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Abstract

method performs well for empirical data, as well.

Coalescent theory, Ornstein-Uhlenbeck process

Background: In mammalian genetics, many quantitative traits, such as blood pressure, are thought to be influenced
by specific genes, but are also affected by environmental factors, making the associated genes difficult to identify and
locate from genetic data alone. In particular, the application of classical statistical methods to single nucleotide
polymorphism (SNP) data collected in genome-wide association studies has been especially challenging. We propose
a coalescent approach to search for SNPs associated with quantitative traits in genome-wide association study
(GWAS) data by taking into account the evolutionary history among SNPs.

Results: We evaluate the performance of the new method using simulated data, and find that it performs at least as
well as existing methods with an increase in performance in the case of population structure. Application of the
methodology to a real data set consisting of high-density lipoprotein cholesterol measurements in mice shows the

Conclusions: By combining methods from stochastic processes and phylogenetics, this work provides an innovative
avenue for the development of new statistical methodology in the analysis of GWAS data.

Keywords: Phylogenetic analysis, Genome-wide association study (GWAS) data, Stochastic processes,

Background

The goal of quantitative trait mapping based on genome-
wide association study (GWAS) data is to find single
nucleotide polymorphisms (SNPs) that are associated
with a set of quantitative trait (or phenotypic) values
under study. Many quantitative traits are thought to have
both a genetic basis and an environmental basis, mak-
ing the associated genes difficult to identify from genetic
data alone. The biological complexity of the evolution-
ary history of genes and the environmental factors acting
simultaneously on the trait values makes this a challenging
task, even with very large data sets.

Quantitative trait mapping has two distinct goals, detec-
tion and localization. Detection is achieved if any SNP in
a certain region is found to be significant during the asso-
ciation study, while localization addresses how close the
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detected SNP(s) are to the true causative SNP(s). Localiza-
tion is usually measured by distance between a significant
SNP and the true SNP. Since most data sets will include a
large number of SNPs, it is very unlikely that any statistical
method will pick up a truly causal SNP, but clearly meth-
ods that can provide relatively precise localization will be
the most useful.

Methods of quantitative trait mapping can be broadly
classified into two groups: those that model the shared
evolutionary history, usually in the form of a phylogenetic
tree, and those that do not. Non-tree based methods used
in quantitative trait mapping include methods that ana-
lyze each marker independently (e.g. the ¢-test), and those
that analyze groups of markers together (e.g., Haplotype
Association Mapping [1] and Single Marker Analysis [2]).
The ¢-test simply groups samples according to allele type
at each SNP, and uses a two-sided alternative to look for a
significant difference in mean trait value between groups.
Both Haplotype Association Mapping (HAM) and Single
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Marker Association (SMA) perform an ANOVA on par-
ticular groupings of samples to assess the significance of
the groupings [2]. Since these methods fail to consider the
evolutionary relationships among SNPs, they may have
difficulty detecting some associations between SNPs and
quantitative traits. This leaves room for improvement in
the power of detection of associated SNPs. In fact, it
has recently been noted that the application of a phy-
logenetic framework to analysis of GWAS data may be
beneficial [3].

By using information contained in the relationships
among SNPs, tree-based methods gain power in detection
and localization. However, this gain in power comes at the
expense of an increased computational cost. In spite of
the computational issues, many tree-based methods have
recently been proposed for this problem. In the case of
discrete trait data, these methods include LATAG, imple-
mented in the software TreeLD [4], MARGARITA [5],
and Blossoc [6]. For quantitative traits, tree-based meth-
ods in common use include TreeQA [7], QBlossoc [8],
and HTreeQA [2]. Several of these methods (Blossoc [6],
TreeQA [7], and QBlossoc [8]) are based on the idea of
local perfect phylogenies, which are phylogenies built on
sets of neighboring compatible SNPs identified by the
four-gamete test. These methods also require that the SNP
data be phased into haplotypes prior to analysis, which
is a nontrivial task. The HTreeQA method [2] avoids
this difficulty during analysis by using a tri-state semi-
perfect phylogenetic tree, which can be built on unphased
genetic data.

