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Abstract

Background: Concept recognition is an essential task in biomedical information extraction, presenting several
complex and unsolved challenges. The development of such solutions is typically performed in an ad-hoc manner
or using general information extraction frameworks, which are not optimized for the biomedical domain and
normally require the integration of complex external libraries and/or the development of custom tools.

Results: This article presents Neji, an open source framework optimized for biomedical concept recognition built
around four key characteristics: modularity, scalability, speed, and usability. It integrates modules for biomedical
natural language processing, such as sentence splitting, tokenization, lemmatization, part-of-speech tagging,
chunking and dependency parsing. Concept recognition is provided through dictionary matching and machine
learning with normalization methods. Neji also integrates an innovative concept tree implementation, supporting
overlapped concept names and respective disambiguation techniques. The most popular input and output formats,
namely Pubmed XML, IeXML, CoNLL and A1, are also supported. On top of the built-in functionalities, developers
and researchers can implement new processing modules or pipelines, or use the provided command-line interface
tool to build their own solutions, applying the most appropriate techniques to identify heterogeneous biomedical
concepts. Neji was evaluated against three gold standard corpora with heterogeneous biomedical concepts
(CRAFT, AnEM and NCBI disease corpus), achieving high performance results on named entity recognition
(F1-measure for overlap matching: species 95%, cell 92%, cellular components 83%, gene and proteins 76%,
chemicals 65%, biological processes and molecular functions 63%, disorders 85%, and anatomical entities 82%) and
on entity normalization (F1-measure for overlap name matching and correct identifier included in the returned list
of identifiers: species 88%, cell 71%, cellular components 72%, gene and proteins 64%, chemicals 53%, and
biological processes and molecular functions 40%). Neji provides fast and multi-threaded data processing,
annotating up to 1200 sentences/second when using dictionary-based concept identification.

Conclusions: Considering the provided features and underlying characteristics, we believe that Neji is an important
contribution to the biomedical community, streamlining the development of complex concept recognition
solutions. Neji is freely available at http://bioinformatics.ua.pt/neji.
Background
A growing amount of biomedical data is continuously
being produced, resulting largely from the widespread
application of high-throughput techniques, such as gene
and protein analysis. This growth is accompanied by a
corresponding increase of textual information, in the
form of articles, books and technical reports. In order to
organize and manage these data, several manual curation
efforts have been set up to identify entities (e.g., genes
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and proteins) and their interactions (e.g., protein-protein).
The extracted information is then stored in structured
knowledge resources, such as MEDLINE and Swiss-Prot.
However, manual annotation of large quantities of data is
a very demanding and expensive task, being difficult to
keep these databases up-to-date. These factors have natu-
rally led to increasing interest in the application of text
mining (TM) systems to help perform those tasks. One
major focus has been on Named Entity Recognition
(NER), a crucial initial step in information extraction,
aimed at identifying chunks of text that refer to specific
entities of interest. However, biomedical entity names
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present various characteristics that hinder the identifi-
cation of those mentions in scientific documents [1]:

� Many entity names are descriptive (e.g., “normal
thymic epithelial cells”);

� Two or more entity names may share one head
noun (e.g., “91 and 84 kDa proteins” refers to
“91 kDa protein” and “84 kDa protein”);

� One entity name with several spelling forms (e.g.,
“N-acetylcysteine”, “N-acetyl-cysteine”, and
“NAcetylCysteine”);

� Ambiguous abbreviations (e.g., “TCF” may refer to
“T cell factor” or to “Tissue Culture Fluid”).

In an effort to deal with these challenges, several NER
systems have been developed for the biomedical domain,
using different approaches and techniques that can ge-
nerally be categorized as being based on rules, dictio-
naries or machine learning (ML). Each approach has
different resource requirements and deals differently
with the linguistic variability that resulted from the lack
of naming standards and the introduction of idiosyn-
cratic names by the scientific community [2]. In general,
ML-based solutions are better adapted to deal with
strong variability and highly dynamic vocabularies, such
as in gene and protein names. However, this approach
does not directly provide identifiers for the recognized
names. Thus, normalization must be performed in an
extra step in order to relate each name with concept
identifiers from curated databases or ontologies. In this
case, a concept corresponds to a biological entity present
on curated and specialized resources used to represent
and map current knowledge. On the other hand,
dictionary-based approaches are appropriate to deal with
precisely defined vocabularies of names (e.g., diseases
and species). This approach requires the construction
of a unique resource containing most of the identifiers
and names of a specific semantic type. However, this
presents various challenges, since the necessary infor-
mation is usually spread over dozens of data sources
and unique identifiers are specified on a per-resource
basis, which hinders mapping identifiers between hete-
rogeneous databases. Moreover, the same name may
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Figure 1 Spectrum of existing solutions for biomedical concept recog
refer to different concepts, depending on the context in
which it occurs. For instance, “NF1” can refer to a dis-
ease (“Neurofibromatosis Type 1”) or to a protein
(“Neurofibromin 1”).
The development of NER and normalization solu-

tions requires the application of multiple techniques,
which can be conceptualized as a simple processing
pipeline [2]:

� Input: interpret and filter input data to be processed;
� Pre-processing: process the input data in order to

simplify the recognition process;
� Recognition: identify entity mentions from pre-

processed data;
� Post-processing: refine generated annotations,

solving problems of the recognition process or
extending recognized names;

� Output: generate a structured output with the
final annotations.

Each step of the processing pipeline may involve the
implementation of various methods to fulfill the asso-
ciated requirements. Due to the specificities of the bio-
medical domain, methods developed for common
English may not provide the best outcomes when used
on scientific documents. For instance, in [3] the au-
thors analyzed the application of various tokenizers,
concluding that most solutions are too simplistic for
real-life biomedical applications. Thus, it is important
to develop and use methods optimized to deal with the
special linguistic characteristics of biomedical terms.
Based on the general processing pipeline and consid-

ering the requirements of the biomedical domain, vari-
ous solutions were implemented and used to support
and streamline the development of complex biomed-
ical IE solutions. Figure 1 presents the spectrum of
frameworks and tools considering their relative specifi-
city for this domain. The edges of the spectrum repre-
sent two contrasting types of solutions:

� General frameworks (left edge), which support
the development of IE solutions with a pre-
defined and general processing pipeline;
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� Specialized tools (right edge), centered on the
recognition of specific biomedical entity types and
providing end-user features.

UIMA [4] and GATE [5] are examples of frameworks
that provide a general solution to support the develop-
ment of complex IE systems, being independent of the tar-
get domain. Such goal is achieved by providing a flexible
processing pipeline based on a modular infrastructure,
enabling problem decomposition and consequent re-
utilization of modules. Besides the flexibility and re-usage
advantages, such solutions also provide a strong infra-
structure, such as cluster processing support for large
amounts of data. However, due to the high level of
abstraction, the development of new solutions may not be
as straightforward as expected, requiring some time to
correctly understand and have full control over the frame-
works’ features. Moreover, neither framework provides
default modules optimized for the biomedical domain,
which are provided by third parties, such as U-Compare
[6] and JCoRe [7] for UIMA. Nevertheless, most of those
modules are only available through web-services, which is
an optimal solution for small experiments but not
compatible with large scale and batch processing applica-
tions. Additionally, users must be careful when using
modules from different providers in a single pipeline, since
the application of different techniques (e.g., tokenization
and sentence splitting) among different modules may con-
siderably degrade performance results.
Toolkits such as NLTK [8] and OpenNLP [9], on the

other hand, are not focused on providing a text processing
pipeline, offering instead a multitude of implemented
methods that developers can use and combine to build
their own pipelines. Various features of OpenNLP are also
available as modules for UIMA, which may simplify the
creation of such pipelines. However, these solutions do
not provide modules optimized for the biomedical do-
main. Instead, they allow training new modules focused
on different goals and domains.
On the opposite edge of the spectrum are specialized

