(4,¢) = C denotes that geno-
type C is the result of applying evolutionary event op to

Ruths and Nakhleh BMC Bioinformatics 2013, 14:192
http://www.biomedcentral.com/1471-2105/14/192

genotype A with parameters ¢. However, for recombina-
tion, op € Fisa functionop : G x G x & — G,
where op(A, B,) = C denotes that C is the result of a
recombination event involving genotypes A and B, with
parameters ¢.

For example, if we take ¢ = (base-pair-
mutation,3,T) and apply it to genotype A =
ACCAAAT, we obtain genotype C = ACTAAAT,
since the operation applied to A is a base-pair muta-
tion that substitutes nucleotide 7 in the third posi-
tion. Since different evolutionary events have different
types of parameters, in addition to the “input” genotypes
A and B, we abuse notation, for the sake of simplic-
ity, and use op as a function from G to G for muta-
tion and G x G to G for recombination—additional
parameters ¢ for applying op should be clear from the
context.

The operation graph (OG) is a rooted, labeled, weighted
DAG OG = (V,E, ¢, f,w,c), where

1. Vis the set of nodes;

2. E C V x V is the set of edges;

3. £:V — (G U {nil}) is the genotype labeling function
with the constraint that {v € V : £(v) # nil} # 0;

4. f:V — F is the operation labeling function;

5. w:V — Ris the weight function such that w(v), for
node v € V, is the frequency of the genotype £(v); and

6. c¢:V — Risthe cost function such that c¢(v), for
node v € V, is the non-negative computational cost
of applying the operation f(v).

A node v is called explicit if £(v) # nil. That is, an explicit
node corresponds to a genotype that is not compressed.

For a node x € V, we denote by Anc(x) C V the set
of all Jowest explicit nodes betweenx and the root of OG,
where a node y is lowest if no explicit node z (z # x and
z # y) resides on a path between y and x. In particular,
if x is explicit, then Anc(x) = {x}. The set of active nodes
in an OG, denoted by A(OG), is all nodes whose cor-
responding genotypes have non-zero frequency; that is,
AOG) ={ve V:w() # 0}

Novelty of the operation graph

The OG is a compression technique similar to LZ77
with edit operations and uses a structure similar to the
Ancestral Recombination Graph (ARG), a phylogenetic
structure that describes the evolutionary history of a set
of genetic samples [13-15]. The LZ77 algorithms replace
repeated occurrences of data with references to a single
copy of that data existing earlier in the input data stream.
In our case, instead of repeated occurrences, we replace
“evolutionary related occurrences’, such that we keep
track of homologous, rather than identical, genotypes.

Page 3 of 12

For instance, if “ACCCT” evolved from “ACCGT’, only
one instance is explicitly saved. Further, the operation
graph is implicitly produced by forward time population
genetic simulators, whether or not it is explicitly stored;
whereas for LZ77, the identification of previous, simi-
lar strings is the bulk of the computational work in its
implementation. Lastly, while LZ77 is a general compres-
sion scheme, the operation graph is biologically moti-
vated, and in general, applies to scenarios where data
evolves in a population, so that occurrences of data can
be related to each other through evolution and this relat-
edness is used in the compression. For instance, it is
not clear how LZ77 would handle the forking replace-
ment dependencies incurred through processes like
recombination.

While both the OG and ARG employ a DAG, the sim-
ilarity between the two almost ends there. An ARG pro-
vides an explicit model of the evolution of a set of genetic
sequences, mainly under point mutations and recom-
bination [15]. The mutational model is often assumed
to be the infinite sites, but more recent work has con-
sidered finite-site models as well [16]. On the contrary,
the OG is an implicit representation of a set of related
genetic information, where mutations and recombina-
tions can be general (ranging from point mutations to
insertions/deletions to genomic rearrangements). Further,
while ARGs model the evolution of genetic sequences
in a population setting, the OG is defined for arbitrary
genotypes. A case in point is our recent population-
level analysis of regulatory networks in E. coli, where the
OG was defined over genotypes consisting of regulatory
networks [17].

Updating the operation graph

Whenever a new genotype C arises from existing geno-
types A and B through a recombination operation op, the
operation graph is updated by (1) adding a new node « to
V, (2) adding new edges e; = (x,u) and e2 = (y,u) to
E, where x and y are the nodes that correspond to geno-
types A and B, respectively, and (3) setting f(x#) = op. In
terms of £(u), it can be set to nil or to the new genotype
C; we discuss below the choice we make in our algo-
rithm. If the operation is a mutation, then only a single
new edge is added in Step (2). The cost of op, or c(u),
can be set based on the type of operation (e.g,, insertion,
base mutation, deletion, recombination) or the input to
the operation ¢. In the case of recombination, the order-
ing of the two parents is handled at the implementation
level.

