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Abstract

Background: The knowledge of metabolic pathways and fluxes is important to understand the adaptation of
organisms to their biotic and abiotic environment. The specific distribution of stable isotope labelled precursors into
metabolic products can be taken as fingerprints of the metabolic events and dynamics through the metabolic
networks. An open-source software is required that easily and rapidly calculates from mass spectra of labelled
metabolites, derivatives and their fragments global isotope excess and isotopomer distribution.

Results: The open-source software “Least Square Mass Isotopomer Analyzer” (LS-MIDA) is presented that processes
experimental mass spectrometry (MS) data on the basis of metabolite information such as the number of atoms in
the compound, mass to charge ratio (m/e or m/z) values of the compounds and fragments under study, and the
experimental relative MS intensities reflecting the enrichments of isotopomers in '>C- or '> N-labelled compounds,
in comparison to the natural abundances in the unlabelled molecules. The software uses Brauman's least square
method of linear regression. As a result, global isotope enrichments of the metabolite or fragment under study and
the molar abundances of each isotopomer are obtained and displayed.

Conclusions: The new software provides an open-source platform that easily and rapidly converts experimental MS
patterns of labelled metabolites into isotopomer enrichments that are the basis for subsequent observation-driven
analysis of pathways and fluxes, as well as for model-driven metabolic flux calculations.

Background

Metabolism is central for all cellular processes including
adaptation of organisms to their respective life style and
conditions. Triggered by the presence and activity of
metabolic enzymes and the metabolite fluxes through
pathways, cellular reactions constitute a highly dynamic
network that can be rapidly and efficiently modulated in
response to environmental changes. A number of theor-
etical techniques has been established to predict meta-
bolic fluxes [1-4]. Implementing different mathematical
parallel and sequential algorithms, several desktop and
web based batch and interactive software applications
[5] have been also developed towards quantitative meta-
bolic flux analysis and modeling [6].
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In contrast, only few methods allow direct deter-
mination of metabolic fluxes, one of which is based
on in vivo experiments using stable isotope labelled
precursors, such as *C-glucose or *CO,. The trans-
fer of label to the metabolic network and the specific
isotope distribution in metabolic products can then
be taken as evidence of metabolic pathways and
fluxes during the experimental period. However, ro-
bust technology is required to quantitatively deter-
mine the isotopomer abundances in multiple
metabolites. Specifically, experimental intensities of
mass signals (typically of silylated derivatives, metab-
olites and fragments thereof in GC/MS experiments)
have to be converted into relative and molar
isotopomer abundances.

Isotopologues are species of a compound that differ only
in their isotopic composition [7]. The term isotopomer is
a contraction of ‘isotopic isomer’, grouping isotopologues
into those molecules which contain the same number of a
specific isotope (e.g. >C) at different positions. As an
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example, 64 stable carbon isotopologues exist for glucose.
Out of these, six species constitute isotopomers with one
13C-atom at position 1, 2, 3, 4, 5, or 6. In natural com-
pounds, i.e. obtained from the natural environment, the
natural abundance is the consequence of the natural iso-
tope abundance (i.e. ca. 1.1% for '*C at a given carbon
position) that is diverted through the complete population
of isotopologues due to statistical reasons. In contrast,
increased isotopologue abundances are observed in label-
ling experiments where isotope-enriched precursors (e.g.
3C-labelled) are supplied to the organism under study.
This results in the enrichment of specific isotopologues,
i.e. on top of the natural abundances, in the metabolic
products. The deconvolution of mass intensities yielding
isotopomer enrichment is the key task of the software
described in this manuscript. Notably, mass intensities
provide information on the abundances of isotopologues
harbouring a specific number of the isotope, i.e. one, two,
three, etc. '*C-atoms, and therefore, the enrichment
of isotopomeric groups (isotopomer distribution) is
obtained. Since metabolic pathways lead to specific
isotopomer enrichments and, as a consequence, to spe-
cific isotopomer distributions, the latter values can be
used to identify and to quantify the relative contribu-
tions of metabolic routes from the labelled precursor to
the products observed by MS.