NER and normalization tools, whose development was
greatly promoted through the organization of challenges
such as BioCreative [10-12] and JNLPBA [13]. Dozens of
new solutions emerged using the resources provided by
these challenges, which allowed a fair and fast compa-
rison of divergent techniques. Gimli [14] and BANNER
[15] are examples of NER solutions, and GeNo [16] and
GNAT [17] are examples of NER and normalization
tools. However, the resources provided by those chal-
lenges are too specific and focused on the recognition of
particular entity types (e.g., gene and protein), generating
highly optimized solutions that provide high perfor-
mance results on tested corpora. NER solutions are typi-
cally open-source and publicly available as runnable
applications, enabling re-usage of already implemented
modules and fast development of new recognition sys-
tems. However, there is no explicit processing pipeline
and such solutions are not flexible, limiting the addition
or removal of processing modules. On the other hand,
normalization solutions are mostly not open-source,
providing only web-services for remote usage, which is
limited for batch processing.
There are also solutions focused on providing annota-

tion of heterogeneous biomedical concepts. For instance,
Whatizit [18], Cocoa [19] and NCBO Annotator [20]
provide annotations of species, genes and proteins, and
disorders, among others concepts. However, since they
are provided as web-services, batch processing is limited
and desirable functionalities, such as the possibility to
configure annotation characteristics or to extend the
provided features, are not available. MetaMap [21] is an-
other tool that provides annotation of heterogeneous
concepts, using the UMLS Methathesaurus and a set of
rules for extracting text chunks and scoring them as
candidates for concept names. Matching is performed
considering lexical and syntactic rules, generating names
variants to cover as much variability as possible. How-
ever, such approach makes MetaMap relatively slow, not
being appropriate for real-time use. For instance, it may
take several hours to process complex sentences, gene-
rating many hundreds of thousands of potential map-
pings [22]. On the other hand, the variability introduced
also increases ambiguity, which is a complex problem to
solve. Moreover, since it is provided as an end-user
tool, it is also limited in terms of configurability and
extensibility.
Considering the current frameworks and tools for the

biomedical domain, we believe there is a lack of solu-
tions that combine the advantages of the two edges of
the spectrum: modularity, speed, usability and domain
optimization. This document presents Neji, an open
source framework for biomedical concept recognition
that provides an automated and flexible processing pipe-
line that includes built-in methods optimized for the tar-
get domain. It supports the application of both machine
learning and dictionary-based approaches, automatically
combining generated annotations and supporting con-
cept ambiguity. Neji also supports known input and out-
put formats, with easy development of new pipelines
and modules.
We believe that Neji is a positive contribution for the

biomedical community, by simplifying the development
of complex concept recognition solutions and taking ad-
vantage of the most advanced and appropriate methods
in an integrated environment focused on fast and high-
performance results. As a result, we believe that Neji
may enhance text mining and knowledge discovery pro-
cesses, helping researchers in the annotation of millions
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of documents with dozens of biomedical concepts, in
order to infer new biomedical relations and concepts.
In the next section, we give a detailed description of

Neji’s modular architecture, presenting the core infra-
structure, the included modules and its usability. After-
wards, Neji is evaluated in term of concept annotation
accuracy and speed. In the end, we discuss the main ad-
vantages and applications of Neji.

Implementation
The design and implementation of Neji was focused on
four crucial characteristics: modularity, scalability, speed
and usability. In order to achieve modularity, every pro-
cessing task is performed by an independent module,
which can be executed ad-hoc or integrated in a pro-
cessing pipeline. Nonetheless, each module has its own
input and output specifications. Regarding scalability,
the solution should be able to support simultaneous ap-
plication of dozens of dictionaries and machine-learning
models for concept recognition, while at the same time
processing large data sets (i.e., millions of abstracts).
One of the key features to deal with large data sets and
considerably improve processing times is concurrent
processing, allowing different CPU cores to process se-
veral documents at the same time. Additionally, it is also
fundamental to take processing speed into consideration
when choosing libraries and techniques to perform the
different steps. Finally, developers and researchers
should be able to easily use pre-defined pipelines, im-
plement custom pipelines with provided modules and/or
implement new modules respecting previously specified
interfaces. Moreover, typical processing modules, such
as sentence splitting and tokenization, should be part of
the framework and available for direct use and/or
extension.
A framework with such characteristics should be an

added value for the biomedical community, allowing any
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Figure 2 Illustration of the processing pipeline and modular architect
user to easily develop custom and complex solutions
and use them according to their specific goals. Additio-
nally, advanced users do not need to deal with various
independent tools and libraries, allowing them more
time to dedicate to their real goals.

Infrastructure
The core component of Neji is the pipeline, which
allows users to submit various modules for execution
following a FIFO (First In, First Out) strategy. Thus, a
pipeline is a list of modules that are executed sequen-
tially, considering specific goals and target chunks of
text. Figure 2 illustrates the idea of this modular and
flexible architecture. Each module is implemented as a
custom Deterministic Finite Automaton (DFA), with
specific matching rules and actions. We used the hie-
rarchical text processing features of Monq.jfa [23] to
support the pipeline infrastructure and module execu-
tion (Figure 3). When a pipeline is executed, the input
documents are the input of the first module, and the
output of the first module is the input of the second
module and so on, until the last module provides the
output to a storage resource specified by the user. Since
different tasks have different requirements, different
types of modules are defined:

� Tagger: processes the input data and reflects the
changes in the same data. For instance, when
performing sentence splitting, inline annotations can
be provided to reveal the obtained sentences;

� Loader: loads information present on the input data
into memory. For instance, if inline biomedical
name annotations are present in the input text, a
loader can be used to load such annotations into
memory;

� Hybrid: processes input data and store the results in
internal memory. Inline annotations can also be
 pipeline
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Figure 3 Interface diagram to model implementation of pipelines and respective modules.
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provided as output. For instance, when performing
sentence splitting, it should be useful to provide
inline annotations of the sentences and load them
into memory. Obviously, a tagger and a loader can
be used instead, but some processing time is wasted
in reading the annotations from the tagger to the
loader;

� Reader: a Tagger that is used to collect data of
interest from the input resource;

� Writer: a Tagger that is used to generate output data
to a specific resource.

In order to support default and basic behaviors, Neji
already provides implementations of the various compo-
nents, namely tagger, loader, reader, writer, hybrid and
pipeline. Such architecture allows developers to easily
build custom module types or pipelines.
Since Neji is a framework focused on biomedical con-

cept recognition, it also defines and provides a flexible
and complete data structure to represent a corpus.
Thus, developers do not need to specify their own in-
ternal data structures, and they can easily extend the
provided data representation. Figure 4 illustrates the
final internal data representation of a corpus with
sentences and respective annotations. Moreover, since Neji
supports automatic annotation of heterogeneous biome-
dical concepts, in which the existence of nested and/or
intersected annotations is common, it is important to inte-
grate a data structure that suits such characteristics in the
best and most automated way as possible. A tree of anno-
tations is the data structure that better fulfills such re-
quirements, presenting various advantages over typical
approaches (e.g., list of annotations): a) structured annota-
tions provide enhanced information, since nested and
intersected annotations and their respective identifiers are
provided; b) the levels of the tree are directly associated
with the detail of annotations, the deeper the level the
more deeply an annotation is nested and/or intersected in
others; c) the consistency of the tree and of the respective
annotations can be maintained through automatic algo-
rithms; d) ambiguity problems are clear; and e) filtering
annotations can be as simple as pruning the tree. As illus-
trated in Figure 5, each sentence includes a tree of annota-
tions. In order to facilitate the use and management of
these trees, as well as for maintaining the consistency of
the annotations, the following methods are provided:

� Sorted insert: when an annotation is added to the
tree, it is automatically put in place, maintaining the
tree consistency;

� Sorted delete: when an annotation is removed from
the tree, all other annotations are put in place in
order to keep tree consistency;

� Traversal: obtain a list of ordered annotations
following typical tree traversal techniques: by level,
pre and post-order;

Since an annotation without concept identifiers is less
informative, it is important to provide an infrastructure
that allows each annotation to contain various identi-
fiers. Moreover, each identifier should provide complete
information regarding its original source and concept
type. Thus, the following quadruple composes each
identifier: source (original resource that contains the
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name and respective identifier); identifier (unique identi-
fier of the concept in the previously specified resource);
group (semantic group of the concept); and sub-group
(semantic type of the concept).

Modules
With the proposed infrastructure, the conditions to
build the required modules for text processing and con-
cept recognition are now met. The presentation of mo-
dules follow the processing pipeline previously presented
and illustrated in Figure 2.