Whenever a genotype A is lost from the population, the
operation graph is updated only when when the node x
that corresponds to genotype A is a leaf node in OG. In
this case, the algorithm identifies the set ¥ where each
node y € Y is the lowest node on a path from the root to

Ruths and Nakhleh BMC Bioinformatics 2013, 14:192
http://www.biomedcentral.com/1471-2105/14/192

x that is either active, of out-degree 2, or the root of OG.
Once node set Y is identified, allnodes on the path from
y € Y to x, excluding y, and all edges on that path, are
deleted from OG. If x is not a leaf node, no update is done,
since some active genotypes may be “under” it.

Measures of the operation graph quality

Given the graph OG, the genotype in every node can be
decompressed; that is, for every node x with £(x) = nil,
the explicit value of £(x) can be computed by traversing
the path, or paths, from x to nodes in Anc(x) and applying
the corresponding operations. The decompression cost for
a given node x, denoted by cost(x), is

cost(x) = Z c(v),

v

where the sum is taken over all nodes that resides on paths
between nodes in Anc(x) and x. For a pair of nodes x and
y, where y is on the path from a node in Anc(x) to x, we
define the cost of decompressing node x by using infor-
mation on the way from y to it, as cost(x,y) =)_,c(v),
where v ranges over all nodes on the path from y to x
(cost(x,y) = 0if y is not on any path from a node in Anc(x)
to x).

Further, the load of a node x (or, the corresponding
genotype) is given by

load(x) = Z w(y) - cost(y,x),

yel(x)

where U(x) denotes the set of all nodes in OG that are
under node x and require node x for decompression.
Notice that for two operation graphs OG; and OG; whose
underlying graphs are isomorphic and node labelings are
identical, it may be the case that cost(x) based on OG; is
different from cost(x) based on OGs.

If we denote by C(V) = {v € V : £(v) # nil}, which is
the set of uncompressed genotypes, then no compression
is achieved when C(V) = V, and maximum compres-
sion is achieved when C(v) = {r} for the root node r of
graph OG. The time it takes to access the explicit geno-
types is effectively the time it takes to decompress all the
compressed genotypes.

Compression algorithms

The set C(V) of an operation graph OG is at the core of
the space-time trade-off here: the larger C(V), the more
space is consumed and the less time is required to access
the explicit genotypes, and the smaller C(V), the less
space is consumed and the more time is required to access
the explicit genotypes. Therefore, a central task here is
to determine the set C(V') that would minimize the load
of an operation graph. Here, we describe several com-
pression algorithms for this task, one which is the main

Page 4 of 12

contribution of this paper — Greedy Load — and the
others which are used for performance comparison.

Greedy-Load

In Greedy-Load, the inputs, in addition to the operation
graph OG, are k, which is a pre-specified bound on the
desirable size of C(V), and ¢, which is the number of gen-
erations elapsed between updates of the set C(V). This
algorithm assumes that load(x) for all x € V is implic-
itly calculated and updated whenever the membership of
C(V) changes.

In a nutshell, Greedy-Load seeks to advance the set
C(V) towards the leaves and active alleles of the OG by
greedily caching genotypes with high levels of load. We
define the utility function advance(x) which maximally
“advances” the decompression from x towards the leaves
of the OG:

1. let node y € U(x) U {x} be the highest node that is
either:

(a) aleaf,
(b) has non-zero weight (frequency), or

(c) has at least two children each of which has
non-zero load and is not in C(V);

2. decompress the genotype corresponding to node y
and set £(x) = nil.

The Greedy-Load algorithm applies the following two
steps on a given operation graph OG every ¢ gen-
erations in the simulation (in the first application of
this algorithm, we set C(V) = {r}). In the first
step, nodes that are no longer needed for decompres-
sion — load(x) = 0 — are compressed, otherwise
the decompression is advanced towards the leaves of
the OG. In the second step, nodes are added to C(V)
by decompressing the max-load child of the max-load
cached node.

1. For each node x € C(V):

(a) ifload(x) = 0and |C(V)| > 1, set £(x) = nil,
or
(b) if load(x) > 0, perform advance(x).

2. Add nodes to C(V) until |C(V)| = k or no other
nodes may be added. Let node x € C(V) have
maximum load in C(V) and node y be the max-load
child of x, at each iteration

(a) decompress the genotype corresponding to
node y, and

(b) perform advance(y) and advance(x).

Ruths and Nakhleh BMC Bioinformatics 2013, 14:192
http://www.biomedcentral.com/1471-2105/14/192

Page 5 of 12

—
NN
[\

~

/
[
\

J

K

Q
©)

© O

©

w
I

O Compressed D Cached

execution can be found in the Example execution section in the Methods.

[
Load

O[] reive

Figure 1 Example execution of Greedy-Load. An example execution of Greedy-Load is illustrated on an abstract operation graph. Each node a-/
represents a distinct genotype (or allele) and each edge depicts evolutionary descent by mutation (one parent) or recombination (two parents). The
actual genotype representation could be a sequence or pathway. Genotypes may be compressed (O), cached (O) or active (=). The load of each
genotype is depicted as the background color, with darker colors corresponding to greater load. Sequential steps taken by the Greedy-Load
algorithm are illustrated from left to write, showing the incremental changes that update the set of uncompressed genotypes from {a, c} in Panel 1
to {e, g, h,i} in Panel 4. Dashed arrows within each step illustrate which genotypes are compressed and uncompressed. For instance, in Panel 2, d is
uncompressed (cached) and a is compressed. For this example, the total number of cached genotypes k is 4. A complete description of this

Example execution Assume an OG as illustrated in
Figure 1, composed of 12 operations labeled a to [con-
nected by 12 edges. Node a is the root and nodes j,k e,
and [are leaves. All nodes are mutation operations except
for d, which is a recombination operation with inputs
bandec.