So far, three different methods are available for
positional isotopomer determination, nuclear magnetic
resonance (NMR), mass spectrometric analysis of a suffi-
cient number of useful metabolite fragments [8,9], and
multiple reaction monitoring (MRM). These methods
can provide orthogonal information and can be combined
using our software to improve positional isotopomer
determination [10].

In this manuscript, a new freely available software is
described that is capable of providing a user friendly
graphical interface for the efficient and independent
(no third party application is needed) data storage,
management and processing towards mass isotopomer
distribution analysis [11]. The implemented software
enables the user to load data from previously created
data files or add data manually into the software appli-
cation at run time and to process it. Furthermore, it
directly parameterizes input experimental data to
Brauman’s algorithm for accurate estimation of natural
and relative abundances. No such application exists,
implementing similar mathematics into a user friendly
software package.

Currently, only commercial software or user-specific
approaches are available for the conversion of mass
intensities  (provided by the specific software
implemented to the mass spectrometer) to the relative
and molar isotopomer enrichments, such as tandem
mass spectrometric data computing for positional
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isotopomer distributions [12], measurements of mass
distributions by mass spectrometry [13], isotopomer
analysis using GC-MS [10,14], and GC-MS analysis for
isotopomer balancing [15].

However, for a broad range of users, a open-source
software compatible to data exchange with the stand-
ard mass software packages is highly desirable. Here,
we present a new open-source software using
Brauman’s least square method for the calculation of
isotopomer enrichment that can be used in GC/MS
and LC/MS experiments (including tandem-MS/MS)
by calculating relative and absolute isotopomer abun-
dances from the mass ratios of signals in experimental
MS spectra.

Implementation
Algorithm
The software treats experimental raw data from MS.
Specifically, MS intensities of metabolic products (typic-
ally ®C- or ' N-labelled) are analysed on the basis of
their m/e values and the number of C or N atoms, re-
spectively, in the given molecule, derivative or fragment
thereof. Overall *>C- or !> N-enrichment and the relative
and molar contribution of isotopomers are then calcu-
lated using Braumann’s least squares algorithm [16].
Mass distribution measured by MS display enrichments
of isotopomer groups (i.e. isotopologues with a given
number of the label (Y or 1 in our notation), for ex-
ample one, two, three etc. ">C-atoms). For example, the
isotopomer distribution of the Csz-compound alanine
(see Figure 1) is calculated from the abundances of the
unlabelled compound (e.g. 000 for three *C-atoms), of
the isotopomer group containing one label (00Y, where
Y can be at any carbon position), two labels (0YY, the
2C-atom 0 can be again at any position in alanine), and
three labels 111.

The software is composed of two parts: (i) generation
of an appropriate set of linear simultaneous equations

NH,+
Lo T T /Q"
3 ! $C00"
[1,2,3-°C)] [1-2C] [2-2C)) [3-%C,]
NH,+ NH,F
)\’W+2 )\N’-'- )\N,-I- 2 )\’" "
Q) - 0
o COO 4
[1.2-°C)) [2,3-°C)] [1.3-2C) [1,2,3-°C)]
Figure 1 Stable carbon isotopologues of alanine. The filled
circles indicate 13C-atoms. The mass parameters that are detected
by MS are given as M+0, M+1, M+2 or M+3, respectively.
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and (ii) solution of these equations. The proposed matrix
equation to calculate isotopomer enrichments is the
least square method using the Moore—Penrose pseudo
inverse (the latter is a powerful mathematical method
for matrix calculations, nothing specific to isotopomers
or metabolism):

X=(AT*A)"'ATP (1)

where X = calculated relative intensities of the frag-
ments, A = matrix of relative natural abundance values
for all possible isotopomers and P = set of the experi-
mental relative intensities of the fragments (observed
during experimentation). The used mathematics fol-
lows Brauman’s approach [16] and recommended con-
siderations for its application [14,17]. The number of C
atoms in the fragments contributes to relative natural
abundance distributions. It is nevertheless worth while
to look for contaminating fragment ions in the mass
spectrum, as its impact is substantially corrected
through the subtraction of relative natural abundance
values. The proposed binomial expression [14] calcu-
lating isotopomer fragment distribution taking into ac-
count relative natural abundance is

A=n! ) [(i!)* (n-i)]*P,0)* p, (2)

where A =relative natural abundance, n=number of
carbon atoms, i =index variable to count n iterations.
P, and P; stand for the abundance of **C and '3C,
respectively.