Readers
A reader module is used to interpret input data, in order
to collect the relevant data and convert it into a format
that is readable by the following modules. Instead of
obtaining the relevant data and storing it into memory,
we decided to use a tagger to mark the original input
text with regions of interest (ROI) tags (“<roi > text</roi>”).
DISO

ANAT

PRGE

BRCA1 proteins regulate growth of ovarian 

BRCA1 proteins ovarian c

ovarian cancer

ovarian

Figure 5 Illustration of implemented concept tree. Such structure auto
ambiguity problems (PRGE: Proteins and genes; DISO: Disorders; and ANAT
Thus, the following modules only have to match the
ROI tags and process the contained text. Two different
reader modules are already provided, allowing to
process XML and raw text. The XML module allows de-
velopers to specify the tags of interest. For instance,
considering the Pubmed XML format, if only titles and
abstracts have to be processed, only the content of the
tags “ArticleTitle” and “AbstractText” are of interest.
On the other hand, the raw reader considers that all the
input text is of interest to be processed.

Natural language processing
After obtaining the texts of interest, the next fundamen-
tal step is to perform sentence splitting, since a sentence
is the basic unit of logical thought. This phase presents
various complex challenges due to the specific charac-
teristics of scientific biomedical texts [24,25]. Thus, we
integrated a module to perform sentence splitting taking
advantage of the Lingpipe [26] library, which contains a
ANAT

PRGE

cancer cells by tethering Ubc9.

ancer cells Ubc9

cancer cells

matically supports nested and intersected concepts, clearly exposing
: Anatomy).
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sentence splitting model trained on biomedical corpora
and presents high-performance results [27]. Natural
Language Processing (NLP) tasks are performed using
GDep [28], a dependency parser for the biomedical do-
main built on top of the GENIA tagger, which performs
tokenization, lemmatization, part-of-speech (POS) tag-
ging, chunking and NER. Since we are not interested in
the named entities provided by the GENIA tagger, we re-
moved the module and its dependencies. Moreover, we
decided to make the tokenizer behavior more consistent,
by breaking words containing the symbols “/”, “-” or “.”
into multiple tokens, which improved results [14]. Be-
cause GDep combines all the tasks in order to perform
dependency parsing, we decoupled the various process-
ing tasks, obviously respecting all task dependencies and
resources (tokenization < POS < lemmatization <
chunking < dependency parsing). Thus, for each task,
only the required resources (e.g., models) are loaded. For
instance, if one needs the pipeline just for dictionary
matching, only the tokenization plugin will be loaded
and executed. On the other hand, when dependency
parsing is required, all the processing tasks are per-
formed and respective information provided. For in-
stance, if a machine-learning model uses tokens, POS
and lemmas as features, but not chunks or parsing fea-
tures, these two tasks are not performed, making the
process considerably faster.

Concept recognition
As stated before, distinct biomedical concepts require
distinct approaches in order to achieve more accurate
recognition. Thus, Neji provides concept recognition
using both dictionary and machine learning-based ap-
proaches. Dictionary matching is offered using a modi-
fied version [29] of the dk.brics.automaton [30] library,
which provides efficient regular expression matching
with Deterministic Finite Automatons (DFAs). In a sim-
plistic way, DFAs are finite state machines that accept or
reject finite strings of symbols. Thus, a DFA transits
from one state to another, depending on the sequence of
input symbols, and a string is accepted if its parsing
finishes in a state marked as final. Considering that each
input string of symbols is a name from the dictionary,
one can build a DFA to match all names in a dictionary.
Additionally, each regular expression representing a
name from the dictionary is associated with a specific
identifier, enabling concept recognition. Such approach
supports both exact and approximate matching, and per-
forms the recognition of named entities in O(n) time,
where n is the size of the document. Since a large
amount of false positives may be generated using ap-
proximate matching, and considering that we are dealing
with a general biomedical solution, we decided to use
case insensitive exact matching. Orthographic variants
of names can be generated and provided in the dic-
tionary. Even so, it is necessary to pay special attention
to terms that are common English words. Thus, a list of
non-informative words for the biomedical domain [31]
is ignored during the matching process. Similarly, bio-
medical names with two characters or fewer are also
discarded. However, such a strategy may mean that acro-
nyms of known entity mentions would be missed, which
can be overcome by a post-processing module for acro-
nym resolution.
Dictionaries are provided in TSV (tab-separated values)

format with two fields: identifier and list of names. Identi-
fiers should follow the format “source:identifier:type:
group” and their respective names must be concatenated
with a pipe (“|”). To allow easy configuration and support
dozens of dictionaries, files must be provided in a folder
with an additional priority file, which contains the file
names of the dictionaries (one per line) and defines the
priority to be used if a disambiguation method is applied.
This simple strategy enables fast, easy and flexible con-
figuration of dictionaries.
In order to optimize the concept recognition results,

some directives are followed when applying dictionary
matching, assuming that a different dictionary file is
used for defining concepts in each semantic group or
type:

� Considering one dictionary (i.e. same semantic
group/type), only the entry with the largest span is
matched;

� If two entries with the same text exist, in the same
or in different dictionaries, both entries are matched
and both identifiers are provided;

The support of machine learning-based solutions is
provided through Gimli, which uses the Conditional
Random Fields (CRFs) implementation from MALLET
[32] to recognize various biomedical entity types, and
provides high-performance results in two well-known
corpora: GENETAG [33] and JNLPBA [13]. It also pro-
vides a complete set of basic and complex features, ser-
ving as a good starting point to develop NER solutions
for the biomedical domain. Thus, various CRF models
trained for Gimli can also be used in Neji, each one
focused on a different biomedical concept type. Gimli
already provides models for the recognition of gene and
protein names, trained on GENETAG, and for the recog-
nition of gene and protein, DNA, RNA, cell type and cell
line names, trained on JNLPBA. Nonetheless, developers
can also use Gimli to easily train new models on dif-
ferent corpora and/or focused on different entity types.
However, Gimli only performs NER, not establishing a
relation between chunks of text and unique identifiers
from curated databases. Thus, we developed a simple
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and general normalization algorithm based on prio-
ritized dictionaries. Following this algorithm, if an iden-
tifier is found in the first dictionary, the match is
complete and the algorithm finishes. If no match is
found in the first dictionary, the second one is used to
find a match, and so on. In the end, if no matches are
found in the provided dictionaries, the developers can
choose to keep or discard the annotation. This confi-
guration works well if the first dictionary contains a list
of preferred names, and the remaining contain syno-
nyms for each identifier. Using this setting, a mention to
“TRAF2” would be matched in the first dictionary, since
this is the preferred symbol for the gene associated with
the protein with Uniprot accession Q12933, and the
matching process would stop. Additionally, “TRAF2” is
also a synonym for the gene “TANK” (Uniprot accession
Q92844), but since this is defined in a dictionary with
lower priority the match would not occur. Moreover,
this strategy also provides flexibility to users, which only
have to generate the various orthographic variants and
prioritize them in the dictionaries. Regarding the
matching approach, if a partial match of the annotation
is found in the dictionary, it is accepted as a valid identi-
fier for the complete chunk of text. For instance, if only
“BRCA1” is present in the dictionary, and the annotation
“BRCA1 gene” is provided, the identifier of “BRCA1” is
associated with the annotation. Conversely, if “BRCA1
gene” is in the dictionary and “BRCA1” is found in the
text, a match is not obtained since “extra” tokens are
only considered in the textual mention and not in the
dictionary entries. ML models are provided to Neji fol-
lowing a similar approach of dictionaries, where a pro-
perties file defines the characteristics of each model.
Post-processing
Neji is also able to integrate post-processing modules, in
order to optimize previously generated information. By
default, an abbreviation resolution module is provided,
in order to extend existing concepts. Thus, we adapted a
simple but effective abbreviation definition recognizer
[34], which is based on a set of pattern-matching rules
to identify abbreviations and their full forms. In this
way, we are able to extract both short and long forms of
each abbreviation in text. If one of the forms is already
provided as a concept, the other one is added as a new con-
cept with the identifiers of the existing one. Additionally,
Figure 6 Example of the Neji output format.
any further occurrences of that entity are also automat-
ically annotated.
Depending on user requirements, it may be useful to

filter concept annotations following pre-defined rules.
Thus, Neji provides the ability to remove annotations
from the concept tree based on three simple disambi-
guation strategies:

� By depth: remove annotations from the concept tree
that are deeper than a specified depth;

� Nested same group: remove concept annotations
that are nested on annotations of the same semantic
group and with a larger span;

� By priority: remove nested and intersected concept
annotations following a prioritized list.