Panel 1 in Figure 1 depicts the OG prior to the execu-
tion of Greedy-Load. All leaves correspond to genotypes
that are active in the population in addition to the inter-
nal node i. This example walks through the application of
Greedy Load with k = 4.

In Panel 2, the first step of Greedy-Load ‘advances’ the
decompression from a towards the leaves. In this case,
node d has two children, g and 4, each of which has non-
zero load and is compressed. Because node ¢ does not
require a for decompression, it is not in the set of nodes
considered in advance(a). Because node ¢ has two com-
pressed children with non-zero load, it is not possible to
advance the decompression from ¢ towards the leaves, so
nothing is done.

In Panel 3, assume load(c) > load(d) and load(f) >
load(e), so f is decompressed and advance(f) is per-
formed, which results in decompressing i. Because i cor-
responds to a genotype that is active in the population,
i may generate decompression requests, and so decom-
pression cannot progress down the OG. In addition to
advance(f), advance(c) is also performed, which results in
the decompression of e because ¢ has only one child with
non-zero load.

In Panel 4, because C(V) < 4 and load(d) > load(i),
node g is decompressed and advance(g) and advance(d)
are performed. Because g has two compressed children
with non-zero load, decompression cannot be advanced
further down the OG; however, because 4 only has one
compressed child with non-zero load (since g is now
decompressed), then d is compressed and / is decom-
pressed. At this point, C(V) = {e, g, &, i} and the applica-
tion of Greedy-Load is complete.

In more realistic simulation scenarios, the OG is both
much wider and taller than presented in this simple exam-
ple execution, so we visualized the execution of Greedy-
Load on more complicated OG topologies (see Additional
file 1). In this animation, the evolution of the OG is visu-
alized along with the set C(V) for scenarios with low and
high recombination rates.

Other compression algorithms

In order to measure the performance of Greedy-Load, we
defined two additional compression policies that make
fast, but potentially poor (in terms of memory and exe-
cution speed), explicit representation decisions. Unlike
Greedy-Load, these simple comparison compression algo-
rithms or policies do not require knowledge of the entire
operation graph to select the explicitly stored genotypes.
Current simulators store active genotypes that arise dur-
ing the course of a simulation; we refer to this policy as
Store-Active. The alternative is to store only the root geno-
type(s) in the operation graph, which we call Store-Root.

Ruths and Nakhleh BMC Bioinformatics 2013, 14:192
http://www.biomedcentral.com/1471-2105/14/192

More formally, for an operation graph OG = (V,E, {,w),
we have:

e Store-Active: set C(V) = A(OG).
e Store-Root: set C(V) = {r: ris aroot node in OG}.

Implementation

We implemented a population genetic simulator and the
compression algorithms in C++, which can be used as
a development library or a command line tool. It is
important to note that we used explicit memory manage-
ment, rather than garbage collection, for genotype data
structures, so memory usage metrics are honest measure-
ments of allocated memory. The emphasis in this work
is on the compression algorithm rather than the imple-
mentation of a memory-bounded forward-time popu-
lation genetic simulator. We did not find any existing
simulator with a software architecture that allows for
integrating (without completely overhauling the imple-
mentation) a memory management policy, such as the
ones we propose here: hence, our choice to imple-
ment our algorithms independently of existing simula-
tors. However, we still provide a command line tool
which, in addition to taking flexible input parameters,
provides an example for how the compression tech-
niques in this paper may be integrated into a pre-existing
simulator.

To improve the performance of the population genetic
simulation with a memory-managed genotype heap, we
implemented both partial and batch decompression.
In partial decompression, rather than uncompressing a
100,000 bp sequence to access only 10 bp, we imple-
mented intelligent decompression which could retrieve
randomly accessed locations without decompressing the
entire sequence. Because each operation in the OG stores
meta-data associated with its application (such as loca-
tions and mutations), we implemented operations such
that they can be applied on the entire sequence or
on a given index. In batch decompression, we imple-
mented the population genetic simulator such that it
reduces the data requests of a particular genotype. For
instance, during a mutation event involving multiple base-
pair changes, the genotype is uncompressed once and
used repeatedly rather than uncompressed with each base
pair change.