Tree-based techniques must assume an underlying
model to represent the genealogical history among SNPs
along a chromosome. The most common model for evo-
lutionary relatedness within a population is the coalescent
process [9,10]. At a single locus, the coalescent process
describes the genealogical history among sampled indi-
viduals in the form of a phylogenetic tree. In the case
of GWAS data, however, the two competing processes
of coalescence and recombination are occuring simulta-
neously along a chromosome, and a single phylogenetic
tree cannot be used to model the genealogical history
among all individuals for the entire chromosome. When
recombination occurs between two genetic sequences,
the sequences exchange genetic material at a recombi-
nation point, leaving a situation where the portion of
the genetic sequence on one side of the recombination
point is the same as the sequence present before the
recombination, while the portion of the sequence on the
remaining side is new [11]. Although phylogenetic trees
model genetic sequence data well in the absence of recom-
bination events, perfect phylogenetic trees do not exist
to model incompatibilities in genetic data on both sides
of a recombination point simultaneously. In this case, the
genealogical history of a chromosome can be represented
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by an Ancestral Recombination Graph (ARG), a phy-
logenetic network representing both recombination and
coalescent events [12]. ARGs provide a model that accom-
modates the fact that while a (true) local tree exists at
each site along the chromosome, neighboring trees may
be incompatible due to recombination events. ARGs rep-
resent these clusters of incompatible local trees, and can
be used to determine the marginal tree at each SNP along
the chromosome [12]. However, ARGs can be difficult to
estimate from SNP data [see, for e.g., [4] and references
therein]. Methods have thus been proposed to estimate
the important features of ARGs for particular applica-
tions. Many of the methods used in the GWAS setting
replace estimation of the entire ARG by estimation of
the marginal phylogenies at each SNP. This will be the
approach we use here.

The tree-based methods mentioned above vary in the
way that the phylogenetic information is used in the sub-
sequent analysis. One method of particular interest to the
present study is QBlossoc [8]. After local phylogenies are
estimated for each SNP, QBlossoc uses this information
to partition the sampled individuals into some number of
clusters, k, and calculates a score for each possible set of k
clusters defined by the phylogenetic tree. The score calcu-
lated is a penalized likelihood (the penalty is determined
by the number of clusters), where the likelihood is a mul-
tivariate normal with a different mean in each cluster and
an overall shared variance, with zero covariance among
observations. The maximum score over all possible sets of
k clusters defined by the phylogeny is used to assess the
significance of each SNP. This technique produces a test
statistic at each location along the genome. Although this
clustering technique accounts for the shared evolution-
ary history among SNPs, QBlossoc has two weaknesses
rooted in its assumptions during the score calculation;
namely, QBlossoc assumes both independence and a com-
mon variance among the quantitative trait values. The
method proposed here is a modification of QBlossoc that
addresses these two weaknesses.

Our proposed data analysis technique uses the same
near local perfect phylogenies built by [6], but also
estimates the branch lengths of each marginal tree via
a modification of the algorithm from [13]. Estimating
the branch lengths enables estimation of the variance-
covariance structure of the data using a Brownian Motion
model for trait values along the tree [14]. This modeling
choice allows the covariance between two observations
to be proportional to the length of their shared evolu-
tionary history. Our score statistic is also a penalized
likelihood, where the likelihood is a multivariate normal
likelihood for the observations using the same mean struc-
ture as QBlossoc, but with variance-covariance structure
determined by the estimated phylogeny. We find that the
estimation and use of the variance-covariance structure
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is especially important in the presence of strong popu-
lation structure among the observations. For instance, in
the example data in Figure 1, the SNP clearly has an effect
on the trait value, but the evolutionary history is also
very important. Due to the mixture that occurs both early
and late in the evolutionary history of the SNP, assum-
ing the resulting observations are independent among
the subpopulations could hinder the ability to detect the
association between this SNP and the quantitative trait.
Here, we propose a data analysis method that accounts
for the covariance structure present in GWAS data sets,
and show that it generally performs similarly to QBlossoc
in terms of power of detection and localization, with
strong performance in the presence of population struc-
ture. Finally, the proposed data analysis method is applied
to a GWAS data set containing SNP data for 288 out-
bred mice [15]. Phenotypic data for each mouse includes
observations of eight quantitative cardiovascular traits.
The SNP sites on two chromosomes with previously-
detected strong signals and one chromosome without a
previously-detected strong signal are analyzed.