Writers
Writers are used to store the recognized concepts in
external resources, such as files and databases. If the user
does not want to provide the result into an external
resource, the corpus is programmatically available. Neji
supports various well-known inline and standoff formats
used in the biomedical domain, such as IeXML [35], A1
[36], CoNLL [37] and JSON [38]. Overall, identifiers are
provided following the format “source:identifier:type:
group”, and using a pipe (“|”) to concatenate various iden-
tifiers for a single annotation. IeXML is an inline annota-
tion format based on XML tags, supporting two levels of
detail, i.e. only one annotation nested or intersected in an-
other. Moreover, various identifiers can be provided using
IeXML. Both CoNLL and A1 support ambiguous and
intersected concept annotations. However, complex iden-
tifiers are not supported in CoNLL, thus only the semantic
group is provided. The output of the A1 format can be
used with brat [39], in order to visualize and edit the
generated annotations. Finally, the JSON format provides
all the information contained in the tree, together with the
sentence and respective character positions. We also
provide our own format, in order to overcome some limi-
tations of other formats regarding nested/intersected an-
notations and multiple identifiers. It can be seen as an
alternative to JSON, being more readable and understan-
dable by humans. Figure 6 presents an example of the Neji
output generated for a sentence. As we can see, each
sentence has its own identifier, start and end character po-
sitions, and respective text. Regarding annotations, an
indentation-based approach is used to reflect the tree
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hierarchy, accompanied with the respective term identifier,
start and end character positions, and associated text and
identifiers.

Parallel processing
In order to simplify the use of the various modules and
required resources, we developed a method to manage
these resources, which we call Context. It automatically
loads the resources that are required to run a specific
pipeline. Thus, researchers do not need to deal with re-
petitive and time consuming tasks such as loading dic-
tionaries, ML models, parsers and sentence splitters.
Additionally, we also provide parallel processing of doc-
uments through multi-threading support. To accomplish
this, the libraries and respective dependencies used were
adapted to allow multi-threaded execution, solving some
limitations with MALLET and GDep. The Context also
supports multi-threading, by automatically generating
the required duplicate resources when necessary. For in-
stance, concurrent annotation of documents using one
ML model is not possible, requiring one instance of the
ML model for each thread. In order to apply parallel
processing, each pipeline must be implemented in a Pro-
cessor, which is a runnable pipeline with context and
input and output resources specification. Base imple-
mentation of a Processor is already provided, which sim-
plifies the development of alternative runnable pipelines.
A Batch is also provided, which performs concurrent
processing of input resources using a specific Processor
and Context. Considering the typical use case scenario
of parallel processing in the biomedical domain, i.e.,
process files in an input folder and provide the results to
an output folder, we developed a Batch executor to make
the applicability of parallel processing easier. The Batch
automatically generates the required Processor threads
to process specific files in a folder. Custom arguments
for the processors can be also provided, which takes ad-
vantage of Java reflection.

Usage
In order to make the annotation process as simple as
possible in typical use cases, Neji integrates a simple but
powerful Command Line Interface (CLI) tool, which is
flexible and provides a complete set of features:

� Annotate using dictionaries and/or machine-learning
models with respective normalization dictionaries;

� Various input and output formats. When the XML
input format is used, the XML tags should be
indicated;

� Parsing level customization. By default, Neji
automatically finds the appropriate parsing level
considering the ML model characteristics;

� Number of threads customization;
� Wildcard input filter to properly indicate the files to
process;

� Support for compressed and uncompressed files.

The features provided by the CLI tool allow annotating
a corpus using a simple bash command, such as:
./neji.sh -i input/ -if XML -o output/ -of XML -x

AbstractText,ArticleTitle -d resources/dictionaries/ -m
resources/models/ -c -t 6
In this example, Neji uses six threads to annotate the

compressed XML documents in the input folder with
the specified dictionaries and machine-learning models,
providing the resulting XML documents to the output
folder. Note that only the text inside the specified tags is
annotated. If users do not want to use the provided CLI,
it is also straightforward to develop a processor and
process the documents using the batch helper. First, a
processor taking advantage of the pipeline features must
be implemented. Figure 7:a presents the construction of
a complete pipeline processor that produces the same
results as the previous bash command, considering a
specific context, input and output documents provided
in the constructor. Afterwards, this pipeline processor
must be used to perform batch processing of documents.
Figure 7:b shows how a context is created considering
input models and dictionaries folders, and how a batch
is created for specific input and output folders. Finally,
the batch is executed considering the provided context
and all documents are annotated. Complete and detailed
documentation on how to use the CLI tool, build cus-
tom processors, and build processing modules is pro-
vided in the Neji’s web page.

Results
To provide general feedback regarding Neji’s reliability
as a framework, it is fundamental to evaluate its beha-
vior on real life problems. Thus, we believe that such
framework should be evaluated considering two key
characteristics:

� Concept annotation: how is the quality of the
produced concept annotations?

� Speed: how long it takes to process a specific
amount of documents?

Accordingly, we collected manually annotated corpora,
dictionaries and ML models to take advantage of Neji,
and compared the achieved performance results with
existing solutions.

Corpora
Our primary analysis was centered on the CRAFT cor-
pus [40], one of the largest publicly available gold stan-
dard corpora, which is focused on multiple biomedical
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concept types with heterogeneous characteristics. The
initial release contains a set of 67 full-text articles (more
than 21 thousand sentences) manually annotated by
domain experts, focused on nine biomedical ontologies
and terminological resources: Chemical Entities of Bio-
logical Interest (ChEBI); Cell Ontology; Entrez Gene;
Gene Ontology (biological process, cellular component,
and molecular function); NCBI Taxonomy; Protein
Ontology and Sequence Ontology. Overall, it contains
almost 100 thousand annotations. However, CRAFT
does not include anatomical and disorder concepts,
which we believe are fundamental to cover the general
biomedical concept spectrum. Thus, we decided to use
two other corpora for concept annotation evaluation.
The AnEM [41] corpus is focused on anatomical en-
tities, using a fine-grained classification system based on
the Common Anatomy Reference Ontology (CARO).
The annotated concepts are precisely divided into eleven
anatomical class labels, such as “Organ”, “Tissue”, “Cell”
and “Organism substance”. This corpus is based on 250
abstracts and 250 full-text extracts (article sections) ran-
domly selected from PubMed and from PubMed Central
(PMC), containing 3135 manually annotated concepts.
For testing purposes, 100 abstracts and 100 full-text
extracts are provided, summing together 1879 annotated
concepts. Finally, the third was the NCBI disease corpus
[42], produced by expert annotators using the Unified
Medical Language System (UMLS) as reference resource
and containing disease concepts classified into four class
labels: Specific Disease, Disease Class, Composite Mention
and Modifier. It contains 793 abstracts (6651 sentences)
from PubMed with 6900 disease mentions. For testing
purposes, 100 abstracts with 961 mentions are provided.
In the end, we used the 67 full-text articles of the CRAFT
corpus, and the test parts of both AnEM and NCBI
corpora, in order to allow direct and fair comparison.

Resources
Considering the three corpora, we collected the ML
models and/or dictionaries described below to recognize
biomedical concepts of each type. Resources for the
‘Disorders’ and ‘Anatomy’ types were used for annotating
the NCBI disease and AnEM corpus, respectively, and
the remaining were considered for the CRAFT corpus.

� Genes and proteins: due to the variability of gene
and protein names, their recognition was performed
using a ML model trained on GENETAG. It applies
a complete and complex set of features, namely
lemmas, POS, chunking, orthographic, local context
(windows) and morphological features. LexEBI [43],
which contains a filtered version of BioThesaurus
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[44], the most complete resource of gene and
protein names, is used to perform normalization.
The dictionary was further filtered to only include
gene and protein names for 21 of the most
commonly studied species a. Two different
dictionaries were generated: the first with preferred
names and the second with synonyms for each
identifier. Additionally, for each dictionary a set of
orthographic and semantic variants was generated
using the Lexical Variants Generation (LVG) tool
[45], namely: a) derivational, uninflected and
inflectional name variants; b) strip ambiguous
words, punctuation symbols and plural suffixes; c)
known synonyms and variants from biomedical
databases; and d) invert names around commas. In
the end, four dictionaries were used with the
following matching priority: 1) preferred terms; 2)
synonyms; 3) preferred terms with variants; and 4)
synonyms with variants; A simple filtering of gene
and protein identifiers was also applied as a post-
processing step, by discarding identifiers associated
with species that are not named in the document.
Thus, if identifiers for human and mouse proteins
are provided for a recognized protein name and
mice are not referred in the document, the
identifier for the mouse protein is removed from
the protein annotation.