“The solution of these equations gives the abundance
of each organic moiety. Because of the way in which the
problem was formulated, the total abundance of the or-
ganic moieties must remain constant.” This statement
by Brauman [16] has now to be put into practical calcu-
lations. However, the results of this technique depend
upon a number of factors: (i) the analysis is based on
the assumption that the fragmentation patterns for all
heteroatom isotopes are identical (i.e., no differential
isotope effect), (ii) the experimental relative abundance
of 1*C and '3C isotopes induced through derivatization
is known and (iii) the relative natural abundances of the
isotopes are either known or measured. The LS-MIDA
software package itself is not designed to perform inte-
gration of the original MS signals. Thus, another soft-
ware package must be used first. For our examples, it
relied on pre-processing by the software LabSolutions
by Shimadzu which is standard software directly sup-
plied with the instrumentation for GC-MS. However,
any type of pre-processing software can be used in com-
bination with LS-MIDA.

To predict the relative isotopomer contributions in
natural abundance compounds, linear regression analysis
is performed by drawing an abundance matrix (eq. 3)
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using the known or estimated natural abundance values
of isotopes by binomial expression.

A 0 0 0
Ay A, 0 0

| o4 4 o4 0

A= A, A4 A A )

An An—l An—2 An—S

Here, Aj, Ay, Az Ay ... A, are the estimated relative
natural abundance values of fragments using eq. 2.
These values are used in the abundance matrix A
[17,18], based for linear regression analysis. In general,
obtaining the coefficients of matrix A (eq. 3) is the non-
trivial part of the method. More specifically, the atoms
and their isotope distributions from the derivatisation
agent must be taken into account, if present. Overlaps
of mass traces by impurities have obvious effects and
the mode of ionization (positive or negative) has effects
on the m/z values. Our implementation tackles the pro-
cessing of the pre-processed data to overcome some of
these problems. For example, contributions due to the
derivatisation agent are filtered out.

Next, Brauman’s least square algorithm (eq. 4) is ap-
plied for the estimation of relative intensity values for
the fragment spectrum:

Rijgyy =A""*P (4)

Here, Ri(;.,) are the string of predicted relative inten-
sity values with respect to the m/e values. The length of
the abundance matrix depends upon the total number of
m/e measurements and experimental relative intensity
values. The set of linear equations used to draw the
abundance matrix and multiplications for quantitative
analysis [14] is given in eq. 5.

SoTo —U,
SiTo + SoT;+ =U;
S$2To + S;T1+S0T> =U>
......... (5)

SnTm—I + Sn-le
S, T,

=U (n+m-1)
=U (n+m)

Here, the linear regression analysis (initially used by
Brauman [16]) is performed for spectral data analysis,
where U is the mass isotopomer distribution, and S and
T are the isotope abundances for '?C and '3C,
respectively.

To compute isotopomer abundances for each frag-
ment, again linear regression analysis is performed by
calculating the abundance matrix, but the input values
are now the observed relative intensity values (Ri.n)) in
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the MS-traces. The length of the abundance matrix de-
pends on the number of fragments with the result:

Ri; 0 0 0

Riy, Ri; 0 0
Abundance Matrix (Ri(l_,,)): 22 gz gz IO?L’J
Ri, Ri,; Ri,, Ri,s

(6)

In eq. 6, Ri; Ri, Riz Riy . Ri, are the observed relative
intensity values with respect to the m/e values. Now,
eq. 1 is applied to estimate the string of calculated rela-
tive abundance values (Ra(;.,)) for the fragments, where
A = Abundance Matrix (Ri-n)).

With eq. 7 absolute **C enrichments are then calcu-
lated:

Abs®C = (YA, *n)/a (7)

The absolute **C-enrichment is equal to the sum of all
labeled isotopomers multiplied with the respective num-
ber of labels (0 to n), divided by the number of carbon
atoms in the fragment under study. A indicates the la-
beled isotopomer, the index O till n indicates the number
of labeled atoms in the fragment, and a indicates the
number of carbon atoms in the fragment. The matrix
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calculations are mathematical simple, however, the opti-
mized combination of pre-filtering software and abun-
dance calculations by LS-MIDA takes into account all
required steps as well as experimental complications
(e.g. filtering out derivatization agent) in a single user-
friendly and open-source software package.