Because calculating load on the OG may be a costly
exponential calculation, we tracked the number of data
requests per operation as a proxy for load. For all opera-
tions in the OG, the number of data requests are set ini-
tially to zero and increment during the population genetic
simulation. The number of data requests increments
by one when the population genetic simulator requires
the decompression of its corresponding genotype, which
may occur during the calculation of a mutation event,

Page 6 of 12

recombination event, or fitness value. Data requests on
compressed genotypes propagate up the OG to the most
recent uncompressed operations. Consequently, geno-
types with higher frequencies in the population will tend
to generate more data requests than low frequency geno-
types, and so we can use the number of data requests as
a proxy for load. However, there may be operations with
non-zero load but no data requests: for instance if during
time period ¢ an active genotype is not mutated or if par-
tial decompression does not propagate to both parents of
a recombination event. Therefore, we maintain a boolean
flag that indicates if a particular operation is required for
the decompression of some active genotype, which we use
in place of ‘non-zero load’ . It is important to note that the
calculation of this boolean flag requires O(n), where n is
the number of nodes which are required for the decom-
pression of some active genotypes. Lastly, during the exe-
cution of Greedy-Load, the number of data requests for an
operation may be reset (step 1) or decremented (step 2),
accordingly.

To demonstrate that our approach is generally appli-
cable to various choices of genotypes, we implemented
two very different genotype models: a DNA sequence
(represented by strings) and a regulatory pathway
model(represented by graphs). In terms of memory allo-
cation, a DNA sequence of length L occupies L bytes
and a pathway of k genes occupies roughly k> bytes.
For the DNA model, we implemented four evolution-
ary events (that is, operations in the set F): point
mutations (), sequence insertions (u;), sequence dele-
tions (u,), and sequence crossover (c). Consequently,
over the course of a simulation, the actual length
of a DNA sequence may change due to insertions
and deletions. To our knowledge no other SNP-based
compression techniques (FREGENE or SimuPop) handl
length variation.

For the pathway model, we implemented binding site
loss (u;) and gain (i), similar to the model employed
in [6]. More information regarding implementation
details and software can be found in the Additional
file 2.

We verified the execution of the simulator using the
DNA sequence genotype by comparing the input muta-
tion and recombination rates to the estimated mutation
and recombination rates inferred by the output sequences.
In addition, we verified the measured sequence polymor-
phism and diversity using the input population, sequence
length, and mutation rate. All simulations were run on
a MacPro with two 2.26 GHz Quad-Core Intel Xeon
processors and 16 GB 1066 MHz DDR3 memory.

Results
To evaluate the performance of our compression
algorithms—Greedy-Load and Store-Root—against the

Ruths and Nakhleh BMC Bioinformatics 2013, 14:192
http://www.biomedcentral.com/1471-2105/14/192

current memory management technique, Store-Active,
we ran population genetic simulations under a vari-
ety of scenarios. These scenarios were chosen to test
the memory and time performance of each algorithm,
measured in terms of mega bytes (MB) and seconds
per generation, respectively. Except for the time scal-
ing experiments below, the time and memory usage of
each simulation were recorded after an initial burn-
in period, which is a standard technique employed to
remove start-condition biases. We also used scaled
population, generation, mutation, and recombination
parameters to increase the time efficiency of the simu-
lations [3]. The data compression ratio for a simulation

Compressed Size k

is calculated as Uncompressed Size = N reported as a

ratio, and the space savings is 1 — %, reported as a
percentage. Thus, a Greedy-Load representation that
compresses a simulation from 100 MB to 5MB has
a compression ratio of 1:20 (0.05) and space savings
of 95%.

Time scaling

The goal of this work is to constrain the memory foot-
print of a population-genetic simulation such that as
simulation time increases, memory usage remains con-
stant, which can be trivially achieved by swapping uncon-
strained memory and constant time for unconstrained
time and constant memory. Indeed, if decompression
decisions are poor, then the latter may be the case.
We measured the scaling of time (seconds per generation)
as a function of simulation time over 1000 generations;
results are shown in Figure 2.

Page 7 of 12

For both the sequence and pathway genotypes, Store-
Root exhibited log-linear (poor) scaling with respect
to simulation time, whereas Greedy-Load showed con-
stant execution time throughout the simulation. The
sawtooth pattern of Greedy-Load results from the
repetitive application (every ¢ generations) of the
algorithm.

Parameterizing k.t in Greedy-Load

Greedy-Load requires two parameters: k, the maximum
number of explicitly represented genotypes (the set
C(V)), and t, the number of elapsed generations between
applications of Greedy-Load on the operation graph.
Although k constrains the memory footprint used by the
simulation, both k and ¢ can have a combined effect on its
speed, which calls for careful choice of their values. We
ran multiple simulations across a dual parameter sweep of
k and ¢ under both mutation and recombination scenarios
and recorded the average seconds per generation; results
are shown in Figure 3.