Methods

Since the goal is to search for SNPs associated with a
quantitative trait, we will consider both detection and
localization. The proposed analysis technique includes
calculation of a score at each SNP site and an assessment
of significance by performing hypothesis tests via per-
mutation. In order to examine the performance of the
methods, we use a novel data simulation technique so that
we know the location of the SNP truly associated with the
quantitative trait (if one exists). This yields an opportunity
to compare the type I error and power of the proposed
method with that of QBlossoc. We begin by giving the
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details of the method of analyzing the data, and then
describe the simulation technique.

Data analysis

The evolutionary history at each SNP site can be repre-
sented by a local phylogenetic tree, ®. At each SNP, the
local tree topology is estimated using Blossoc’s approach
[6]. The branch lengths of each tree are estimated using
a modification of the algorithm in [13], which yields an
approximation to the maximum likelihood estimate of the
branch length. In the case of DNA sequence data, the
Rogers-Swofford method [13] is based on the use of a fast
heuristic method to approximate the state at each internal
node of the tree. The distance between a pair of nodes in
the tree, p, is then calculated to be the proportion of the
sites in the sequence that differ between the reconstructed
states at each node. p can then be used to obtain an esti-
mate of the branch length under an appropriate model,
such as the Jukes-Cantor model [16].

We modify this method to handle SNP data as follows.
First, the same heuristic method as in the Rogers-Swofford
method (based on a most parsimonious reconstruction)
is applied to the phased 0-1 SNP data at each inter-
nal node of the tree. The proportion of SNPs that differ
between each node, p, is counted, and the branch length
connecting the two nodes is estimated to be:

d= _% In(1 — 2p) (1)

If p = 0 for a branch, then we set p = m. This
distance equation is derived under the M2 model, a two-
state Markov model for nucleotide sequence data, which is
a specific case of the more general Mk model described in
[17]. Notice that the branch length estimate, d, increases
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Figure 1 Phylogenetic tree at an associated SNP. This tree shows the evolutionary history of a SNP for 50 diploid observations of a quantitative
trait (colored circles on right). The low values of the trait are blue, and the high values are red. The clustering pattern shown by the tree is an

indication of the association between the SNP and the trait.
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as the proportion of differing SNPs between two nodes
increases, as expected.

For each estimated local phylogeny, the branch lengths
are used to estimate the variance-covariance matrix of
the tree, V(®), as shown in the example in Figure 2. The
covariance between two quantitative trait values is defined
to be proportional to the time of shared evolutionary his-
tory between those two observations. Given the local esti-
mated phylogeny at the SNP of interest, the quantitative
trait data were assumed to follow a multivariate normal
distribution, with covariance structure determined by the
local phylogeny.

The proposed method accounts for only a focused por-
tion of the evolutionary history among observations using
a clustering technique. At each SNP site, the tree can be
partitioned into k clusters using only the earliest (k — 1)
edges in the tree. An example of this clustering is shown
in Figure 2. For a fixed partition of the tree into k clusters,
we define a matrix, D, with elements:

1, if observation i falls in cluster j
ij = . (2)
0, otherwise

fori = 1,2,...,mandj = 1,2,...,k, where n is the
number of observations (for diploid individuals, this is
twice the number of individuals in the study). Then the
trait data, Y = (Y1, Yo,...,Y},), are assumed to follow a
multivariate normal distribution along tree ©:

Y ~ N(Dp,o?V) 3)

Here, as in QBlossoc, each cluster has its own mean,
denoted . = (w1, o, ..., ui). However, instead of assum-
ing independence, the variance-covariance matrix of the
tree, 02V = o2V(©), allows for covariance structure to
be present among the quantitative trait observations.
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Using the distribution in Equation 3, the maximum like-
lihood estimates of the parameters are straightforward to

calculate,
a=@O'v D)y IpTv-ly (4)

. (Y —=DW)TV-Y(Y — D)
o =
n

(5)

Hypothesis testing is carried out using a likelihood
framework. In particular, we use a penalized likelihood
similar to that proposed by [8]. We define the Likelihood
Score Statistic (LSS) to be