� Chemicals: a dictionary of chemical names was built
using the ChEBI database of molecular entities [46];

� Species: the dictionary provided by LINNAEUS [29]
was extended by adding the entries from the NCBI
Taxonomy assigned to taxonomical ranks above
“species”, that is, from “genus” to “domain”. For each
entry, we included the names from NCBI as well as
the synonyms obtained from the corresponding
concept in the Unified Medical Language System
(UMLS) Metathesaurus [45]. Furthermore, less
specific names for species that also appeared as
names in higher taxonomical levels, such as the
genera “rat” or “mouse”, were filtered and kept only
at the highest level, in order to approximate the
annotation guidelines used in the CRAFT corpus;

� Cells: cell names were compiled from the “Cell” and
“Cell Component” semantic types in the UMLS
Metathesaurus;

� Cellular Component, Biological Process and
Molecular Function: terms for these concept types
were obtained from the corresponding sub-
ontologies of the Gene Ontology (GO) [47], and
expanded with synonyms from the corresponding
concepts in the UMLS Metathesaurus. Additionally,
UMLS concepts assigned to the UMLS semantic
types “Physiologic Function”, “Organism Function”,
“Organ or Tissue Function”, “Cell Function”,
“Molecular Function” and “Genetic Function” were
also included since they identify concepts closely
related to biological processes and molecular
functions, even if they are not directly mapped to
GO terms;

� Disorders: names and synonyms for abnormalities,
dysfunctions, symptoms and diseases were extracted
from the Metathesaurus. We considered the
following UMLS semantic types assigned to the
“Disorders” semantic group: “Acquired
Abnormality”, “Anatomical Abnormality”,
“Congenital Abnormality”, “Disease or Syndrome”,
“Mental or Behavioral Dysfunction”, “Neoplastic
Process”, “Pathologic Function” and “Sign or
Symptom”;

� Anatomy: anatomical entities were extracted from
the Metathesaurus, considering the following
semantic types grouped under the “Anatomy”
semantic group: “Anatomical Structure”, “Body
Location or Region”, “Body Part”, “Organ, or Organ
Component”, “Body Space or Junction”, “Body
Substance”, “Body System”, “Cell”, “Cell
Component”, “Embryonic Structure” and “Tissue”.
The semantic type “Fully Formed Anatomical
Structure” was not included, as it contains only a
few very general terms, such as “total body” or
“whole body structures”. The terms from the
“Cellular Component” sub-ontology in GO were
also included. Additionally, we included the terms
from the “Neoplastic Process” semantic type since
this most closely matches the “Pathological
Formation” annotation type included in the AnEM
corpus.

As a filtering step to eliminate inconsistent names and
names that would generate a large number of false posi-
tives, we rejected names with one or two characters,
names starting with a word from a strict list of stop-
words (e.g. “very long chain fatty acid metabolic
process”, “the cell”), and also any single word name if
that word was included in a broader list of stopwords
generated from the list of most frequent words in
MEDLINE. Some relevant terms that occur very fre-
quently in MEDLINE, such as general names of diseases
(e.g. “cancer”, “diabetes”), Gene Ontology terms (e.g.
“expression”, “transcription”) and species (e.g. “human”,
“Saccharomyces”), were removed from this stopword list
to allow identifying them in texts.
As can be seen, different resources are used for each

of the considered concepts in order to provide the best
and most complete results as possible, an approach
greatly simplified by Neji's modular pipeline. In the end,
our dictionaries contain almost 1 million concept identi-
fiers with 7 million name variants.
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Concept annotation evaluation
Two different evaluation approaches were performed, in
order to fully assess the quality of the provided concept
names and identifiers:

� Named entities: evaluate the quality of the provided
text mentions discarding the assigned identifiers;

� Normalization: evaluate the quality of the text
mentions together with the assigned identifiers.

Regarding the evaluation of named entities, five mat-
ching techniques were considered:

� Exact: annotation is accepted if both left and right
sides match with the gold standard annotation;

� Left: annotation is accepted if the left side matches;
� Right: annotation is accepted if the right side

matches;
� Shared: annotation is accepted if the left or the right

sides match;
� Overlap: annotation is accepted if there is any kind

of match: exact, nested or intersected.

Such matching strategies allow a better understanding
of annotation quality, since a non-exact matching does
not mean that the correct concept was not recognized.
For instance, considering gene and protein names, some
systems and/or corpora include the organism name in
the concept name and others do not, which remains a
point of active discussion among expert annotators.
Other point of disagreement is the inclusion of the to-
kens “protein” or “gene” as suffix or prefix, or including
Greek letters in entity mentions [48]. Such analysis is
also important since various post-NER tasks can be
performed even if imprecise names are provided (e.g.,
relation and event mining).
The performance results on the various corpora were

compared to previously published works to provide fair
comparison. However, a complete comparison consi-
dering the five matching strategies is not always possible,
since these different results are not stated in some
works.
Regarding normalization and identifiers matching, we

also consider two different matching strategies:

� Exact: annotation is accepted if one identifier is
provided and it matches exactly with the gold
standard;

� Contains: annotation is accepted if the provided list
of identifiers contains the gold standard identifier.

Considering both matching strategies allows a more
thorough analysis of the validity of the identifiers
assigned to each entity mention. This evaluation was
performed on the CRAFT corpus, since among the cor-
pora considered in this work, only this one provides
concept identifiers.
Common evaluation metrics are used to analyze and

compare the achieved results: Precision (the ability of a
system to present only relevant items); Recall (the ability
of a system to present all relevant items); and F1-
measure (the harmonic mean of precision and recall).
These measures are formulated as follows:

P ¼ TP
TP þ FP

;R ¼ TP
TP þ FN

; F1 ¼ 2⋅
P:R
P þ R

where TP is the amount of true positives, FP the number
of false positives and FN the amount of false negatives.
Note that the presented results are micro-averaged,
meaning that a general matrix of TP, FP and FN values
is built from all documents to obtain final precision,
recall and f-measure scores.

CRAFT
Considering the databases and ontologies used in the
annotation of CRAFT, we defined six concept classes:
species, cell, cellular component, chemical, gene and
protein, and biological processes and molecular func-
tions. Biological processes and molecular functions are
grouped into a single class, since annotations are pro-
vided in a single file. Moreover, since gene and protein
are provided through Entrez Gene (EZ) and Protein
Ontology (PRO), we decided to perform two different
evaluations regarding the recognition of named entities:
1) against concepts provided by EZ; and 2) against
concepts provided by EZ and/or PRO. The performance
on this NER task was compared against the results
published by Verspoor et al. [27], who presented state-
of-the-art results on CRAFT for sentence splitting,
tokenization, POS tagging, syntactic parsing and named
entity recognition. However, it only presents results for
gene and protein recognition, where BANNER claims
the best performing results using a ML model trained
on the corpus of the BioCreative II gene mention corpus
[10]. Thus, we decided to also use Cocoa and Whatizit
to compare the achieved performance results. Since
Cocoa concept classes do not match directly to the ones
provided in CRAFT, we had to group them together to
better fulfill the requirements and to achieve better
results:

� Species: “Organism” and “Organism1”
� Cell: “Cell”
� Cellular Component: “Cellular component”,

“Location” and “Complex”
� Chemical: “Chemical”
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� Gene and Protein: “Protein”, “Molecule” and
“Category”

� Biological Process and Molecular Function:
“Bio Process” and “Process”

