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Abstract

Background: Dynamic protein phosphorylation is an essential regulatory mechanism in various organisms. In this
capacity, it is involved in a multitude of signal transduction pathways. Kinase-specific phosphorylation data lay the
foundation for reconstruction of signal transduction networks. For this reason, precise annotation of phosphorylated
proteins is the first step toward simulating cell signaling pathways. However, the vast majority of kinase-specific
phosphorylation data remain undiscovered and existing experimental methods and computational phosphorylation
site (P-site) prediction tools have various limitations with respect to addressing this problem.

Results: To address this issue, a novel protein kinase identification web server, PKIS, is here presented for the
identification of the protein kinases responsible for experimentally verified P-sites at high specificity, which
incorporates the composition of monomer spectrum (CMS) encoding strategy and support vector machines (SVMs).
Compared to widely used P-site prediction tools including KinasePhos 2.0, Musite, and GPS2.1, PKIS largely
outperformed these tools in identifying protein kinases associated with known P-sites. In addition, PKIS was used on
all the P-sites in Phospho.ELM that currently lack kinase information. It successfully identified 14 potential SYK
substrates with 36 known P-sites. Further literature search showed that 5 of them were indeed phosphorylated by
SYK. Finally, an enrichment analysis was performed and 6 significant SYK-related signal pathways were identified.

Conclusions: In general, PKIS can identify protein kinases for experimental phosphorylation sites efficiently. It is a
valuable bioinformatics tool suitable for the study of protein phosphorylation. The PKIS web server is freely available
at http://bioinformatics.ustc.edu.cn/pkis.
Background
Reversible protein phosphorylation, which is one of the
most common post-translation modifications in eukaryotes,
is involved in various cellular processes including regulation
of metabolism [1], DNA repair [2], and cellular differenti-
ation [3]. It plays an especially dominant role in signal
transduction in biological systems [4,5]. Kinase-specific
phosphorylation data including substrate sites (P-sites) and
the corresponding protein kinase is the root of reconstruc-
tion of signal transduction networks and is widely used in
different fields of biomedicine, especially in the identifica-
tion of potential drug targets [6,7]. For this reason, precise
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reproduction in any medium, provided the or
annotation of phosphorylated proteins is key to further re-
search regarding phosphoproteomes.
In recent years, considerable efforts have been devoted

to experimental and computational identification of phos-
phorylation data. Historically, phosphorylation sites were
discovered mainly using low-throughput technology [8].
However, these biotechniques, such as 32P-labeling and
degenerate peptide library screening, are costly, labor-
intensive, and time consuming [9,10]. With recent devel-
opments in mass spectrometry, experimentally verified
phosphorylation data have accumulated rapidly. For ex-
ample, Wiśniewski et al. identified nearly 12,035 unique
P-sites in 4,579 mouse brain proteins using mass spec-
trometry [11]. However, this high-throughput technology
cannot provide information regarding the protein kinases
that catalyze phosphorylation substrates. Systematically
matching these P-sites to specific kinases experimentally
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is not currently feasible [12]. This limits the amount of
protein kinase information that can be made available in
phosphorylation databases. For example, a well-known
database of experimentally verified phosphorylation data
in eukaryotes, Phospho.ELM, currently lists 3,151 phos-
phorylation sites with corresponding kinase information
[13]. However, this accounts for less than 12% of the total
of 27,404 human phosphorylation sites deposited in this
database. The increasingly large gap between experimen-
tally verified phosphorylation data and protein kinase in-
formation hampers studies on protein phosphorylation
and signal transduction pathways. Existing kinase-specific
phosphorylation site prediction tools, such as PPSP [14],
KinasePhos 2.0 [15], Musite [16] and GPS2.1 [17], may
generate kinase information for experimentally verified
phosphorylation sites, but they focus on predicting novel
phosphorylation sites and therefore show less than opti-
mal performance for other purposes.
To address these limitations, this study presents a novel

bioinformatics tool called the protein kinase identification
server (PKIS). It is designed for the identification of protein
kinases that act at known P-sites with high specificity. Hu-
man phosphorylation data was retrieved from the Phospho.
ELM database and used to train the kinase identification
models by incorporating the composition of monomer
spectrum (CMS) with SVMs [18]. Comprehensive analysis
shows that CMS encoding performs better than binary en-
coding in identifying protein kinases for known P-sites. The
results of performance evaluation show that PKIS is more
powerful than widely used P-site prediction tools.