Under a mutation-only simulation, the speed perfor-
mance of Greedy-Load improves by increasing k and/or
decreasing t. Except for low (< 0.02) compression ratios,
Greedy-Load is robust’ to k and ¢ values in that perfor-
mance does not significantly degrade across the parameter
space. In contrast, under simulations which employed
both recombination and mutation, a linear tradeoff exists
between k and t: as k increases ¢ should increase as well.
Because recombination introduces significant complexity
to the OG topology — in fact, under mutation the OG
is a tree — compression levels achieved by performant

—~ 10
c 00000
Q x
(@)] X
~ 10°F M]
O xxxxxx
Q xxxxxxxx
2z sttt . -
o 107 ;W" o 900000000 et aa oo o 0o 000
= | | ‘ ‘
0 200 400 600 800
10?
m
=
N
) e
O
©
Sl L +++ Greedy-Load||
X x x x Store-Root
X L L L L
0 200 400 600 800
Generations
Figure 2 Space and time performance of Greedy Load. Top: The performance, in terms of time (seconds) per generation, of Greedy-Load versus
Store-Root. Bottom: The performance, in terms of heap size (MB), of Greedy-Load versus Store-Root.

Ruths and Nakhleh BMC Bioinformatics 2013, 14:192
http://www.biomedcentral.com/1471-2105/14/192

Page 8 of 12

Compression Ratio (k/N)

Figure 3 Performance tradeoff of parameters k and ¢. The tradeoff between Greedy-Load parameters k and t are presented as a heatmap of
average execution times (log sec/gen), with a mutation scenario on the left and recombination on the right. Lighter colors are faster (better)

Log Execution Time (Sec/Gen)
0.075F 1 015
0.07f
0.065F 0.00
= 0.06f ’
I3
£ 0.055}
-0.15
.2 o0.05}
T
& o0.045) 00
C 0.04F e
2
» 0.035F
0
g 0.03) -0.45
g ol 0.60
0.02f 4| 1-0.
O
0.015
0.01 {-0.75
0.005
R
Elapsed generations ()
simulations. The parameter k is given as the compression ratio (k/N), where N = 10 is constant in all the simulations.

Log Execution Time (Sec/Gen)

1.0f -6
0.9F -07
0.8} 1 —08
07l -0.9
0.6} 1 -1.0
0.5} {1111
0.4} 11 {-12
0.3} 11 {-13
0.2} 114
0.1 {-15
O 1 b 6 & O N T

Elapsed generations (t)

recombination simulations are near an order of magnitude
less than the compression levels for mutation scenarios.

Space/Time performance of policies
In this experiment, we measure the performance of each
compression algorithm in terms of both time, reported as
the average seconds per generation, and space, reported
in MB used by the genotype heap. The memory footprint
is dominated by the explicitly represented genotypes, but
also counts the operations stored in the operation graph,
which account for less than 0.1% of the total reported
memory for all policies except Store-Root.

Time and space values were averaged over multiple sim-
ulations for both sequence and pathway genotype models.

The results for both sequence and genotype models are
shown in Figure 4, and depict similar performance pat-
terns despite drastically different underlying representa-
tions.

We compared the performance of Greedy-Load to
uncompressed (Store-Active) and maximum compression
(Store-Root) bounds for varying genotype sizes. As the
size of the genotype increases, the space used by the
simulation increases as well; however, this quantity is
dependent on the level of compression. In the case of the
upper bound, no compression is imposed (Store-Active).
The lower bound has maximum compression — only stor-
ing one genotype, at a compression rate of 1:N or 1:1,000
(Store-Root). Greedy-Load provides a ‘performance knob’

10* ;
Sequences
5 +
. 10° F + 1 E!
o + 1 1
= , 1_‘I'| ['y
o 10° F R 2% AN E
8 T ¢ L RN
o **1‘0-::\\\\ S X
(%] | 6% - x Tx X X
10" FJ oy 1
100 I I I
1072 10t 10° 10t 102

Time (sec/gen)

Figure 4 Space and time performance of compression algorithms. The average time per generation and memory usage required by each
compression algorithm for replicate simulations of sequences (left) and pathways (right). For both time — measured in seconds per generation — and
space — measured in total MB — lower values are better. The performance is measured across a range of genotype sizes: 10° — 107 bases for
sequences and 100 — 1,000 genes for pathways. Larger genotypes require more space and longer execution times, hence a diagonal line in the
space-time tradeoff. Solid lines connect a compression policy — top to bottom: Store-Active, Greedy-Load, Store-Root — and dashed lines connect
genotype sizes (e.g, 10° nt for each policy). Greedy-Load provides 95% compression for sequences and 90% for pathways.

10* ; ;
Pathways
3L 1 4
10 * .0
o LU PR
s % \ \ *
= % \ \ »
o 10% f Ry < E
© x [
& R
1
100 by Y- E
100 I I |
102 10! 10° 10! 102

Time (sec/gen)

Ruths and Nakhleh BMC Bioinformatics 2013, 14:192
http://www.biomedcentral.com/1471-2105/14/192

between these two bounds, allowing for high levels of
lossless compression without imposing significant time
penalties. For the upper and lower bounds on compres-
sion, certain genotype sizes failed to complete for either
space (upper bound) or time (lower bound) limitations.
Sequences ranging logarithmically in size from 10° to 107
bp were simulated at 95% compression. Pathways rang-
ing in size from 100 to 1,000 genes were simulated at 90%
compression.

For both genotype representations, Greedy-Load per-
formed at competitive levels of space and time in com-
parison to the upper and lower bounds and completed
simulations otherwise intractable to Store-Active and
Store-Root.