LSS = max{2 InL(jt,62|Y, 0, V) — kln(n)}. (6)

To calculate LSS, the maximum likelihood is penalized
by subtracting a penalty as in the Bayesian Information
Criterion (BIC). Calculation of the likelihood involves
estimation of (k + 1) parameters, including the mean trait
value in each cluster and the variance, o'2. The BIC crite-
rion penalizes for k of these parameters. At each SNP, a
local tree is scored according to (6), for varying numbers
of clusters, k = 1,.. ., kyax, and the resulting tree score is
the maximum score over the number of clusters.

To address detection, after the score in Equation 6 is
calculated for the phylogenetic tree at each locus along a
chromosome, permutation testing based on this location-
specific test statistic can be used to evaluate significance.
Permutation of the observed trait values among the tips
of the estimated phylogenetic tree yields permuted data
sets, and the score in Equation 6 is calculated for each
permuted data set. The p-value for detection at each locus
is the proportion of data sets scoring higher than the
observed data set at each particular locus. To address
localization, the distance (in DNA base pairs) between
the maximally-scored locus and the disease locus is
calculated.

a b c
0.06 0.34 0.34
0.28 F F E
0.07 g 007] 034 £ 007] 034 -
0.34 0.06 0.34 0.34
—————D D D
0.35 0.35 0.35
C C C
023 0.12 B 0.35 B 023 0.12 B
0.06L =22 fg12 0.06] 035 006 223 17,
A A A
A B C D E F A B C D E F A B C D E F
A 041 029 0.06 000 0.00 0.00 A 041 006 006 0.00 0.00 0.00 A 041 029 0.06 000 0.00 0.00
B 029 041 0.06 0.00 0.0 0.00 B 006 041 0.06 0.0 0.00 0.00 B 029 041 0.06 0.00 0.00 0.00
C 0.06 0.06 041 0.00 0.00 0.00 C 006 006 041 0.00 0.00 0.00 C 006 0.06 041 0.00 0.00 0.00
D 000 000 000 041 0.07 0.07 D 000 0.00 0.00 D 0.00 0.00 0.00
E 000 0.00 000 007 041 0.35 E 000 0.00 0.00 E 000 0.00 0.00
F 000 0.00 0.00 007 035 041 F 000 0.00 0.00 F 000 0.00 0.00
Figure 2 Example of a six-taxon tree with branch lengths. The overall tree, ®, along with its variance-covariance matrix, V(®), is shown in (a).
The corresponding clustered tree along with the variance-covariance matrices, V(®), for k = 2 and k = 3 clusters are in (b) and (c), respectively.
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In addition to the tree topology, our method also
requires an estimate of the covariance structure in the
data. This covariance structure is estimated via estima-
tion of the branch lengths along the topology. By using
the clustered tree to consider only the broad-scale phy-
logenetic relationships among SNPs, our technique can
account for the evolutionary history among genes without
using all coalescent relationships. Using only broad-scale
relationships enables a computationally feasible algorithm
that is able to account for the most important aspects of
the covariance structure among observations.

Data simulation

To assess the performance of the proposed likelihood
technique, simulated data sets are used. This provides a
setting where the presence and location of the SNP truly
associated with the quantitative trait is known. In our
simulation study, we simulate SNP data for 100 replicate
data sets from a diploid population using the program
ms (without selection) [18]. Each data set consists of the
SNP data corresponding to one chromosome. For each
simulated replicate, a single DNA base pair location is ran-
domly chosen to be associated with the trait. This choice
of “disease” locus is restricted so that the minor allele
frequency is between 10% and 30%.