Results
Prediction performance in different window sizes
Previous studies have demonstrated that the side chains of
amino acids surrounding P-sites influence the phosphoryl-
ation process, including contacts with kinases. In this way,
the sequence surrounding a P-site plays a vital role in de-
termining which kinase catalyzes the corresponding phos-
phorylation substrate. However, the residues enclosing the
P-sites in the linear sequence may not be adjacent spatially,
and distinguishing the residues surrounding the P-sites
exactly for all the phosphorylated proteins experimentally
is difficult and time-consuming [8]. For these reasons, all
residues within 30 aa (amino acid) of the P-sites were se-
lected for further examination.
In light of kinases’ specificity in protein phosphorylation,

it does not make sense to use a fixed window size for all ki-
nases [19]. For this reason, LOOCV was applied to evaluate
performance with respect to the different window sizes
used in CMS encoding. Two Ser/Thr kinases, CK2alpha
and CDC2, and two Tyr kinases, MET and SYK, served as
examples. As shown in Figure 1A, increasing the window
size is generally associated with better AUC, especially
when the window size is small. For example, the AUC for
MET kinase is 0.611 when m is equal to 8, but it soars to
0.842 when m increases to 16. The improvement in AUC
begins to slow down as window size increases beyond 16, fi-
nally stopping at the maximum value of m. This indicates
that all the residues implicated in the phosphorylation
process have been taken into account. It is of note that
there are some fluctuations in improvement as the window
size increases, probably due to complex interactions be-
tween residues.
To identify protein kinases confidently, the specificities

of the SVM models in PKIS were all required to be at
least 99.0%, which meant that the expected rate of false
positive results was not larger than 1.0%. Then changes
in sensitivity at different window sizes were examined
(Figure 1B). For MET kinase, the best sensitivity (0.57) is
obtained when m is equal to 19. For this reason, this op-
timized window size was used to build the SVM model
for MET kinase in PKIS.

Evaluation of CMS encoding
An essential part of developing a protein kinase identifica-
tion system is the encoding of the side chains surrounding
the P-sites. A good, high-performance encoding strategy
may also provide insight into the biological mechanism of
phosphorylation. First, we examined the features encoded
by CMS that represent different amino acid compositions
under a series of increased window sizes. Amino acid
compositions were found to be largely different for the
positive and negative data in most of the kinases. For ex-
ample, Figure 2 illustrates the distributions of amino acids
for CK2alpha and CDC2 kinase in different window sizes.
Asp and Glu are enriched in the side chains of P-sites cat-
alyzed by CK2alpha, whereas Arg is enriched in the side
chains of P-sites catalyzed by other kinases (Figure 2A and
Figure 2B). Likewise, Pro is only enriched in the substrates
of CDC2 kinase that is considered as a proline-directed
kinase [20] (Figure 2C and Figure 2D). Multivariate ana-
lysis of variance (MANOVA) of the CMS encoded features
was performed for evaluation of statistical differences in
amino acid composition. As shown in Additional file 1:
Table S1, a total of 50 kinases pass the statistical test, as
MANOVA requires that the sample size be larger than the
number of variates. The majority of these kinases (30 Ser/
Thr kinases, 6 Tyr kinases) exhibit significant differences
(P-value <0.05) in CMS encoded features, which is consist-
ent with the disparity of amino acid compositions between
positive and negative data. These results demonstrate that
CMS-encoded features are useful for the determination of
which kinase catalyzes the corresponding phosphorylation
process.
Another encoding strategy, binary encoding was also

investigated. Binary encoding is widely used in bioinfor-
matics studies of protein phosphorylation. In binary en-
coding, a 21-dimensional binary vector represents each