Development

The above described mathematics and calculations were
implemented into the software “LS-MIDA” (executable
available as Additional file 1; test data in Additional file
2; pre-filtering software considerations see above). We
show that the implementation of Brauman’s least square
method and the inclusion of binomial expression allow
accurate calculations of isotopomer enrichments using
experimental GC/MS data of '>C-labelled silylated
amino acids. LS-MIDA is a UML designed [19] and suc-
cessfully evaluated third party tool independent reusable
desktop application (batch) with user friendly graphical
interface, capable of sequentially processing standard in-
put and producing visual output presentation (text and
spectrum).

The available and tested version of LS-MIDA provides
two main modules, the data analyzer (see Figure 2) and
the data manager (see Additional file 3, installation and
technical overview). The data analyzer is capable of pro-
cessing input data (metabolite information, m/e values

SBDEA ... (Software for Biological Experimental Data Analysis)
Program  Proguct  Windows  About

=1oix|

® UNIVERSITAT
_ | WURZBURG

=Ll s @88

Metabolte | M/Z Values | Rl Values

| CtomMass | Citom Fragmens | FivedVisue | Date |
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Natural Abundance (NA) %

Absolute NA Enrichment 13C %
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and/or created data files using the Data Manager.

Figure 2 LS-MIDA for isotopomer distribution analysis. The Data Analyzer to be loaded with the experimental data; manual entered data
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and experimental relative MS intensity values). It then
estimates mass values (M,, M_;, M,,..,), predicts relative
natural abundance values, and calculates the actual
isotopomer abundances from the MS patterns. Finally, it
allows drawing the isotopomer distribution of the calcu-
lated values (see Figure 3).
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Graphical user interface

LS-MIDA provides an intuitive graphical user interface
for file based experimental raw data manipulation and
management. It is capable of not only managing user in-
put experimental raw data but also provides options to
manage resultant data (output of LS-MIDA). It allows

Start Pomm e mmmmmmmmmemcmaaaaaog
i Metabolite, M/Z values, RI values, !

]

)

Mass Fragment. Mass Value.

/ Raw Data Input (1/0) [“

!

Read & Validate I/O ittt il

!

Estimate Mass Values

|

NA % per Fragment

Estimate Natural
Abundances (NA)

'

Draw NA Abundance
Matrix & Perform Linear
Regression Analysis

'

Y

NA % per M/Z Value

Estimate Relative
Intensities (RT)

!

Draw RI Abundance
Matrix & Perform Linear
Regression Analysis

!

h 4

RA % per Fragment

Estimate Relative
Abundances (RA)

'

Estimate Absolute 13C
Enrichment of NA and RA
Values

.
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!

] ]
] 1
| Draw Spectrum | } NA Abs. Errich., RA. Abs. '
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Figure 3 LS-MIDA; Flow Chart. Visual presentation of the unified mark-up language (UML) based flow chart. The implemented flow of
operations performed during experimental data input, processing, analysis and visualization is given.
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the user to create new data files, manage created data
files, merge new or already made data files into one or
more new or already created data files and manipulate
entries of data files. It is an independent file based data
management system that does not require any external
or third party database to install and use. LS-MIDA is
implemented and tested using Microsoft Windows (ver-
sion XP and 7) operating system as it is developed using
Microsoft Dot net framework and C Sharp (object ori-
ented) programming language. The licensed software is
freely available for academic use on request.

Database manager

LS-MIDA advantageously provides a file-based data
management system for experimental metabolic mass
isotopomers based raw data. The data manager is a
supporting utility, developed as a user-friendly file-based
experimental data management system. It allows the
user to create new experimental data files that later can
be used for the analysis using data analyzer. The experi-
mental data is organised following a new data format es-
pecially proposed (with extension “*.Is”) for LS-MIDA
data files. Data manager allows the user to read, add,
edit, update, delete and merge data (from other source
files of the same extension) into a file.