Whatizit was used through the “whatizitUkPmcAll”
pipeline, which is used in Europe PubMed Central [49]
to provide species, chemical, gene and protein, cellular
component, biological process, molecular function and
disorder concept annotations. To match the output with
CRAFT, biological process and molecular function anno-
tations were grouped into a single concept class, and
disorder annotations were discarded.
Figure 8 Evaluation results for named entity recognition, considering
using exact (E), left (L), right (R), shared (S) and overlap (O) names ma
and protein, chemical, biological processes and molecular functions concep
Figure 8 presents the named entity recognition results
achieved by Neji, Whatizit, Cocoa and BANNER on the
CRAFT corpus, considering the various matching stra-
tegies. As we can see, there are considerable variations
between the various matching strategies. For instance,
on gene and protein names recognition, Neji, Whatizit
and Cocoa perform much better on left matching in
comparison to right matching, which confirms the pre-
viously referred variability of annotation guidelines,
namely regarding the inclusion (or not) of word suffixes
in concept names. Moreover, Neji and Cocoa also pre-
sent better results on right matching on cell recognition,
which indicates the presence of word prefixes on the
precision, recall, and F1-measure achieved on CRAFT corpus,
tching. Evaluation considers species, cell, cellular component, gene
t names.
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gold standard that are being discarded by the automatic
solutions. Those facts reflect the high variability of
biomedical concept names, with different guidelines
being followed by manual annotators and consequent
generation of heterogeneous resources. Thus, as stated
before, such discrepancies should be taken into account
when evaluating solutions and corpora that follow diffe-
rent annotation guidelines.
Overall, Neji presents the best results, with significant

improvements on various concept types, namely on
concepts associated with GO (cellular component, bio-
logical process and molecular function), chemical and
gene/protein. In more detail, we can see that Neji is the
solution that presents overall best recall results without
losing precision. Additionally, Neji also presents a posi-
tive constant behavior, with an average variation of 9%
of F1-measure between exact and overlap matching.
However, Whatizit is the most constant solution, with
an average variation of 4% of F1-measure. On the other
hand, Cocoa has the highest variation, with 18% of F1-
measure.
Neji obtained state-of-the-art results on the recognition

of species and cell concepts, with overlap F1-measure
results of 94.7% and 91.5%, respectively. Extending
LINNAEUS dictionaries allowed an improvement of more
than 8% of F1-measure on overlap matching, from 86.1%
to 94.7%. Nonetheless, both Cocoa and Whatizit present
competitive results on species, and Cocoa also achieved
state-of-the-art results on cell identification. Neji achieved
an F1-measure of 83.2% on overlap matching in the recog-
nition of cellular component names, which is significantly
better than Cocoa and Whatizt. For instance, a detailed
analysis showed that Cocoa’s performance is considerably
degraded by the presence of terms such as “cell” and
“cellular”. Regarding gene and protein recognition, Neji
ML model presents better results than Cocoa, BANNER
and Whatizit on left, shared and overlap matching. Its per-
formance drop on exact and right matching appears to be
a consequence of the different annotation guidelines in
CRAFT and GENETAG, which was used to train Neji’s
ML model. Specifically, species names, and suffixes such
as “gene” and “protein” are considered as part of the con-
cept name in GENETAG but not in CRAFT, causing an
erroneous evaluation when exact matching is taken into
account. Considering only the concepts from Entrez Gene,
Neji has an improvement of more than 3% of F1-measure
on overlap matching against the second best, Whatizit.
When compared against BANNER, an improvement of
8% is achieved. Regarding Entrez Gene and/or Protein
Ontology concepts, Neji presents an improvement of
more than 5% of F1-measure against Whatizit and 23%
against Cocoa, on overlap matching. Finally, the results
achieved on chemical and biological processes and mo-
lecular functions are considerably better than Cocoa and
Whatizit. However, we believe there is margin for pro-
gress, by: 1) collecting more name variants to improve the
recall for biological processes and molecular functions;
and 2) refining existing chemical dictionaries to improve
precision.
Regarding normalization, previous works have presented

performance evaluation results for specific entity types on
specifically developed corpora, such as genes and pro-
teins on AIMed [50] and/or BioInfer [51] corpora.
Therefore, we evaluated the entity normalization per-
formance achieved with Neji on the CRAFT corpus and
compared it to the results obtained using the available
pipelines in Whatizit, as this is the only freely available
system that allows identification of various concept types
with identifiers for each recognized concept name.
As presented previously, we combined various resources

to collect as much names variants as possible, which re-
sults in identifiers from different resources for a single
concept type. In some cases, both Neji and Whatizit use
completely different resources than the ones used on
CRAFT, such as in genes and proteins. Thus, in order to
collect the performance results, we first converted the
identifiers provided by Neji and Whatizit to the ones used
in the CRAFT corpus. However, this mapping may deliver
various problems, such as absent and ambiguous map-
ping, i.e., one identifier that is mapped to multiple identi-
fiers, that will directly affect the obtained results. Table 1
presents a detailed analysis of the identifier mapping for
Cell, Gene and Protein, and Biological Process and Mo-
lecular Function concept names, considering the annota-
tions provided by Neji and Whatizit. Uniprot identifiers
for genes and proteins were mapped to Entrez Gene (EZ)
and Protein Ontology (PRO) identifiers using the mapping
provided by Uniprot to EZ and the mapping provided by
PRO to Uniprot. The UMLS concept identifiers assigned
by Neji to Cell concept names were mapped to Cell
Ontology (CL) identifiers through the mapping to the
Foundational Model of Anatomy (FMA) ontology avai-
lable in CL. However, this mapping is highly limited, since
it only covers approximately 30% of CL. Finally, the dic-
tionaries used in Neji for the recognition of Biological
Process and Molecular Function concept names include
some concepts from various UMLS semantic types that
are not mapped to GO entries, as used in the CRAFT
corpus.
The analysis of Table 1 shows that only 53% of the

identifiers provided by Whatizit could be mapped to
Entrez Gene. Nonetheless, most of the recognized con-
cept names (95%) were associated to at least one identi-
fier that could be mapped to an Entrez Gene identifier.
On the other hand, all Uniprot identifiers provided by
Neji were mapped to corresponding Entrez Gene entries.
Considering the Uniprot to PRO mapping, only 22% of
the identifiers provided by Whatizit were successfully



Table 1 Number and percentage of identifiers and names mapped between different resources for cell, gene and
protein, and biological process and molecular function concepts

From To Solution #
Identifiers

Mapped
identifiers

# Concept
names

Mapped concept
names

Gene and protein Uniprot Entrez Gene Neji 51118 100% 13239 100%

Whatizit 123136 53% 18079 95%

Uniprot Protein
Ontology

Neji 51118 95% 13239 99%

Whatizit 123136 22% 18079 78%

Cell UMLS Cell Ontology Neji 8390 64% 5926 91%

Biological process and molecular
function*

UMLS Gene
Ontology

Neji 6079 28% 5377 32%

*Only concept names with UMLS identifiers are considered.

Campos et al. BMC Bioinformatics 2013, 14:281 Page 15 of 21
http://www.biomedcentral.com/1471-2105/14/281
mapped, while a PRO identifier could be assigned to
78% of the recognized concepts. Regarding Neji, 95% of
the Uniprot IDs were mapped to PRO, and a PRO iden-
tifier was assigned to 99% of the recognized concepts.
Various facts contribute to identifier mapping discre-
pancies between the two systems: 1) Neji uses Uniprot
entries for 21 species while Whatizit uses the entire
Uniprot database, resulting in more concept names and
much more Uniprot identifiers; 2) the version of Uniprot
used by Whatizit may not correspond to the version
used for mapping; 3) not all Uniprot entries have a cor-
responding Entrez Gene entry; and 4) protein ontology
does not map to all entries of Uniprot. Regarding cell
identifiers mapping, 64% of the UMLS identifiers were
successfully mapped into CL identifiers, resulting in 91%
of the recognized concept names having CL identifiers.
Finally, since Neji uses both GO and UMLS for
representing Biological Process and Molecular Function
concepts, we analyzed the mapping between the pro-
vided UMLS identifiers and corresponding GO entries.
Considering only the annotations that contain UMLS
identifiers, only 32% of the recognized concept names
were mapped with GO identifiers. Overall, considering
both UMLS and GO, 81% of the recognized concept
names were provided with GO identifiers.
Figure 9 presents the normalization results achieved by