Figure 1 Prediction performance of models with different single-side window sizes m. (A) The escalating trend for AUC with the
improvement of m. The slope of the left side is larger than that of the right. (B) The optimal m for kinases is diverse. Sensitivity was evaluated
when the corresponding specificity was greater than or equal to 99%.
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amino acid and an end-of-sequence marker. Phosphoryl-
ation data were encoded based on CMS and binary strat-
egies and the performance of these two methods was
evaluated using LOOCV. The ROC curves for CK2alpha
and CDC2 kinase were used as examples (Figure 3). Ac-
companied with larger AUC for CK2alpha kinase, CMS
Figure 2 Difference of amino acid distributions in positive and negat
patterns in CK2 alpha’s positive and negative datasets, respectively. Panels
CDC2’s positive and negative datasets, respectively. The X-axis represents th
encoding shows consistently better performance than bin-
ary encoding (Figure 3A). For CDC2 kinase, crossed ROC
curves with similar AUCs are observed for both encoding
methods. However, CMS encoding demonstrates a signifi-
cant increase in sensitivity (27.6%) with a high level of spe-
cificity (99.1%), when compared to binary encoding (4.9%).
ive data. Panels (A) and (B) represent distinct amino acid distribution
(C) and (D) represent different amino acid distribution patterns in
e single side window size m.



Figure 3 Performance of two sequence encoding strategies: CMS and binary encoding. (A) Performance of CK2 alpha models using the
CMS and binary encoding strategies. (B) Performance of CDC2 models using CMS and binary encoding strategies. The red lines represent the
CMS method and the black lines represent the binary method.
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In addition, these two encoding strategies were compared
for other kinases and results showed CMS encoding had a
noticeable advantage over binary encoding for a majority of
kinases. Taken together, it is concluded that CMS is a
superior encoding strategy in identifying protein kinases.

Comparing with kinase-specific P-site prediction tools on
the Phospho.ELM database
The performance of PKIS was evaluated and compared to
three widely used kinase-specific P-site prediction tools:
KinasePhos2.0 [15], Musite [16], and GPS2.1 [17]. It should
be pointed out that none of these tools provide an option
for unbiased evaluation of performance (e.g. LOOCV). In
this case, we had to use all human phosphorylated proteins
in Phospho.ELM database as testing data to assess their
performance. These results were biased, because the
P-sites in the Phospho.ELM database were also used for
model training by these tools [15-17]. This inevitably lead
to over-estimations of performance. Additionally, the per-
formance of PKIS was examined using LOOCV, which can
Figure 4 Comparing with kinase-specific P-site prediction tools: Kinas
depicts the performance of the tool in CK2 alpha kinase and (B) illustrates
red solid lines.
accurately reflect the true performance of the proposed
method.
To evaluate performance at high specificity, a threshold

for decision scores and probabilities returned by P-site
prediction tools was used to ensure that specificity levels
fell as closely to 99.0% as possible. As shown in Figure 4A,
for CK2alpha kinase, the sensitivities of KinasePhos2.0,
Musite, and GPS2.1 are found to be 48.0%, 61.0%, and
46.0%, respectively, but PKIS shows better sensitivity, giv-
ing a value of 73.0% at the same level of specificity. Like-
wise, for CDC2 kinase, PKIS shows the best performance
at specificity greater than or equal to 99% (Figure 4B).
These results suggest that PKIS is superior to these P-site
prediction tools at a high specificity. This is corroborated
by the ROC curves of different methods (Additional file 2:
Figure S1). In addition, the cross-classifying specificities
for Ser/Thr kinases (Additional file 3: Table S2) and Tyr
kinases (Additional file 4: Table S3) shows that the kinase
models in PKIS can generally achieve very high cross-
classifying specificities, suggesting that they can correctly
ePhos2.0, Musite, and GPS2.1 at high specificities. Panel (A)
the performance in CDC2 kinase. The ROC curves of PKIS are plotted in
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recognize P-sites catalyzed by other protein kinases. In a
few cases, the cross-classifying specificities are relatively
low. For example, the specificity of ZAP70 kinase in SYK
model is 82% because these two kinases are in the same
kinase family and share similar substrate specificity [21].