Results

Calculations

The implemented mathematical procedure in LS-MIDA
version 3.0 (see Figure 4) starts with the input (I/O) of
metabolite information (e.g., name) and of the raw data
from MS spectra, i.e., m/e values, and the experimental
relative intensity (R;) values. After I/O validation, the
mass values M,, M_;, M,,,,, are calculated to adjust the
potential mass distribution.
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Then, using binomial expansion, relative natural abun-
dances N, with percentages per each fragment are esti-
mated (see Figure 5). Next, linear regression analysis is
performed and the abundance matrix is drawn with the
application of Brauman’s least square method using esti-
mated N, values to derive the relative intensity values
per m/e value for natural abundance compounds. The
relative intensity values R; are then used to calculate the
isotopomer abundances R, (including their percentage
amounts in each fragment) for the labelled compounds
under study.

For this purpose, once again a linear regression ana-
lysis is performed drawing the abundance matrix with
the implementation of Brauman’s least square method.
Using the calculated N, and R, values, absolute 13C en-
richment is then calculated for each fragment (see
Figure 6).

The output (N, and R, values) is presented in numeric
format and in special notation format (based on the
number of C atoms in the fragments) and the
isotopomer distribution is shown graphically (see
Figure 7).

Application in metabolite measurements

The software was now tested with different data sets.
13C-Labelled amino acid samples (analyzed as TBDMS-
derivatives) were obtained from hydrolysates of Salmonella
enterica grown in medium containing [U-13C6]glucose
[20]. We have shown earlier that [U-13C6]glucose is effi-
ciently incorporated into most amino acids of Salmonella
enterica via intermediates of glycolysis. Under these con-
ditions, alanine is mainly composed of the unlabelled
isotopomer (derived from unlabelled glucose in the
medium) and the fully **C-labelled isotopomer due to de

259,15#260,1H#261,1#262,1#263,11#264, 1426514

0,07#5,5302,502,33144 5318, 7913.5541

— Selected Values
Metabolite  |&la - 260
M/Z Values
Rl Values
C Atom Mass |38
C Atom Fragment  [3%
Mo [259#
M1 [25848
Mmax [278%
Constant Value [16%

Table 1.

Figure 4 LS-MIDA; Input Interface. This figure presents input information (example: alanine; Metabolite name, m/e values, R; values, C Atom
Values, C Atom fragment values) and estimated mass values (Mo, My, M5, for Ala 260. The input and resultant values are also presented in
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IV - A 0,430919298819507% 11.8003464807093% 3,28643028850377% 5,33928863323921% 61,5344908095128% 12,2289817521541% 5,31834273706134% )|
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1,01811623727288H 0K 0# 0,436317333953475H A4 Ervichment 13 RN | |
0,3238828170954284 7,785645827644974 2,16821441444225H4 3522582729346654 40,59723111281734 8,06804106015085H 3,50915357427463#
Figure 5 LS-MIDA; Calculation. Estimated natural abundance, relative abundance, relative intensity values and absolute enrichments for alanine,
fragment weight is 260.
A

novo synthesis of alanine from [U—BCg]pyruvate made
from [U-"*Cg]glucose via glycolysis.

As an example for the involved numerical steps,
Table 1 and Figure 4 show input parameters and experi-
mental MS raw data of three fragments for labelled
TBDMS-alanine such as metabolite information, m/e
values of the relevant fragment, experimental intensity
values, atomic mass values and the number of atoms in
the fragment. During input, data file preparation, and
management, the data manager structures data into ex-
perimental data files which are then used by data
analyzer for the calculations. The obtained results are
shown in Table 1b, Table 1c, and Figures 4, 5 and 6. Ob-
served results are M,, M_;, M,,,,, (the range of mass in
which to pick the correct intensities), the predicted rela-
tive natural abundances, and the relative abundances of
isotopomers in the labelled sample with its absolute '>C
enrichment

As shown in Figure 7, abundances of four different
alanine isotopomers are observed. For the isotopomer
000 (ie. 2C only), the estimated natural abundance is
96.7%, whereas the same isotopomer accounts for 70.0%
in the labelled compound. The isotopomer group with
one "*C-atom has 3.26% or 0% abundance in the un-
labelled or labelled compound, respectively. The relative
abundances for the isotopomer group comprising two
13C-atoms are 0.037% or 0% in the unlabelled or labelled
alanine sample, respectively, whereas the abundances for
the fully labelled isotopomer are 0.00014% or 30.0% in
the unlabelled or labelled sample, respectively. On this
basis, the observed absolute enrichment value of **C in
the labelled sample from S. enterica results in 30.0%.