For each SNP, quantitative data is simulated along the
phylogenetic tree at the disease locus according to a gen-
eralized version of the Ornstein-Uhlenbeck (OU) process
described by [19],

dYi(t) = a (0 — Yi(t)) dt + oydB;(t) 7)

where Y;(t) is the quantitative trait value for the it lin-
eage at time ¢, 0 is the target trait value, « is the strength
of selection toward the target value, oy is the standard
deviation of the process per unit time, and dB;(f) rep-
resents a Brownian Motion process for lineage i, so that
values of dB;(t) for small time increments, dt, are inde-
pendent, identically distributed random variables from
a normal distribution with mean zero and variance dt.
Thus, the OU process is a mean-reverting process with
a deterministic component, o (6 — Y;(¢)) dt, modeling the
selection of a trait toward the optimum target value, and
a stochastic component, oydB;(¢), providing the “random
noise” for the process. Notice that the deterministic por-
tion of this process implies that the selection of the trait
toward the target is proportional to the distance between
the trait and the target value, 6. When two observations
share a portion of their evolutionary history, they share
the trait value, Y;(¢), for that portion of time. Along the
corresponding phylogenetic tree, observations share an
evolutionary history when they evolve along the same
lineage.

When this process is applied in the setting of phyloge-
netics, the stochastic process gives the same value during
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the time when the evolutionary history is shared for any
two observations. However, after two lineages split, their
trait values evolve independently from one another. This
implies that before a split, two observations are perfectly
correlated, while after the split, they evolve in an uncorre-
lated manner.

For this study, a more flexible form of the Ornstein-
Uhlenbeck process is used, the Generalized Hansen model
[19]. This allows the trait to evolve toward a non-constant
optimum (target) as follows,

aYi(t) = a (0;(¢) — Yi(t)) dt + oydB;(t) 8

6i(t) 01, ?f Xi(t)=0

by, if Xi(t) =1
The trait is simulated according to this stochastic pro-
cess with the target trait value determined solely by the
SNP state at any time in the evolutionary history at that
SNP, where X;(¢) is the SNP state for the i observation at

time ¢.

Using the Generalized Hansen Model leaves us with a
quantitative trait value for each haplotype that has both
a (deterministic) genetic component, determined by the
SNP, and a stochastic component. This process imposes
an evolutionary history of the quantitative trait which can
be portrayed by the phylogenetic tree at the disease locus,
and allows the two haplotypes of a diploid individual to
evolve independently along the phylogeny at the disease
locus. This is intuitive as long as two haplotypes for an
individual are unrelated to the trait. In order to simulate
data for each individual, or diplotype, based on the hap-
lotypic data, we use an additive model. The trait value
for each diplotype is the average trait value across the
two copies of the trait for each individual at the disease
location.

During the simulation studies, we simulate the SNP
using these parameters in ms: the diploid population size
was Ny = 20, 000, the neutral mutation rate for each DNA
base pair was . = 2.0 x 10710, the rate of recombination
per generation per DNA base pair was v = 1078, and each
simulated chromosome was 1,000,000 base pairs long.
During simulation of the quantitative trait values, we vary
the strength of selection, «, and the standard deviation of
the quantitative trait per unit time, oy. The two target trait
values we consider are §; = 80 and 6, = 100.

Results

Simulation studies

In order to assess the performance of the proposed tech-
nique in terms of power and type I error, we begin by
analyzing data sets which either include a truly-associated
SNP, or do not include an associated SNP. These data sets
are simulated using the technique described above. After
simulating the data sets for specified parameter values,
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the local phylogenetic tree at each SNP is estimated using
Blossoc, and branch lengths are estimated as described
previously. Next, the score in Equation 6 is calculated,
using ky,zx = 15. The same technique is applied to 200
permutation data sets created by using a permutation of
trait values across individuals. The type I error, power,
and localization for QBlossoc and LSS are presented in
Tables 1 and 2.

Permutation testing results showed that both QBlossoc
and LSS control the type I error around 0.05 (see Table 1).
In terms of power of detection LSS is competitive with
QBlossoc in this general case. The average localization
distance (LocDist) is the shortest distance between the
most significant (most highly-scored) SNP and the asso-
ciated SNP in DNA base pairs. Smaller distances indicate
a better statistic, and the two methods show approxi-
mately the same performance in terms of localization
distance.

The special case of population stratification was also
investigated. By using ms, population structures involv-
ing six subpopulations were specified. Here, the trees are
constrained so that after a population splits into two sub-
populations, no gene flow exists between the subsequent
clades, and the subpopulations evolve independently of
one another. This constraint is achieved through spec-
ification of times when the splits in populations occur,
which are given below. Specifying the number of subpop-
ulations and divergence times allows the investigation of
the effect of the complexity of the population structure on
the results. An example of a true phylogenetic tree for a
particular replication with six specified subpopulations is
shown in Figure 3.