Performance of the PKIS web server on testing data
To assess the performance of the PKIS web server, the
phosphorylation data from high-resolution maps of the hu-
man phosphorylation network were extracted and a testing
dataset of experimentally identified kinase-substrate pairs
was constructed [22]. To make results independent of any
training data used by the PKIS web server, phosphorylation
sites recorded in Phospho.ELM database were carefully
checked and removed from the testing data. The results in
Table 1 show that consistent with the LOOCV results, the
PKIS web server shows high specificity in identifying pro-
tein kinases on the testing data. For example, the LOOCV
specificity of PKIS for CK2 alpha kinase is 99.0% and the
specificity for the testing data is found to be 99.1%. For
comparison, the performance of protein kinase identifica-
tion was also evaluated utilizing GPS2.1, KinasePhos2.0,
Musite, and PPSP at similar specificities. PKIS demon-
strates sensitivity superior to that of other P-site prediction
tool. For the PKCa kinase, the sensitivity of PKIS is 37.3%,
but the sensitivity of GPS2.1, KinasePhos2.0, Musite, and
PPSP is 0%, 1.7%, 0%, and 8.5%, respectively. In addition,
the cross-classifying performance of two Ser/Thr kinases
was examined. These kinases, Erk2 and p38a (both in
MAPK subfamily), have similar substrate motifs and sig-
nificant proline enrichment at the +1 and −2 positions
(Additional file 5: Figure S2). PKIS demonstrates perform-
ance consistently superior to that of GPS 2.1 and PPSP
(Additional file 6: Table S4), with cross-classifying specific-
ities of 93.9% and 94.2%, respectively. Among Tyr kinases,
LCK and FYN (both in SRC subfamily), which exhibit
similar substrate motifs with no prominent amino acid
preference at any of the positions flanking the P-sites
(Additional file 5: Figure S2), PKIS also outperforms all
Table 1 Comparison of PKIS with kinase-specific P-site predic

Kinase PKIS GPS2.1

Sn Sp Sn Sp

Erk2 (MAPK1) 13.9% 97.6% 5.7% 97.2%

p38a (MAPK14) 13.5% 97.3% 0.0% 96.3%

CK2alpha 60.7% 99.1% 58.3% 99.0% 4

CDC2 37.5% 93.3% 12.5% 92.0%

PKCa 37.3% 99.8% 0.0% 99.4%

SYK 45.0% 93.0% 25.0% 93.0%

LCK 40.0% 97.4% 26.7% 92.1%

FYN 23.5% 94.6% 11.8% 94.6%

NA: This tool could not predict whether a residue had been phosphorylated by the
the other methods evaluated in this study (Additional file 6:
Table S4). Taken together, these results demonstrate that as
compared to P-site prediction tools, PKIS exhibits superior
performance in the high-specificity identification of protein
kinases, even if the protein kinases examined contain simi-
lar substrate motifs. In this way, PKIS are found to be espe-
cially suitable for large-scale phospho-proteomics studies
and systematic investigations of signaling pathways.

A case study
Increasing knowledge of P-sites and their corresponding
protein kinases is critical to reconstructing signal trans-
duction pathways. In the present study, PKIS was used to
identify P-sites phosphorylated by SYK kinase, which has
been reported to mediate various cellular processes [23].
There are a total of 38 P-sites across 17 proteins that are
phosphorylated by SYK kinase, as indicated by Phospho.
ELM. By applying PKIS to all verified P-sites without kin-
ase information, 14 new substrates of SYK kinase and 36
potential P-sites were discovered. These two datasets were
then combined and enrichment analysis was performed
employing DAVID to identify relevant pathways [24,25].
As shown in Table 2, 6 KEGG pathway categories are found
to be significantly enriched and to have Benjamini P-values
below 0.05. The most significant pathway is associated with
natural-killer-cell-mediated cytotoxicity (Benjamini P-value
1.27E-6). Cytotoxicity mediated by natural killer cells is a
very important immune response, playing both anti-viral
and anti-tumor roles [26]. In this pathway, 9 proteins are
found to be significantly enriched, and 2 of them (UniProt
ID: P15498, P78314) are not included in the Phospho.ELM
database. Careful mining of the literature show that the
relevant proteins are known to be phosphorylated by SYK
[27-29]. In this way, PKIS facilitates the discovery of
novel relationships between protein kinases and their
substrates in signaling pathways. Two other SYK-related
pathways, B cell receptor signaling pathway and the patho-
genic Escherichia coli infection pathway, are discovered
using combined datasets. These pathways would have been
tion tools on testing data

Musite KinasePhos2.0 PPSP

Sn Sp Sn Sp Sn Sp

4.4% 97.4% 3.8% 97.4% 13.9% 97.6%

8.1% 96.6% 0.0% 97.3% 5.4% 97.3%

9.1% 99.1% 35.6% 99.1% 53.4% 99.0%

0.0% 90.3% 0.0% 93.2% 12.5% 93.2%

0.0% 99.6% 1.7% 99.4% 10.2% 99.7%

NA NA 35.0% 94.4% 45.0% 93.0%

6.7% 93.4% 20.0% 96.1% 40.0% 97.4%

5.9% 90.5% 23.5% 94.6% 23.5% 94.6%

corresponding kinase or not.