Greedy-Load performance in high recombination rate
simulations

Recombination introduces multiple inheritance to the
operation graph and so presents a unique challenge
beyond a mutation-only model. Further, the rate of recom-
bination directly relates to the amount of genotypes
with multiple inheritance — or complexity of the oper-
ation graph topology. Consequently, the performance of
Greedy-Load may be sensitive to the rate of recombina-
tion in a simulation.

In this experiment, we measure the performance of
Greedy-Load across a range of compression rates with
respect to c¢/u, the ratio of per-base pair recombination
over the mutation rate, by running a logarithmic parame-
ter sweep of ¢/u from 1072 to 10 (Figure 5). The mutation
rate u is held constant at 10~* and ¢ is determined from
the sweep parameter. The population size is 103 and the
sequence length is 10%.

Because the complexity of the operation graph increases
with respect to recombination rate — moving right on the
x-axis in Figure 5 — higher recombination rates require
higher compression ratios (lower space savings). In fact, a

Page9of 12

phase shift exists in terms of execution time between suf-
ficient and insufficient explicit genotypes (k, or compres-
sion ratio) for a given recombination rate. This decision
boundary imposes limitations on the level of compression
supported by Greedy-Load for high levels of recombina-
tion (¢ >> u). Although Greedy-Load performs correctly
at any compression rate, execution time is potentially
sacrificed for memory-savings.

Imposing a memory ceiling using Greedy-Load

Imposing a memory ceiling constrains memory poten-
tially at the cost of time. To investigate this tradeoff, we
measured the ability of 100 MB memory-constrained sim-
ulations to handle genotypes of growing size. Sequences
were scaled logarithmically from 10° to 107 nucleotides,
where it is possible to calculate the maximum number of
explicit genotypes with k = [100/(MB/genotype) |, with
(MB/genotype) being roughly L/10° for sequences. The
execution speed for simulations under 100 MB memory
constraints are shown in Figure 6, along with the maxi-
mum number of explicit genotypes, k, for each genotype
size.

The execution time scales log-linearly with respect to
the size of the data, showing that even for low k values,
Greedy-Load performs consistently with the size of the
genotype representation and does not perform arbitrar-
ily poorly when k is low or genotypes are large. Although
100 MB is a threshold chosen primarily for demonstrative
purposes, this experiment highlights the ability of Greedy-
Load to threshold memory usage and prevent unexpected
program crashes due to memory limitations.

Simulating big data

We simulated a population of 1000 individuals each with
50 Mb DNA sequence using base pair mutation (¥ =
107, sequence insertion and deletion for 1000 genera-
tions. These parameters leveraged a scaling factor of 10°,

Compression Ratio k/N

S ? ‘ g 2 <
s o pS pS Q 2

s

DEESEENEENEN

Log Execution Time (Sec/Gen)

c/u

Figure 5 Performance tradeoff of recombination and compression ratio. The speed, measured in sec/gen, is plotted for Greedy-Load
simulations across varying levels of compression (y-axis) and recombination (x-axis). Lighter colors are slower simulations, displayed in log-scale.

1.6

Ruths and Nakhleh BMC Bioinformatics 2013, 14:192
http://www.biomedcentral.com/1471-2105/14/192

10°

10° F »

Time (sec/gen)
Number of explicit (k)

r"./‘

10! ‘
10° 10°
Sequence Length (nt)

10!
10’

Figure 6 Performance of memory constrained simulations. We
measured the ability of Greedy-Load to handle larger and larger
genotypes while maintaining a memory ceiling of 100 MB. This
memory ceiling was imposed by scaling the number of explicit
genotypes (right axis, solid squares).

so, in effect, we equivalently simulated a population of 10
for 10® generations with a base pair mutation rate of 10~°.
The Greedy-Load algorithm with parameters k = 50 (95%
compression) and ¢ = 0 managed the compression. This
simulation completed successfully, using around 1.6 GB of
memory and on average 20 sec/gen (see Figure 7).

According to recent reviews, no forward-time popu-
lation genetic simulator can handle this computation-
ally demanding, yet biologically reasonable, parameter
set [3,4].

Page 10 of 12

Discussion

The operation graph (OG) defined in this work presents a
general and efficient data structure for lossless compres-
sion of genotypes in real-time, for the main purpose of
constraining the memory footprint of forward-time pop-
ulation genetic simulations. By itself, the OG is capableof
decreasing the memory footprint by several orders of
magnitude, making possible large-scale simulations that
would otherwise crash the system. However, without
explicitly representing a subset of the genotypes in the
OQG, the time cost of decompression grows with simula-
tion time; this amounts to trading “simulations that crash”
for “simulations that never end”. Therefore, the constant-
time scaling of Greedy-Load with respect to simulation
time is crucial for the viability of the operation graph as a
general solution. Further, the OG and Greedy-Load lever-
age only inheritance topology to perform compression,
which means our approach is general not only to geno-
type representation but also to implementation details of
evolutionary operations.