Table 1 Type I error for simulated data sets

Parameters Type | error
o oy QBlossoc LSS
5 10 0.03 0.03
5 20 0.06 0.07
5 30 0.04 0.10
5 40 0.03 0.03
7.5 10 0.06 0.04
7.5 20 0.06 0.06
75 30 0.05 0.05
75 40 0.07 0.06
10 10 0.08 0.03
10 20 0.04 0.07
10 30 0.03 0.03
10 40 0.02 0.03

For the values of « (the strength of selection) and oy (the standard deviation of
the quantitative trait per unit time) considered here, the type | error rates are all
near 0.05 for these simulation results.
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Table 2 Power and localization distance (bp) for simulated
data sets

Parameters QBlossoc LSS

o oy Power LocDist Power LocDist
5 10 0.82 50524 0.78 56901
5 20 0.67 79306 0.64 94698
5 30 0.63 105197 061 130809
5 40 0.60 112477 0.60 134383
7.5 10 0.89 43247 0.90 25257
7.5 20 0.71 53905 0.74 44471
7.5 30 0.73 59379 0.64 96377
7.5 40 0.61 105529 0.58 123444
10 10 1.00 1593 0.98 5997
10 20 0.85 29476 0.84 30204
10 30 0.67 62315 0.73 68200
10 40 0.72 102386 0.65 82209

For the values of « (the strength of selection) and oy (the standard deviation of
the quantitative trait per unit time) considered here, the power and localization
distance (in DNA base pairs) are comparable for QBlossoc and LSS.

Results for selected studies are shown in Tables 3 and
4. In each case, six subpopulations were specified. The
divergence times, or cumulative times at which popula-
tion splits occurred, are (looking from present to past)
0.1, 0.1, 0.1, 0.2, and 1.0, and are omitted from Tables 3
and 4 for simplicity. These times are in evolutionary time
units of 4Nopu = 1.6 x 107> generations. The results in
Table 3 show that the type I error is controlled by both
QBlossoc and LSS in this special case. Also, the power
of detection and localization distance (in DNA bp) are
very similar for the two techniques (see Table 4). How-
ever, upon further investigation, we see that even though
the two techniques have comparable powers of detection
and average localization distances, QBlossoc and LSS are
detecting different data sets. The left plot of Figure 4
shows the p-values for each simulated data set from the
study with @ = 5 and oy = 30 shown in Table 4. The
horizontal and vertical lines represent the cutoff values
for significance. The 65 observations in the lower left cor-
ner were detected by both QBlossoc and LSS, while the
26 observations in the upper right corner were detected
by neither method. However, the seven observations in
the upper left corner were detected by the proposed
LSS but not QBlossoc, while the two observations in the
lower right corner were detected by QBlossoc but not
LSS. This is an indication that the proposed technique
sometimes identifies different types of associations than
QBlossoc.

Further, the right plot of Figure 4 shows the local-
ization distances for each data set. Observations below
the diagonal line indicate data sets in which QBlossoc
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SNP, but has a strong influence on the phylogenetic tree.

bl

Figure 3 Example of population structure. This phylogenetic tree shows a form of population structure which impacts the correlation structure
among the trait values. Six particular subpopulations are shown through the six groups of individuals present in the tree. The splits showing the six
groups are denoted by hash marks. Notice that the underlying population structure is not necessarily shown directly in the evolutionary history of a

was able to better localize the associated SNP, while
observations above the diagonal line indicate data sets
in which LSS was able to better localize the associated
SNP. Twenty-three observations were better localized by
LSS, while forty-three observations were better localized
by QBlossoc. These simulation study results indicate that
the proposed method is comparable with QBlossoc in
the general case, and detecting different types of relation-
ships between SNPs and quantitative traits in the case
of population structure. Additionally, both QBlossoc and
LSS appear to control the type I error in these simulation
studies.