Table 2 Significant KEGG pathways enriched in the combined dataset

Term Count(2) P-value Benjamini P-value

Natural-killer-cell-mediated cytotoxicity 9 (2) 2.71E-08 1.27E-06

Fc-gamma-R-mediated phagocytosis 6 (1) 3.29E-05 7.72E-04

Fc epsilon RI signaling pathway 5 (1) 2.52E-04 2.95E-03

B cell receptor signaling pathway 1 5 (2) 2.16E-04 3.38E-03

Pathogenic Escherichia coli infection 1 4 (2) 1.54E-03 1.44E-02

ErbB signaling pathway 4 (0) 5.15E-03 3.97E-02
1 Term not found when only kinase-specific phosphorylated data was used in Phospho.ELM.
2 The number of Syk’s substrates predicted by PKIS at high specificity.
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missed by DAVID without the new substrates identified
by PKIS. Apart from P15498, there are 3 more proteins
(UniProt ID: P15391, Q13509, P68366) within these two
pathways that are not included in Phospho.ELM but are
identified as substrates of SYK. Previous studies have
confirmed that all of them are phosphorylated by SYK
[30-32]. These results clearly demonstrate the utility of
PKIS in identifying protein kinases for experimentally
verified P-sites, which can facilitate the identification of
new substrates for protein kinases and the discovery of
novel signal transduction mechanisms.

Web interface
PKIS is freely accessible to users at the following web ad-
dress: http://bioinformatics.ustc.edu.cn/pkis/. Users can
submit phosphorylated proteins with verified P-sites and
select all or some of the 56 predictive models available for
protein kinase identification. In Additional file 7: Figure S3,
the predicted results are presented as a table in which each
row represents a unique kinase-substrate pair. To better
understand the substrate binding preferences of each pro-
tein kinase, the CMS logo representing the substrate’s spe-
cificity is also provided in the predicted results. Datasets
for all 56 kinases, including corresponding accession num-
bers and protein sequences can be downloaded from
http://bioinformatics.ustc.edu.cn/pkis/download.html.

Conclusions and discussions
Protein kinase identification is attracting significant atten-
tion due to the large number of P-sites discovered using
high-throughput technologies. In the present study, a novel
kinase identification web server was developed based on
CMS encoding strategy and SVMs. In addition, to achieve
optimal performance we generated specific negative data
for SVM training in that different negative dataset con-
struction strategies can bring about significantly different
performance with respect to the classification problems
[33]. The results showed PKIS outperformed many existing
P-site prediction tools for the identification of protein ki-
nases. However, there is still room for further improvement.
The system showed limited identification performance for a
few kinases. Protein phosphorylation is a highly complex
biological process occurring in vivo. As such, the primary se-
quences around the potential P-sites may be not sufficient
to indicate the corresponding protein kinase. The perform-
ance of this system may be enhanced by incorporating more
biological information, such as protein functional domains
and subcellular localization. Currently, kinase-specific phos-
phorylation data for other organisms are still sparse. How-
ever, with rapidly accumulated phosphorylation data, it may
be possible to develop a platform that can be used to accur-
ately identify protein kinases in multiple organisms.

Methods
Data collection
All 37,145 phosphorylation instances in humans were
extracted from the latest version of Phospho.ELM (9.0).
After excluding redundant records, 27,404 P-sites were
recognized in 5,374 proteins, including 3,151 kinase-
substrate pairs. These phosphorylation sites and their kin-
ase information were used for further analysis. For each
kinase, the corresponding phosphorylation instances were
used as positive data (+). Negative data (−) were comprised
of phosphorylation events catalyzed by other kinases, in-
stead of non-phosphorylation sites that were used by P-site
prediction tools. To ensure reliable results, a total of 56 ki-
nases with more than 10 positive instances were selected.
See Additional file 8: Table S5 summarizes the statistics of
all these kinases.