Neji and Whatizit in the CRAFT corpus, after converting
the identifiers as explained above, and considering the
various strategies for matching the text chunks to the en-
tries in the dictionary and the two identifier matching
techniques (‘exact’ and ‘contains’). Overall, Neji consi-
derably outperforms Whatizit on identifier matching for
Species, Cellular Component, Chemical and Biological
Process and Molecular Function concept names, with the
exception of Gene and Protein concepts, where both solu-
tions present similar results. Moreover, there is no high
variability in identifiers matching when the various dic-
tionary matching strategies are compared, again with the
exception of gene and protein concept names. In this case,
it is clear from the results that different annotation
characteristics between the train and test corpora also
have a substantial impact on the normalization perfor-
mance. On the other hand, there is a significant difference
in the results if we require that the correct identifier is
returned (‘exact’) or that the correct identifier is included
in the returned list of identifiers (‘contains’), highlighting
the ambiguity in the concept names recognized in the
texts.
Neji obtained state-of-the-art results in the recognition

of species, with an F1-measure of 87.8% and no signifi-
cant variance between ‘exact’ and ‘contains’ matching of
identifiers. During the annotation of species in CRAFT,
experts were required to assume the closest semantic
match, which means that the mention “rat” was anno-
tated as the genus “Rattus” (NCBI identifier 10114), even
if from context it is known to be the common laboratory
rat species “Rattus norvegicus” (NCBI identifier 10116).
Such fact considerably affects the performance of
Whatizit, since it only provides more specific species iden-
tifiers. For example, by considering just two of those cases
and converting from “Rattus” (NCBI:10114) to “Rattus
norvegicus” (NCBI:10116) and “Mus” (NCBI:10088) to
“Mus musculus” (NCBI:10090), Whatizit results would
achieve an F1-measure of 87.5%, similar to that achieved
with Neji.
Neji presents competitive results on Cell concepts

normalization, with a small variance between ‘exact’
(64.9% of F1-measure) and ‘contains’ identifier matching
(70.5% of F1-measure). Such results represent a small
drop when compared with the performance obtained on
exact named entities matching (F1-measure of 75.4%).
Regarding GO concept types, namely Cellular Compo-
nent, Biological Process and Molecular Function, Neji
considerably outperforms Whatizit, again with a small
difference between ‘exact’ and ‘contains’ matching of
identifiers. Considering ‘contains’ matching, Neji pre-
sents an F1-measure of 71.8% on Cellular Component,
and 40.1% of F1-measure on Biological Process and Mo-
lecular Function. Comparing those results with exact
named entity matching, they represent an average drop



Figure 9 Evaluation results for normalization considering precision, recall, and F1-measure achieved on CRAFT corpus, using exact (E),
left (L), right (R), shared (S) and overlap (O) names matching and ‘exact’ and ‘contains’ matching of identifiers. Evaluation considers
species, cell, cellular component, gene and protein, chemical, biological processes and molecular functions concept names.
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of 8% of F1-measure. The performance on Biological
Process and Molecular Function is affected by the absent
mappings between some UMLS concepts and GO
identifiers.
Neji also outperforms Whatizit on Chemical concepts

normalization, with an F1-measure of 33.1% on ‘exact’ and
53.1% on ‘contains’ identifier matching. The high diffe-
rence between ‘exact’ and ‘contains’ matching reflects the
high ambiguity present on ChEBI. For instance, the anno-
tation “protein” on CRAFT contains the ChEBI identifier
36080 (“protein”), but the dictionary matching provides
both 36080 and 16541 identifiers, which corresponds to
“protein polypeptide chain” and also contains “protein” as
a synonym. The best normalization results were achieved
when exact named entity matching was considered, which
shows that accepting left, right, shared and overlap
matching may degrade normalization performance by
leading to more false positives identifiers.
Finally, in order to present results for Gene and Pro-

tein concepts, two different evaluations were performed:
1) against Entrez Gene identifiers; and 2) against Protein
Ontology identifiers. On both evaluations and systems,
there is a considerable variation between the various
names matching strategies and between ‘exact’ and
‘contains’ identifier matching, a consequence of the cross
species ambiguity of gene and protein names. Regarding
Entrez Gene, Neji and Whatizit present low performance
results on ‘exact’ identifier matching, achieving F1-
measures of 21.4% and 13.0%, respectively, when using
overlap dictionary matching. When ‘contains’ identifier
matching is considered, the performance of Neji and
Whatizit improve considerably, achieving F1-measures
of 52% and 42% for overlap dictionary matching, re-
spectively. Concerning normalization to Protein Onto-
logy, the achieved performance results are considerably
better, with Neji and Whatizit achieving F1-measures of
55.0% and 55.6%, respectively, for ‘exact’ identifier
matching and using overlap dictionary matching. When
‘contains’ matching is considered, both solutions present
considerable improvements, with Neji achieving 64.0%
of F1-measure and Whatizit 60.7%. Evaluating the
normalization to both EZ and PRO, Whatizit presented
the most constant behavior, a consequence of the dif-
ferent annotation guidelines followed in CRAFT and in
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the training corpus used to generate the ML model used
by Neji. However, when all evaluation strategies are
considered, Neji provides better results.
Overall, the presented analysis shows that Neji achieves

competitive performance results on normalization, pre-
senting small and anticipated performance drops when
compared to named entities evaluation. Nonetheless, we
consider that there is still margin for improvement,
namely for chemicals and gene and protein normalization.

AnEM
To evaluate the recognition of anatomical concepts, we
combined all sub-classes of the AnEM corpus into a
single class. As a consequence, the systems are evaluated
targeting the general ability to recognize anatomical
entities, discarding the capability to classify and distin-
guish specific sub-anatomical classes. Thus, Neji is com-
pared with the systems used in [41], i.e. MetaMap and
NERSuite, which provide state-of-the-art results on this
corpus. NERSuite was trained using the training part of
the corpus, being optimized for these specific annotation
guidelines. Cocoa provides anatomical classes following
the AnEM classification approach. Thus, we annotated
the corpus using Cocoa and mapped the respective clas-
ses to the single anatomical class. Body part concepts
provided by Cocoa are also mapped to the single class.
Figure 10 compares the results achieved by Neji,

Cocoa, MetaMap and NERSuite on AnEM corpus, con-
sidering exact, left, right, shared and overlap names
matching. Overall, there is a significant variation bet-
ween the various matching techniques, which is ob-
served in all systems. Even NERSuite has problems to
identify the exact names’ boundaries, namely the right
boundary. Such variation reflects the complexity of in-
ferring the variable boundaries of anatomical names.
Nonetheless, Cocoa is the system that presents better
Figure 10 Comparison of precision, recall, and F1-measure results ach
considering exact (E), left (L), right (R), shared (S) and overlap (O) mat
single class, in order to evaluate the general ability to recognize disorder a
results, with 83.5% of F1-measure on overlap matching.
Neji also presents competitive results, with 83.1% of
F1-measure on overlap matching. On the other hand,
MetaMap is the system that performs worst. Surpri-
singly, NERSuite does not perform better than Neji and
Cocoa, which may indicate that ML-based solutions are
not required for the general recognition of anatomical
entities.

NCBI
Similarly to the AnEM corpus, we also combined NCBI
sub-classes into a single class, in order to evaluate the
general ability to identify names of disorders. The com-
parison is performed against BANNER and Whatizit.
BANNER was used in [42] to present state-of-the-art
results for ML-based solutions in this corpus. Although
our approach is not ML-based and therefore not trained
using the corpus, we believe this comparison is also
relevant to provide feedback regarding the overall
performance. Whatizit was used through the
“whatizitDiseaseUMLSDict” pipeline.
Figure 10 compares the named entity recognition re-

sults achieved by Neji, Whatizit and BANNER on the
NCBI corpus. There is also a significant variation be-
tween the various matching techniques, namely on right
matching. This means that various concepts are not pre-
cisely identified due to the presence or absence of word
prefixes. For instance, in our case, the gold standard
annotation “atrophic benign epidermolysis bullosa” is
typically provided just as “epidermolysis bullosa”. Even
though the text chunk is not correct, it points to a
related concept. Comparing the two dictionary-based
approaches, Neji presents significantly better results
than Whatizit, with an improvement of more than 17%
of F1-measure on overlap matching. On the other hand,
BANNER, a ML-based solution trained on this corpus,
ieved on AnEM and NCBI corpora for named entity recognition,
ching. The various sub-classes from each corpus were merged into a
nd anatomical concept names.
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achieved significantly better results than Neji when exact
matching is considered. However, the high-performance
results obtained with Neji when fuzzy matching is used,
seem to indicate a mismatch between the terms in the
dictionary used and the annotations on this corpus,
which may be a consequence of two factors:

� High variability found on more specific concept
names and consequently their absence in the
dictionary. For instance, the gold mention
“attenuated adenomatous polyposis coli” is
annotated by Neji as “adenomatous polyposis coli”,
which are two related but different concepts, since
the gold mention is more specific;

� Inconsistencies in following the annotation
guidelines. For instance, the gold mentions “breast/
ovarian cancer” or “breast and ovarian cancer” are
annotated as a single concept name. However,
UMLS does not contain such terms, since they
point to two different UMLS concepts.

Summarizing, we can argue that Neji presents highly
competitive results, with significant improvements for
some semantic groups, namely species, cell, cellular
component, gene and protein, and anatomy.

