
Stojanova et al. BMC Bioinformatics 2013, 14:285
http://www.biomedcentral.com/1471-2105/14/285

RESEARCH ARTICLE Open Access

Using PPI network autocorrelation in
hierarchical multi-label classification trees for
gene function prediction
Daniela Stojanova1,2*, Michelangelo Ceci3*, Donato Malerba3 and Saso Dzeroski1,2,4

Abstract

Background: Ontologies and catalogs of gene functions, such as the Gene Ontology (GO) and MIPS-FUN, assume
that functional classes are organized hierarchically, that is, general functions include more specific ones. This has
recently motivated the development of several machine learning algorithms for gene function prediction that
leverages on this hierarchical organization where instances may belong to multiple classes. In addition, it is possible to
exploit relationships among examples, since it is plausible that related genes tend to share functional annotations.
Although these relationships have been identified and extensively studied in the area of protein-protein interaction
(PPI) networks, they have not received much attention in hierarchical and multi-class gene function prediction.
Relations between genes introduce autocorrelation in functional annotations and violate the assumption that
instances are independently and identically distributed (i.i.d.), which underlines most machine learning algorithms.
Although the explicit consideration of these relations brings additional complexity to the learning process, we expect
substantial benefits in predictive accuracy of learned classifiers.

Results: This article demonstrates the benefits (in terms of predictive accuracy) of considering autocorrelation in
multi-class gene function prediction. We develop a tree-based algorithm for considering network autocorrelation in
the setting of Hierarchical Multi-label Classification (HMC). We empirically evaluate the proposed algorithm, called
NHMC (Network Hierarchical Multi-label Classification), on 12 yeast datasets using each of the MIPS-FUN and GO
annotation schemes and exploiting 2 different PPI networks. The results clearly show that taking autocorrelation into
account improves the predictive performance of the learned models for predicting gene function.

Conclusions: Our newly developed method for HMC takes into account network information in the learning phase:
When used for gene function prediction in the context of PPI networks, the explicit consideration of network
autocorrelation increases the predictive performance of the learned models. Overall, we found that this holds for
different gene features/ descriptions, functional annotation schemes, and PPI networks: Best results are achieved
when the PPI network is dense and contains a large proportion of function-relevant interactions.

Background
Introduction
In the era of high-throughput computational biology, dis-
covering the biological functions of the genes/proteins
within an organism is a central goal. Many studies have
applied machine learning to infer functional properties

*Correspondence: daniela.stojanova@ijs.si; michelangelo.ceci@uniba.it
1Department of Knowledge Technologies, Jožef Stefan Institute, Jamova cesta
39, Ljubljana, Slovenia
3Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”, via
Orabona 4, Bari, Italy
Full list of author information is available at the end of the article

of proteins, or directly predict one or more functions for
unknown proteins [1-3]. The prediction of multiple bio-
logical functions with a single model, by using learning
methods for multi-label prediction, has made consider-
able progress in recent years [3].
A major step forward is the learning of models which

take into account the possible structural relationships
among functional classes [4,5]. This is motivated by the
presence of ontologies and catalogs such as Gene Ontol-
ogy (GO) [6] andMIPS-FUN (FUN henceforth) [7], which
are organized hierarchically (and, possibly, in the form of
Direct Acyclic Graphs (DAGs), where classes may have

© 2013 Stojanova et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 2 of 18
http://www.biomedcentral.com/1471-2105/14/285

multiple parents), where general functions include other
more specific functions (see Figure 1(a)). In this con-
text, the hierarchial constraint must be observed: A gene
annotated with a function must be annotated with all the
ancestor functions from the hierarchy. In order to tackle
this problem, hierarchical multi-label classifiers, that are
able to take the hierarchical organization of the classes
into account during both the learning and the prediction
phase, have been recently used [8].
The topic of using protein-protein interaction (PPI) net-

works in the identification and prediction of protein func-
tions has attracted increasing attention in recent years.
The motivation for this stream of research is best summa-
rized by the statement that “when two proteins are found
to interact in a high throughput assay, we also tend to
use this as evidence of functional linkage” [5]. As a con-
firmation, numerous studies have demonstrated the guilt-
by-association (GBA) principle, which states that proteins
sharing similar functional annotations tend to interact

more frequently than proteins which do not share them.
Interactions reflect the relation or dependence between
proteins. In the context of networks of such interactions,
gene functions show some form of autocorrelation [9].
While correlation denotes any statistical relationship

between two different variables (properties) of the
same objects (in a collection of independently selected
objects), autocorrelation denotes the statistical relation-
ships between the same variable (e.g., protein function)
on different but related (dependent) objects (e.g., inter-
acting proteins). Although autocorrelation has never been
investigated in the context of Hierarchical Multi-label
Classification (HMC), it is not a new phenomenon in pro-
tein studies. For example, it has been used for predicting
protein properties using sequence-derived structural and
physicochemical features of protein sequences [10]. In this
work, we introduce a definition of autocorrelation for the
case of HMC and propose a method that leverages on it
for improving the accuracy of gene function prediction.