Table 3 Typel error for simulated data sets showing
population structure

Real data analysis

Having seen that the proposed method performs well for
simulated data, we apply the method to a GWAS data
set. The data set from [15] includes both SNP data and
phenotypic data for 288 outbred mice. Phenotypic data for
each mouse include observations about eight quantitative
cardiovascular traits. Here, the trait we will focus on is the
high-density lipoprotein cholesterol level (HDL). We will
set Kyax = 15 in LSS and use 200 permutations for the
data analysis. The SNP sites on two chromosomes with
previously-detected strong signals and one chromosome
without a previously-detected strong signal are analyzed.

Table 4 Power and localization distance for simulated data
sets showing population structure

Parameters Type |l error Parameters QBlossoc LSS
o oy QBlossoc LSS o oy Power LocDist Power LocDist
5 10 0.04 0.08 5 10 0.99 15048 0.98 13460
5 20 0.08 0.06 5 20 0.86 54969 0.86 65832
5 30 0.06 0.05 5 30 0.67 125523 0.72 152045
5 40 0.03 0.07 5 40 0.65 142156 0.63 179099
7.5 10 0.07 0.06 7.5 10 0.99 7877 0.98 11551
7.5 20 0.09 009 75 20 0.98 17076 0.97 24026
75 30 0.06 006 75 30 0.93 23691 0.89 39664
7.5 40 0.1 0.05 7.5 40 0.74 85356 0.71 124352
10 10 0.04 0.03 10 10 1.00 7375 1.00 12579
10 20 0.10 0.06 10 20 0.98 7428 0.99 15208
10 30 0.06 0.06 10 30 0.96 25168 0.95 21193
10 40 0.06 0.10 10 40 0.84 34017 0.87 44057

For the values of « (the strength of selection) and oy (the standard deviation of
the quantitative trait per unit time) considered here, the type | error rates are all
near 0.05 for these simulation results in the case of six subpopulations.
(Population divergence times for the six subpopulations are omitted for
simplicity. See text for details).

For the values of « (the strength of selection) and oy (the standard deviation of
the quantitative trait per unit time) considered here, the power and localization
distance (in DNA base pairs) are comparable for QBlossoc and LSS in the case of
six subpopulations. (Population divergence times for the six subpopulations are
omitted for simplicity. See text for details).




Thompson and Kubatko BMC Bioinformatics 2013, 14:200
http://www.biomedcentral.com/1471-2105/14/200

Page 8 of 10

< o
p
o
) 2
2 27 : © ° o
g o © ©
o o
o N ] o
g ° 0
(%] 9 o
i)
o
8 S Op © o o o
olo )
oo
o o
Q,% o
o T T T T T
0.0 0.2 0.4 0.6 0.8

LSS P-value

observations were better localized by QBlossoc.

Figure 4 Example of detection p-values and localization distances. The left plot of the detection p-values and localization distance (in DNA bp)
for one data set shows that QBlossoc and LSS are picking up different associations during simulation. In the left plot, values in the upper left and
lower right corners of the plot show associations detected only by LSS and QBlossoc, respectively. Seven observations fall in the upper left corner,
while two observations fall in the lower right corner of the plot. The sixty-five observations in the lower left corner were detected by both methods,
while the remaining twenty-six observations were detected by neither method. The right plot shows the associations better localized by LSS and
QBlossoc in the upper left and lower right regions, respectively. Twenty-three observations were better localized by LSS and forty-three

(0]
O v
5% ’

o

o

.-.‘Z"co
0 v

o [¢)
53 ’

o

= ©
© o
N v o O
—_ O O,
T F
O o o
o ¥ o
- o o
o B

=]
o F4 ° o o
»w o
n N o e}
(@] o ] o
mOO

=} 0 o
O$~ 0 o ©® o o

o

T T T T T
0e+00 2e+05 4e+05 6e+05 8e+05
LSS Localization Distance

In order to phase the data from genotypes into haplotypes,
Beagle [20] was used, as in the original data analysis [15].

Chromosome 1 included data for 4,165 SNPs, and
was analyzed using the proposed method. The method
detected the chromosome with a p-value less than 0.005.
The score results, presented in Figure 5(a), show that of
the two sites detected as highly significant by [15], LSS
shows a peak very near to one of these sites. In addition,
three other sites not previously detected show very large
peaks in LSS. These results support the simulation study
results, in which LSS tends to detect different signals than
previous methods.