Speed evaluation
One important characteristic of concept recognition
solutions is annotation speed, since large data sets may
be annotated to collect as much information as possible.
To evaluate the annotation speed achievable with Neji,
various experiments were performed using the CRAFT
corpus, which contains 67 full-text articles with 21749
sentences. The documents were processed on a machine
with 8 processing cores @ 2.67 GHz and 16GB of RAM.
The annotation process using the dictionaries and ML

model previously described and using 5 threads took
124 seconds, which corresponds to processing 175
sentences per second. Thus, it took 1.8 seconds on
average to process a full text article. Considering that
MEDLINE contains 11 millions abstracts [52], and that
each abstract contains on average 7.2 sentences [53], this
configuration could annotate the entire MEDLINE in
five days. Since generating the complex features for the
ML model and collecting POS and chunking features is
resource intensive, we also measured the processing
speed without using ML, applying only dictionary mat-
ching and tokenization from the NLP module. With this
configuration, the CRAFT corpus was processed in
18 seconds, which corresponds to 1208 sentences/
second. Thus, a full text article was processed in
0.28 seconds, and the entire MEDLINE could predic-
tably be annotated in 18 hours. To contextualize the
achieved results, we compared Neji with other existing
tools. Even though BANNER applies ML for gene and pro-
tein names recognition only, it took more than 9 minutes
to annotate CRAFT. On the other hand, the rule-based
solution MetaMap took more than 2 minutes to process
a single full-text file. We believe that the presented pro-
cessing speeds provide a positive contribution to the bio-
medical community, making annotation of large data sets
with dozens of biomedical concepts easily accessible.

Discussion
The inherent characteristics, features and performance
provided by the Neji framework represent various tech-
nical and theoretical advantages to end-users, contribu-
ting to an improved and faster research in biomedical
text mining and information extraction. First of all, the
large dictionaries used in our experiments, in combination
with the achieved processing speeds, are good indicators
of the scalability of the presented solution. Additionally,
the achieved high-performance results against gold stand-
ard corpora show the solution’s reliability. Overall, the
flexibility, scalability, speed and performance results of-
fered by the proposed framework expedite the processing
of the increasing scientific biomedical literature. The fea-
tures provided greatly simplify NER and normalization
tasks, offering annotations for a large number of entity
types using both dictionary and machine learning-based
approaches. Using the state-of-the-art modules incorpo-
rated in Neji, developers and researchers can bypass
normally complex and time-consuming tasks, allowing
them to focus on further analysis of these annotations.
Users can also take advantage of the integrated natural
language processing tools, eliminating the need for de-
veloping wrappers or integration solutions. The adop-
tion of the same techniques for linguistic processing
means that all modules are based on the same con-
sistent information, such as tokens, lemmas, POS tags,
chunks and parsing trees. This approach builds an in-
tegrated development ecosystem that minimizes cas-
cading errors. For instance, if concept recognition is
performed using linguistic information from one parser,
and relation extraction is performed afterwards using
information provided by another parser, it is hard to
keep consistency between the two solutions, since the
application of distinct sentence splitting and tokenization
techniques provide different and hard to combine inter-
pretations of data. Thus, performing all tasks using the
same linguistic information will deliver better and more
consistent results.
Besides using the provided modules directly, re-

searchers may also adapt them or integrate new ones,
allowing the construction of specialized processing pipe-
lines for text mining purposes. As presented, Neji is
ready to be used by users with different levels of exper-
tise. It allows obtaining heterogeneous concepts of
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several types in a straightforward way, by using the CLI
tool or by building a pipeline with existing modules.
Users also have the power to optimize concept recogni-
tion for their specific goals, which is achieved by having
access to the innovative concept tree. Such structure
supports both nested and intersected annotations and,
combined with the support for multiple identifiers from
different semantic groups per concept, enables easy de-
tection of ambiguity problems. Additionally, Neji also
integrates helpers for simple concept disambiguation,
merging of nested annotations and selection intersec-
tions. If required, users can also develop their own mo-
dules, such as readers, writers or WSD. Overall, Neji
was built considering different development configu-
rations and environments: a) as the core framework to
support all developed tasks; b) as an API to integrate in
your favorite development framework; and c) as a con-
cept recognizer, storing the results in an external re-
source, and then using your favorite framework for
subsequent tasks.
A large and diverse set of annotations can be obtained

by processing a large set of documents. Such annota-
tions can be exploited in various ways. Perhaps, the most
straightforward one is to use these annotations together
with the provided identifiers and connections to onto-
logies and other domain resources, to support a seman-
tically enabled literature retrieval system [54-56]. Using
these annotations, it also becomes simpler to implement
a query expansion scheme [57], taking advantage of the
ontological relationships between the identified con-
cepts. Another use of such annotations is to extract co-
occurrence based association metrics between concepts
[58,59]. This can also be extended to extracting semantic
concept profiles that represent the semantic context in
which a given concept occurs, as described in [60].
Creating these profiles is highly dependent on the anno-
tation of a large set of documents with diverse and rich
concepts from various semantic types. Co-occurrence
and context-based association metrics can in turn be
exploited for discovering implicit (A-B-C) concept rela-
tions from the literature, therefore supporting hypothesis
generation and knowledge discovery.
With this analysis, we show that Neji is a good starting

point to develop complex biomedical text mining pro-
jects, supporting advanced and reliable features and giv-
ing users the power to choose the best behaviors
considering the complete tree of recognized concepts
and their specific goals.

Conclusion
This article presents Neji, an open source and modular
framework optimized for general biomedical concept
recognition. It was developed considering scalability, flexi-
bility, speed and usability. Neji integrates state-of-the-art
and optimized solutions for biomedical natural language
processing, such as sentence splitting, tokenization, lem-
matization, POS tagging, chunking and dependency par-
sing. Concept recognition is supported through dictionary
matching and machine learning, integrating features to
perform normalization of recognized chunks of text. Va-
rious known biomedical input and output formats are also
supported, namely Raw, XML, A1 and CoNLL. Recog-
nized concepts are stored in an innovative concept tree,
supporting nested and intersected concepts with multiple
identifiers. Such structure provides enriched concept in-
formation and gives users the power to decide the best be-
havior for their specific goals, using the included methods
for handling and processing the tree.
We also evaluated Neji against a wide variety of bio-

medical entity types, achieving high-performance results
on manually annotated corpora. To the best of our
knowledge, the analysis presented constitutes the most
comprehensive evaluation of named entity recognition
and normalization for such a heterogeneous set of bio-
medical concept types. Additionally, the presented pro-
cessing speeds make the annotation of large document
sets a reality. We also described the simple usage of Neji
through the integrated CLI tool, which allows annotating
thousands or millions of documents with a simple bash
command. Furthermore, we illustrated the simplicity of
developing a custom pipeline using existing modules.
We believe that the characteristics and complex

features provided by Neji fill the gap between general
frameworks (e.g., UIMA and GATE) and more special-
ized tools (e.g., NER and normalization). It streamlines
and facilitates biomedical concept recognition, using
both dictionary and machine learning-based approaches
to extract multiple concept types in an integrated
ecosystem. Neji simplifies concept recognition tasks in
biomedical information extraction, and it can be easily
integrated in complex workflows contributing towards
more accurate knowledge discovery.
There are already various solutions developed and/or

being developed on top of Neji, such as: a) a solution to
extract gene-drug relations from scientific articles; b) a
web-based solution and respective web-services for on-
demand biomedical concept recognition [61]; c) an
information retrieval solution for knowledge discovery
focused on degenerative diseases; and d) an information
retrieval system focused on relevant and informative
sentences.

Availability and requirements
Project name: Neji
Project home page: http://bioinformatics.ua.pt/neji
Operating system(s): Platform independent
Programming language: Java
Other requirements: Java 1.7 or higher
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License: Creative Commons Attribution-NonCom-
mercial-ShareAlike 3.0 Unported License
Any restrictions to use by non-academics: Non-

commercial use

Endnotes
aA. thaliana, B. taurus, C. elegans, C. reinhardtii, D. rerio,

D. discoideum, A. mellifera, C. albicans, D. melanogaster,
H. sapiens, M. musculus, R. norvegicus, S. cerevisiae,
Hepatitis C virus, M. pneumoniae, P. falciparum, P. carinii,
S. pombe, Z. mays, E. coli and X. laevis.
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