Figure 1 Example of a hierarchy. (a) A part of the FUN hierarchy [7]. (b) An example of input data: The FUN class hierarchy of an example and
corresponding class vector and attribute set. (c) An example of a predictive clustering tree for HMC. The internal nodes contain tests on attribute
values and the leaves vectors of probabilities associated with the class values.

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 3 of 18
http://www.biomedcentral.com/1471-2105/14/285

Motivation and contributions
The method developed in this work, named NHMC,
addresses the task of hierarchical multi-label classification
where, in addition to attributes describing the genes, such
as microarray-derived expression values, phenotype and
sequence data, the network autocorrelation of the class
values (gene functions) is also considered. The main goal
is gene function prediction in the context of gene inter-
action networks, where network autocorrelation exists
among the functional annotations of genes. Each of the
aspects of NHMC and network autocorrelation have been
addressed individually in the framework of predictive
clustering and in particular within the task of learning
predictive clustering trees (PCT) [11]. Vens et al. [4] pro-
posed CLUS-HMC, an approach for building PCT for
HMC. Stojanova et al. [12] proposedNCLUS, an approach
for building PCT to perform regression on network data,
taking into account the network autocorrelation of the
real-valued (dependent) response variable. We bring both
of these recent developments under the same roof and
propose NHMC, an approach for building PCT to per-
form HMC on network data, taking into account the (PPI)
network autocorrelation of the hierarchical annotations
(of gene functions).
The consideration of network autocorrelation itself

raises several challenges. The existence of autocorrelation
violates the assumption that instances (in our case genes)
are independently and identically distributed (i.i.d.), which
underlines most machine learning algorithms. The viola-
tion of the i.i.d. assumption has been identified as one of
the main reasons responsible for the poor performance of
traditional methods in machine learning [13]. Moreover,
most of the learning methods which model autocorrela-
tion in networked data assume its stationarity [14]. This
means that possible significant variations of autocorrela-
tion throughout the network due to a different underlying
latent structure cannot be properly represented.
The consideration of hierarchical multi-label classi-

fication introduces additional complications. Network
autocorrelation in the context of different effects of auto-
correlation can be expected for different class labels. Fur-
thermore, the classes at the lower levels of the hierarchy
will have a higher fragmentation: For those classes, the
autocorrelation phenomenon will likely be local (or more
local than for their ancestor classes). Thus, in HMC tasks,
we will need to consider autocorrelation by modeling (and
exploiting) its non-stationarity.
While the simultaneous consideration of the relation-

ships among class labels (gene functions) and instances
(genes) introduces additional complexity to the learning
process, it also has the potential to bring substantial ben-
efits. The method NHMC that we propose will be able
to consider gene function hierarchies in the form of DAG
structures, where a class may have multiple parents, and

to consistently combine two sources of information (hier-
archical collections of functional class definitions and PPI
networks). In this way, we will be able to obtain gene func-
tion predictions consistent with the network structure and
improve the predictive capability of the learned models.
We will also be able to capture the non-stationary effect of
autocorrelation at different levels of the hierarchy and in
different parts of the networks.
In this article, we first define the concept of autocorre-

lation in the HMC setting and introduce an appropriate
autocorrelation measure. We then introduce the NHMC
algorithm for HMC, which takes this kind of autocorre-
lation into account. Like CLUS-HMC, NHMC exploits
the hierarchical organization of class labels (gene func-
tions), which can have the form of a tree or a direct
acyclic graph (DAG). Like NCLUS, NHMC explicitly con-
siders non-stationary autocorrelation when building PCT
for HMC from real world (PPI) network data: The models
it builds adapt to local properties of the data, providing,
at the same time, predictions that are smoothed to cap-
ture local network regularities. Finally, we evaluate the
performance of NHMC on many datasets along a number
of dimensions: These include the gene descriptions, the
functional annotation hierarchies and the PPI networks
considered.