Feature extraction
In this study, sequence information was encoded using an
efficient encoding strategy called CMS [18]. As a part of the
CMS, monomer spectrum (MS) represents the amino acid
composition and the corresponding feature value is the oc-
currence frequency of each amino acid in a certain window.
For example, for the peptide CADKSPEQSPDAEYPTH,
the resulting MS feature vector is 1, 2, 1, 3, 2, 0, 0, 2, 2, 1, 1,
0, 1, 0, 0, 0, 0, 0, 1, 0, 0. For a protein sequence with a single
side window size of m, CMS incorporates different MS vec-
tors under a series of window size from 3 to 2*m+1. Unlike
the MS encoding strategy, this reflects the occurrence of
the amino acids in certain positions and therefore provides
more sequential information than amino acid composition

http://bioinformatics.ustc.edu.cn/pkis/
http://bioinformatics.ustc.edu.cn/pkis/download.html
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for given window size. Additional file 9: Figure S4 shows
the differences in CMS and MS encoding strategies.

Classification and evaluation
The kinase identification system was constructed by incorp-
orating SVMs with CMS features. LIBSVM, a public SVM
library, was selected for training classification models [34].
The radial basis function (RBF) was used as the kernel
function. The cost (c) value and the gamma (γ) value were
optimized and used to enhance the strength of the classi-
fiers. Leave-one-out cross validation (LOOCV, also called
the Jack-knife cross validation), which is the most objective
and rigorous method of assessing a classifier, was used to
evaluate the performance of PKIS. The two performance
measurements adopted in this study are defined as follows:

Sensitivity ¼ True positive
True positiveþ False negative

ð1Þ

Specificity ¼ True negative
True negativeþ False positive

ð2Þ

The receiver operating characteristic (ROC) curves were
also plotted and the area under the curves (AUC) was cal-
culated as additional measurements of performance. To
minimize possible false positives in the results, for each pre-
diction, a threshold was adopted to guarantee that the spe-
cificity was no less than 99%. For each kinase, the optimal
window size used to encode CMS encoding was deter-
mined using the best sensitivity obtained in LOOCV.

Additional files

Additional file 1: Table S1. Multivariate analysis of variance (MANOVA)
of the CMS encoded features.In total, 50 kinases pass the statistical test as
dictated by the requirements of MANOVA.

Additional file 2: Figure S1. Comparison of PKIS with kinase-specific P-
site prediction tools using the Phospho.ELM database. Some P-site
prediction tools (such as KinasePhos) do not report scores for P-sites that
are predicted to be unphosphorylated. To plot ROC curves, the scores of
these P-sites were set at 0, which may sometimes lead to vertical ROC
curves (dashed lines). Note that, in this case they may not precisely
represent real performance of protein kinase identification processes.

Additional file 3: Table S2. Cross-classification of specificity among 40
Ser/Thr kinases based on kinase identification models.

Additional file 4: Table S3. Cross-classification of specificity among 16
Tyr kinases based on kinase identification models.

Additional file 5: Figure S2. Sequence logos of amino acids
surrounding phosphorylation sites catalysed by four kinases. The
horizontal axis represents sequential positions relative to phosphorylation
sites and the vertical axis represents decreases in uncertainty. Each letter
denotes one amino acid.

Additional file 6: Table S4. Cross-classification of performance of
protein kinases with similar substrate motifs. Some kinase-specific P-site
prediction tools (e.g. Musite) cannot distinguish different protein kinases
within the same kinase group. For this reason, in this case, cross-
classification is not applicable (NA).
Additional file 7: Figure S3. A screen capture of a prediction made
using PKIS. Two protein sequences were used in this example. PKIS also
provides the CMS logo of each kinase, which contributes to better
understanding of the substrate binding preference of each protein
kinase.

Additional file 8: Table S5. Statistics of all kinases in PKIS. The PKIS
provides 56 kinases with more than 10 positive instances.

Additional file 9: Figure S4. Difference between CMS and MS
encoding strategies. Two different sequence encoding strategies were
used. For the sake of simplicity and clarity, a sequence of 5 amino acids
served as an example. Panel (A) shows the monomer spectrum (MS)
encoding strategy. Panel (B) shows the composition of monomer
spectrum (CMS) encoding strategy.
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