Recombination is an important evolutionary operation
but introduces significant complexity to the operation
graph: because recombination requires two parents to
generate novel recombinants, decompression decisions
become more complicated. For example, the path of oper-
ations used to decompress explicit genotypes become
an exponentially growing dependency graph; however,
Greedy-Load can successfully compress genotypes arising
from recombination, although at much lower data savings
in comparison to those arising from mutation-only simu-
lations. In order to adequately handle recombination, we
recorded data requests for each operation in the OG over

35 1600
-7 -t TT
== {1400
30t -
= 7
= - 1200
% 25} S m
Ny 2
/
1000 @
o ; 9
1
£ 200 |/ &
[K 800
/
15f
[4600
1
400 600 800 106l 0
Generations
Figure 7 Single-run performance of 1,000 50 Mb sequences. The time, measured as seconds per generation, and memory heap utilized by a
simulation of 1000 individuals with sequences of length 50 Mb, using 95% compression.

Ruths and Nakhleh BMC Bioinformatics 2013, 14:192
http://www.biomedcentral.com/1471-2105/14/192

a generation as a proxy for load, and did not calculate load
explicitly. Further details on this implementation can be
found in the Additional file 2.

The performance of the Greedy-Load algorithm is
robust to ¢, the frequency of its execution, and &, the
maximum number of explicit genotypes. When k is low,
(compression rate < 0.02), there was a significant drop in
the time performance of Greedy-Load; otherwise, k and
¢ had little effect on the execution time of the algorithm.
In contrast, recombination benefitted from increasing k
and ¢ together. We recommend fine-tuning k and ¢ using
shorter simulations to determine which parameters to use
for longer simulations.

It is important to note that although we invoke the
Greedy-Load algorithm every ¢ generations, other triggers
may be used. For instance, the algorithm could be applied
whenever |C(V)| < k/2, which may provide better per-
formance when the simulator uses overlapping, instead of
non-overlapping, generations. Because Greedy-Load per-
forms accurately regardless of the value of ¢, any trigger
is valid; however, the amount of topological change that
the OG undergoes between applications influences the
running time of the algorithm.

Because Greedy-Load diminishes the strain on the
memory system while still efficiently minimizing the
decompression cost of active genotypes, Greedy-Load
consistently performed on-par and with less memory
than Store-Active in all of our experiments. Reducing the
amount of memory that is allocated and freed has a signifi-
cant impact on the efficiency of the memory hierarchy. For
example, reducing the overall memory overhead reduces
cache misses and page faults, which, over time, has a sig-
nificant impact on the speed of a simulation. So, not only
does Greedy-Load constrain the memory footprint, it can
do so without sacrificing speed.

Setting the maximum number of explicit genotypes
reduces — not thresholds — the memory footprint of a
simulation because storage of the operations is uncon-
strained; however, their footprint is inconsequential in
comparison to explicit genotype representations. For
instance, it would take 10° point mutations (operations)
to equal one uncompressed sequence of length 10°. Even
in this extreme case, assuming k > 10, the total mem-
ory usage of the simulation would be at most a tenth more
than the amount constrained by k. In this regard, Greedy-
Load can “impose” a memory ceiling on the genotype
heap.

Although constraining the memory footprint of a simu-
lation can increase the execution time, providing a perfor-
mance knob that tunes between space savings/time cost
and space cost/time savings is not only a useful tradeoff
but crucial for simulations with large genotypes or large
populations. For example, constraining the memory foot-
print enables more parallel, independent simulations to

Page 11 of 12

run on the same node. In a recent review of forward-time
simulators, sequences of length 10 Mb caused many sim-
ulators to crash [3]; in contrast, we showed that Greedy-
Load could handle a population of 1000 sequences of
length 10 Mb while constraining the genotype heap to 100
MB. And these benefits are not just for sequences; our
compression technique also facilitated the simulation of
1,000-gene pathways while still constraining the memory
to under 1 GB.

We demonstrated that our approach could be used
to simulate sequences with unprecedented size; how-
ever, larger memory footprints may also manifest as
more complex data structures. For instance, not only the
sequence, but also its annotated features like genes or
regulatory elements could be simulated as one complex
system, facilitating evolutionary questions which inves-
tigate the coevolution of these integrated systems. For
instance, we leveraged our compression algorithm in a
recent study which investigated the neutral evolution-
ary trends of the E. coli regulatory network by simu-
lating, at scale, the entire regulome and its underlying
sequence (595 operons) over long evolutionary time scales
[17]. These simulations resulted in a null distribution of
system, sub-system, and operon level regulatory prop-
erties, allowing for rigorous statistical testing of neu-
tral topological patterns. We found that the majority of
E. coli regulatory topology — including patterns previ-
ously associated with adaptive evolution like feed-forward
loops and scale free distribution — followed neutral
trends.

Conclusions

We believe our algorithm not only provides a significant
advance in the computing power of population genetic
simulations but also in other evolutionary simulators.
These other applications may include genetic algorithms
or digital genetics, which leverages complex digital organ-
isms (computer programs) to understand evolution [18].