Methods
In this section, we introduce the method NHMC (Net-
work CLUS-HMC; a preliminary version of NHMC
has been presented in [15]), the major contribution of
the paper. NHMC builds autocorrelation-aware models
(trees) for HMC. We shall start with a brief description of
the algorithm CLUS-HMC, which builds trees for HMC
and is the starting point for developing NHMC.
For the HMC task, the input is a dataset U consisting

of instances (examples) that have the form ui = (xi, yi) ∈
X× 2C , where X = X1 ×X2 . . . ×Xm is the space spanned
by m attributes or features (either continuous or categor-
ical), while 2C is the power set of C = {c1, . . . , cK }, the
set of all possible class labels. C is hierarchically orga-
nized with respect to a partial order � which represents
the superclass relationship. Note that each yi satisfies the
hierarchical constraint:

c ∈ yi ⇒ ∀c′ � c : c′ ∈ yi. (1)

The method we propose (NHMC) builds a generalized
form of decision trees and is set in the Predictive Clus-
tering (PC) framework [11]. The PC framework views a
decision tree as a hierarchy of clusters: the top-node cor-
responds to one cluster containing all the data, that is
recursively partitioned into smaller clusters when moving
down the tree. Such a tree is called a predictive clus-
tering tree (PCT). PCT combines elements from both
prediction and clustering. As in clustering, clusters of

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 4 of 18
http://www.biomedcentral.com/1471-2105/14/285

data points that are similar to each other are identified,
but, in addition, a predictive model is also associated to
each cluster. This predictive model provides a prediction
for the target property of new examples that are recog-
nized to belong to the cluster. In addition, besides the
clusters themselves, PC approaches also provide symbolic
descriptions of the constructed (hierarchically organized)
clusters.
The original PC framework is implemented in the CLUS

system [11] (http://sourceforge.net/projects/clus/), which
can learn both PCT and predictive clustering rules. The
induction of PCT is not very different than the induc-
tion of standard decision trees (as performed, e.g., by
the C4.5 algorithm [16]). The algorithm takes as input
a set of training instances and searches for the best
acceptable test to put in a node and split the data. If
such a test can be found, then the algorithm creates a
new internal node labeled with the test and calls itself
recursively to construct a subtree for each subset (clus-
ter) in the partition induced by the test on the training
instances.

CLUS-HMC
The CLUS-HMC [4] algorithm builds HMC trees, PCT
for hierarchial multi-label classification (see Figure 1(c) for
an example of an HMC tree). These are very similar to
classification trees, but each leaf predicts a hierarchy of
class labels rather than a single label. CLUS-HMC builds
the trees in a top-down fashion and the outline of the
algorithm is very similar to that of top-down decision tree
induction algorithms (see the CLUS-HMC pseudo-code
in Additional file 1). Themain differences are in the search
heuristics and in the way predictions are made. For the
sake of completeness both aspects are reported in the fol-
lowing. Additional details on CLUS-HMC are given by
Vens et al. [4].

Search heuristics
To select the best test in an internal node of the tree, the
algorithm scores the possible tests according to the reduc-
tion in variance (defined below) induced on the set U of
examples associated to the node. In CLUS-HMC, the vari-
ance of class labels across a set of examplesU is defined as
follows:

Var(U) = 1
|U| ·

∑
ui∈U

d(Li, L)2, (2)

where Li is the vector associated to the class labels of
example ui (each element of Li is binary and repre-
sents the presence/absence of a class label for ui), L is
the average of all Li vectors corresponding to the class
labels of examples in U and d(·, ·) is a distance func-
tion on such vectors. The basic idea behind the use

of the variance reduction is to minimize intra-cluster
variance.
In the HMC context, class labels at higher levels of the

annotation hierarchy are more important than class labels
at lower levels. This is reflected in the distance measure
used in the above formula, which is a weighted Euclidean
distance:

d(L1, L2) =
√√√√ K∑

k=1
ω(ck) · (L1,k − L2,k)2 (3)

where Li,k is the k-th component of the class vector Li and
the class weights ω(ck) associated with the labels decrease
with the depth of the class in the hierarchy. More pre-
cisely, ω(c) = ω0 · avgj {ω(pj(c))}, where pj(c) denotes the
j-th parent of class c and 0 < ω0 < 1). This definition of
the weights allows us to take into account a hierarchy of
classes, structured as a tree and DAG (multiple parents of
a single label).
For instance, consider the small hierarchya in Figure 1(b),

and two examples (x1, y1) and (x2, y2), where y1 = {all,
B,B.1,C,D,D.2,D.3} and y2={all,A,D,D.2,D.3}. The
class vectors for y1 and y2 are: L1 = [1, 0, 0, 0, 1, 1, 1, 1,
0, 1, 1] and L2 = [1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1]. The distance
between the two class vectors is then:

d([1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1] , [1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1])

=
√
3 · w2

0 + 4 · w3
0

(4)

At each node of the tree, the test that maximizes the
variance reduction is selected. This is expected to maxi-
mize cluster homogeneity with respect to the target vari-
able and improve the predictive performance of the tree. If
no test can be found that significantly reduces variance (as
measured by a statistical F-test), then the algorithm cre-
ates a leaf and labels it with a prediction, which can consist
of multiple hierarchically organized labels.