This is in line with our expectations and calculations
also using other software tools for isotopomer analysis.

The resulting spectrum is shown in Figure 7. At con-
stant m/e values the peaks of the drawn spectrum may
vary according to their molecular composition [16]. The
strongest observed relative intensity '>C isotopomer
peak in this example is at 263.1 in the correct range of
M,, M_;, M,,.. so the values for 260.1, 263.1 and 264.1
are shown in Figure 7 for the alanine mass spectrum.
For more results of labelled TBDMS-amino acids from
the same labelling experiment [20,21], please have a look
at Additional file 3: Table S2-S3.

For the pathway analyses of Salmonellae mentioned
above and in similar studies on other bacteria, we tested
the processing of different data sets; input data file prep-
aration and management, experimentation and data ana-
lysis. This allowed also an analysis of error rates.
Accuracy of the calculation itself is quite high (error less
then 1 part per billion). This estimate is based on several
hundred test runs of the software and meticulous testing
for bugs and unexpected behavior. Regarding errors
from the non-trivial coefficients of matrix A involving
experimental errors from atoms of the derivatization
agent present and overlap of fragment spectra as well as
the mode of ionization (positive or negative), we expect
error rates of less than 1%.

Another inherent source of error is the analysis of net-
work fluxes for complex biological system that typically
result in notably higher deviations when looking at the
results from replicates. As these are indirectly inferred
from the changes of measured isotopomer concen-
trations, these data already carry the error due to the

[ Ipexp [32664842833% 0032564842833 #

[ IpeXR (00365527107 % 0,000365527107 #

@i (00001367631 % 29,9991531129648 % 1,367631E-06 # 0,435317933953475 &
| 5

Figure 6 LS-MIDA; Abundance. Calculated percentages of abundance values for Alanine in fragment groups.
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23 20 %1 02

MZ Valusr

Figure 7 LS-MIDA; Spectrum. Alanine Mass Spectrum (R; to m/e). Spectrum is drawn and shows estimated relative intensity values, based on the input
experimental intensity values with respect to the m/e values. All data can be processed at once (click the button “Measure all the data”).

mathematical procedures. In addition, experimental er-
rors regarding growth conditions must be taken into ac-
count (cell number, actual glucose concentration, sample
preparation). Indeed, the resulting overall error for flux
analyses considering all these effects can be as high as
10% based on our experience. Some limitations arise
from the fact that not in all pathways metabolized label
is present, but this is an inherent prediction limitation
for the approach.

Discussion

13C Labelling of metabolites has proven to be a powerful
method in quantifying metabolic routes and fluxes, espe-
cially, if there are alternative pathways between two me-
tabolites. Isotopomer balancing provides the basis for
deducing metabolic pathways and fluxes.

In own studies, we have shown that '*C-incorporation
studies coupled to software-based isotopomer calculation
allowed us to identify the pathways of amino acid bio-
synthesis [22] under relevant non-standardized conditions
(e.g. proline biosynthesis in Listeria monocytogenes and its
modulation by the transcription factor PrfA [21]). Another
example concerns nutrient supply for Salmonella in the
Salmonella containing vacuole [20]. Again, the unequivo-
cal determination of nutrient flow across the vacuole to
Salmonella depends on isotopologue data with the use of
suitable processing software.

In general, without transforming the mathematics into
applied software doing the calculations, none of these
and other insights [6,20,21] regarding flux modifications
and usage of different metabolic pathways in different
organisms is possible.

Despite this potential power of the methodological ap-
proach, it is still difficult to perform metabolic flux ana-
lyses due to the lack of user-friendly and open-source
software tools. This limitation also demands the devel-
opment of mathematical modelling of metabolism for
each substrate to obtain more detailed and accurate re-
sults. Before the implementation of LS-MIDA, we relied
on the usage of a lab-specific Excel/Solver-based

software doing the required calculations. However, this
approach did not provide user-friendly output formats
nor included a database allowing extensive comparative
studies. As an alternative to this lab-specific solution,
commercial packages may also be used [12,13,15]. How-
ever, these software packages are not freely available.