Zhang et al. [15] also found a strong genetic signal on
Chromosome 5. Chromosome 5 included data for 3,185
SNPs, and was analyzed using the proposed method. The
method detected the chromosome with a p-value less
than 0.005. The results presented in Figure 5(b), show
a peak in LSS near the SNP site previously detected as
highly significant [15]. In addition, two other regions on
the chromosome not previously detected show very large
peaks in LSS.

Chromosome 8 was also analyzed, and results are pre-
sented in Figure 5(c). Chromosome 8 included data for
1,159 SNP sites. Zhang et al. [15] did not detect any highly
significant SNP sites on Chromosome 8. The likelihood
analysis resulted in a detection p-value of 0.055 for this
chromosome, which is not significant.

Discussion and conclusion

Here, a method is presented to search for SNPs asso-
ciated with quantitative traits in GWAS data. The pro-
posed method is a modification of QBlossoc which relaxes

the assumptions of independence and common variance
between observations. The proposed method looks at this
problem using a framework which accounts for the evolu-
tionary relationships among SNPs. However, as opposed
to previous techniques using these evolutionary relation-
ships, the method here remains computationally feasible
by using only the broad-scale relationships present in
the evolutionary history among SNPs. These evolutionary
relationships impact results especially in the presence of
strong population structure.

Using an innovative, biologically-sensible technique,
simulated data sets were obtained in both the general case
and in the presence of population structure. Simulation
results showed that LSS is competitive with QBlossoc in
terms of localization and power of detection, and that
different chromosomes may be detected by LSS and by
QBlossoc. In the presence of population stratification, the
proposed score shows particularly strong performance.
For the real data example studying 288 outbred mice, anal-
ysis using the proposed tree estimation and likelihood
score showed that LSS detects two SNPs previously linked
to HDL in mice. In addition, LSS also detected several
SNPs not previously mentioned in the literature.

One of the advantages of this proposed method is
its use of ancestral information to approach this prob-
lem. This framework is more realistic than other pre-
vious approximations. Also, the use of the broad-scale
evolutionary relationships among SNPs makes the tech-
nique computationally feasible. Computation times for
the branch length estimation and LSS analysis, including
permutation testing, ranged from approximately 3.5 to 5.5
seconds per SNP on a standard desktop linux machine
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Figure 5 Likelihood score statistic plot. For the analysis of the HDL level in mice, this plot shows LSS plotted against the location of the SNP in
DNA base pairs along Chromosomes 1, 5,and 8 in plots (a), (b), and (c), respectively. The vertical lines represent locations detected as highly

for the simulated data sets with 100 observations, which
typically included between 65 and 105 SNPs. For the real
data analysis, with 576 observations, these computation
times ranged from approximately 8 to 35 minutes per SNP,
depending on the number of SNPs along the chromo-
some (ranging from 1,159 for Chromosome 8 to 4,165 for
Chromosome 1). It should be noted that individual SNP
computations are easily parallelized in this setting.
Although the proposed technique begins to address
the limitations of current statistical methodology in the
problem of quantitative trait mapping, the technique has
several avenues that could be pursued in order to extend
the method to more general cases. In the data simula-
tion technique, only codominant trait models have been
implemented, but dominant and recessive trait models are

straightforward to implement and test. Also, many traits
are impacted by both a genetic component and an envi-
ronmental covariate. By extending the quantitative trait
simulation technique, many realistic traits could be simu-
lated with both genetic and environmental covariates.
Similarly, LSS is flexible and could be generalized to
include environmental covariates as well. Additionally, the
current likelihood score requires that genotypic data be
phased into haplotypes prior to analysis. Phasing is a
nontrivial process which is subject to error. By extend-
ing the tree estimation method and likelihood score to
be computed on genotypic data, these methods will be
more easily applied to real data sets. Advantages of the
model include its ability to find different signals than pre-
vious statistical methods and its flexibility to be extended
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to analyze different types of data. Although these exten-
sions are under investigation, the proposed data analysis
technique appears to be an impactful modification of the
ideas presented in QBlossoc, especially in the presence of
population structure.
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