Additional file

Additional file 1: Animation of Greedy-Load. Visualization of
Greedy-Load on OGs corresponding to high and low recombination
scenarios

Additionalfile 2 : Supplementary information. Additional
implementation and software details.

Competing interests
Both authors declare that they have no competing interests.

Authors’ contributions

TR conceived of the study, designed and implemented the algorithm,
performed the simulations, and drafted the manuscript. LN conceived of the
study, and participated in its design and coordination and helped to draft the
manuscript. Both authors read and approved the final manuscript.

http://www.biomedcentral.com/content/supplementary/1471-2105-14-192-S1.m4v
http://www.biomedcentral.com/content/supplementary/1471-2105-14-192-S2.pdf

Ruths and Nakhleh BMC Bioinformatics 2013, 14:192
http://www.biomedcentral.com/1471-2105/14/192

Acknowledgements

This work was supported in part by a DOE/Krell CSGF to TR under grant
number DE-FG02-97ER25308, and an NSF grant CCF-0622037 and an Alfred P.
Sloan Research Fellowship to LN The contents are solely the responsibility of
the authors and do not necessarily represent the official views of the NSF, DOE,
or the Alfred P. Sloan Foundation.

Received: 7 January 2013 Accepted: 24 May 2013
Published: 14 June 2013

References
1. Carvajal-Rodriguez A: Simulation of genes and genomes forward in
time. Curr Genomics 2010, 11:58-61.

2. Lewontin RC: Directions in evolutionary biology. Annu Rev Genet 2002,
36:1-18.

3. Yuan X, Miller DJ, Zhang J, Herrington D, Wang Y: An overview of
population genetic data simulation. / Comput Biol 2012, 19:42-54.

4. Hoban S, Bertorelle G, Gaggiotti OE: Computer simulations: tools for
population and evolutionary genetics. Nat Publishing Group 2012,
13(2):110-122.

5. Padhukasahasram B, Marjoram P, Wall JD, Bustamante CD, Nordborg M:
Exploring population genetic models with recombination using
efficient forward-time simulations. Genetics 2008, 178(4):2417-2427.

6. Lynch M: The evolution of genetic networks by non-adaptive
processes. Nat Rev Genet 2007, 8(10):803-13.

7. Ruths T, Nakhleh L: ncDNA and drift drive binding site accumulation.
BMC Evol Biol 2012, 12:159.

8. Hoggart CJ, Chadeau-Hyam M, Clark TG, Lampariello R, Whittaker JC, lorio
MD, Balding DJ: Sequence-level population simulations over large
genomic regions. Genetics 2007, 177(3):1725-1731.

9. Carvajal-Rodriguez A: GENOMEPOP: A program to simulate genomes
in populations. BMC Bioinformatics 2008, 9(223).

10. Peng B, Amos Cl: Forward-time simulations of non-random mating
populations using simuPOP. Bioinformatics 2008, 24(11):1408-9.

11. Loewe L: A framework for evolutionary systems biology. BMC Syst Biol
2009, 3:27.

12. Alterovitz G, Muso T, Ramoni MF: The challenges of informatics in
synthetic biology: from biomolecular networks to artificial
organisms. Brief Bioinform 2010, 11:80-95.

13. ZivJ, Lempel A: A universal algorithm for sequential data
compression. [EEE Trans Inf Theory 1977, 23:337-343.

14. Giancarlo R, Scaturro D, Utro F: Textual data compression in
computational biology: algorithmic techniques. Comput Sci Rev 2012,
6:1-25.

15. Griffiths RC, Marjoram P: An ancestral recombinations graph. Prog
Popul Genet Hum Evol 1997, 87:257-270.

16. Mailund T, Schierup MH, Pedersen CNS, Mechlenborg PJM, Madsen JN,
Schauser L: CoaSim: a flexible environment for simulating genetic
data under coalescent models. BVC Bioinformatics 2005, 6:252.

17. Ruths T, Nakhleh L: Neutral forces acting on intragenomic variability
shape the Escherichia coli regulatory network topology. Proc Nat/
Acad Sci 2013,110(19):7754-7759.

18. Adami C: Digital genetics: unravelling the genetic basis of evolution.
Nat Rev Genet 2006, 7(2):109-18.

doi:10.1186/1471-2105-14-192

Cite this article as: Ruths and Nakhleh: Boosting forward-time popula-
tion genetic simulators through genotype compression. BMC Bioinformatics
2013 14:192.

Page 12 of 12

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

® Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

() BiolMed Central

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	The operation graph
	Novelty of the operation graph
	Updating the operation graph
	Measures of the operation graph quality

	Compression algorithms
	Greedy-Load
	Example execution

	Other compression algorithms

	Implementation

	Results
	Time scaling
	Parameterizing bold0mu mumu kk===============kkkk,bold0mu mumu tt===============tttt in Greedy-Load
	Space/Time performance of policies
	Greedy-Load performance in high recombination rate simulations
	Imposing a memory ceiling using Greedy-Load
	Simulating big data

	Discussion
	Conclusions
	Additional file
	Additional file 1
	Additionalfile 2

	Competing interests
	Authors' contributions
	Acknowledgements
	References