In order to establish tools that can be widely distrib-
uted, we have established the LS-MIDA software. Briefly,
Brauman’s least square algorithm is used and developed
in the form of a versatile software application iteratively
analyzing the estimated abundance resonances [23] after
binomial expansion for the calculation of isotopomer en-
richments in labelled metabolites.

Furthermore, LS-MIDA provides a file-based data
management system for fast and accurate MS-based
isotopomer analyses.

In comparison with other existing approaches [24-26],
the combined features in LS-MIDA are not available in
standard packages for metabolite modelling such as
Metatool [18], Yanasquare [27], Gepasi [28] or FiatFlux [1]
(here fluxes are predicted after the isotopologue data have
been processed). There are two software solutions available
for isotopomer data processing, Envelop [24] and Isotope
Pattern Calculator [25], but none uses binomial expression
for data extension. The implementation of Brauman’s least
square method with the inclusion of binomial expression
allows rapid and accurate calculation of isotopomer data.

LS-MIDA was compared with in-house software dem-
onstrating its robustness. This showed that LS-MIDA
can be used as an open-source platform for many (even
non-expert) users in consortia in research programs
such as the ongoing priority DFG program dealing with
“host adapted metabolism of pathogens” in our example
as well as other interested academic groups (German
and foreign) for which we did provide and also will pro-
vide in future the software free of charge. Training
courses and service are offered to support the use of the
software within the program and for other users. In con-
sequence, the software is freely available for the world-
wide academic community.



Table 1 Calculation results

(A) Experimental raw data of alanine (Ala)

Metabolite m/e values R; values C Atom Metabolite C Atom Fragment
Alanine (Ala) 259.15#260.1#261.1#4262.1#  0.07#8.53#2.3#2.3% 3 3
263.1#264.14265.14# 44.5948.79#3.88#
(B) Alanine experimental raw data analysis1
Metabolite Mo M, M max N, Ra N, Abs. Ra Abs. Ri values
Enrichment Enrichment

Alanine (Ala) 259 258 278 0.967068262369# 1.01811623727288# 00111 # 0436317933953475 # 0.323882817095428#
0.032564842893#  O# 7.78564582764497#
0.000365527107# O# 2.16821441444225#
1.367631E-06# 0.436317933953475# 3.52258272994665#

(C) Isotopomer calculation results (example: alanine)

Isotopomeric group N,% R.%

[000] 96.7068262369% 70.0008468870352%
[XXX] 1 3.2564842893% 0%

[XXX] 2 0.0365527107% 0%

[111] 0.0001367631% 29.9991531129648%

40.5972311128173#
8.06804106015085#
3.5091595742746%9%#

" Here and in the following long (many digits) calculation results are shown to illustrate arithmetics.
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Conclusions

LS-MIDA is a versatile, open-source, and user friendly
software with rapid calculation, integrated overview on all
isotopomers, least square correction and database man-
agement system, with good application potential for
biology and biotechnology such as studying the core me-
tabolism of organisms, the pathways and fluxes leading to
desired products in biotechnology, and complementing
methods from genomics, proteomics or metabolomics.

Availability and requirements

LS-MIDA is free available software for all academic users
with open license; a commercial license can be obtained
on request.

LS-MIDA is developed using the Microsoft C# (sharp)
programming language and Microsoft Dot Net framework
2008. It is compatible (install and use) for all Microsoft
Windows operating systems. Moreover, LS-MIDA auto-
matically adopts the language of the installed operating
system and presents numerical values accordingly e.g. in
case of English language decimal values are * (dot) sepa-
rated and in case of German language decimal values are
(comma) separated. Numerical values are separated by #
(hash) symbol for all languages.

Further details are available in the Additional file 3
Tutorial (installation, evaluation, further data, glossary).

Additional files

Additional file 1: LS-MIDA software application. An executable
software file (setup) is included.

Additional file 2: Example data for different amino acids. Example
data for different amino acids analyzed by LS-MIDA.

Additional file 3: Tutorial, installation, evaluation, further data,
glossary.
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