Predictions
A classification tree typically associates a leaf with the
“majority class”, i.e., the label most appearing in the train-
ing examples at the leaf. This label is later used for predic-
tion purposes when a test case reaches that leaf. However,
in the case of HMC, where an example may have multiple
classes, the notion of “majority class” cannot be straight-
forwardly applied. In fact, CLUS-HMC associates the leaf
with the mean L̄ of the class vectors of the examples in the
leaf. The value at the k-th component of L̄ is interpreted
as the membership score of class ck , i.e., the probability
that an example arriving at the leaf will be labeled with a
class ck .

http://sourceforge.net/projects/clus/

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 5 of 18
http://www.biomedcentral.com/1471-2105/14/285

For an example arriving at a leaf, binary predictions for
each class label can be obtained by applying a user defined
threshold τ on this probability: If the i-th component of
L̄ is above τ (> τ), then the leaf predicts the class ci. To
ensure that the predictions satisfy the hierarchical con-
straint, i.e., whenever a class is predicted, its super-classes
are also predicted, it suffices to choose τi ≤ τj whenever cj
is ancestor of ci.

NHMC
We first discuss the network setting that we consider
in this paper. We then propose a new network auto-
correlation measure for HMC tasks. Subsequently, we
describe the CLUS-HMC algorithm for learning HMC
trees and introduce its extension NHMC (i.e., Network
CLUS-HMC), which takes into account the network auto-
correlation (coming from PPI networks) when learning
trees for HMC.

Network setting for HMC
Some uses of a PPI network in learning gene func-
tion prediction models include: treating the interactions
between pairs of genes as descriptive attributes (e.g.,
binary attributes [17]) and generating new features as
combinations of PPI data with other descriptive attributes.
Both approaches require that data are pre-processed
before applying a network oblivious learning method (e.g.,
CLUS-HMC). However, the applicability of predictive
models built in this way is strongly dependent on PPI net-
work information being available for the testing data, i.e.,
for the proteins whose gene function we want to predict.
In order to learn general models, which can be used to

make predictions for any test set, we use protein interac-
tions as a form of background knowledge and exploit them
only in the learning phase. More specifically, in the train-
ing phase, both gene properties and network structure are
considered. In the testing phase, only gene properties are
considered and the network structure is disregarded. This
key feature of the proposed solution is especially attractive
when function prediction concerns new genes, for which
interactions with other genes are not known or are still to
be confirmed.
Following Steinhaeuser et al. [18], we view a train-

ing set as a single network of labeled nodes. Formally,
the network is defined as an undirected edge-weighted
graph G = (V ,E), where V is the set of labeled nodes,
and E ⊆ {〈u, v,w〉|u, v ∈ V ,w ∈ R

+} is the set of
edges. Each edge u ↔ v is assigned with a non-negative
real number w, called the weight of the edge. It can be
represented by a symmetric adjacency matrix W, whose
entries are positive (wij > 0) if there is an edge con-
necting i to j in G, and zero (wij = 0) otherwise. In PPI
networks, edge weights can express the strength of the
interactions between proteins. Although the proposed

method works with any non-negative weight values,
in our experiments we mainly focus on binary (0/1)
weights.
Each node of the network is associated with an

example pair ui = (xi, yi) ∈ X × 2C , where yi = (yi1 ,
yi2 , . . . , yiq), q ≤ K , is subject to the hierarchical con-
straint. Given a network G = (V ,E) and a function
η : V �−→ (X × 2C) which associates each node with
the corresponding example, we interpret the task
of hierarchical multi-label classification as build-
ing a PCT which represents a multi-dimensional
predictive function f : X �−→ 2C that satisfies the hier-
archical constraint, maximizes the autocorrelation of
the observed classes yi for the network G, and min-
imizes the prediction error on yi for the training
data η(V).

Network autocorrelation for HMC
An illustration of the concept of network autocorrelation
for HMC is a special case of network autocorrelation [19].
It can be defined as the statistical relationship between
the observations of a variable (e.g., protein function) on
distinct but related (connected) nodes in a network (e.g.,
interacting proteins). In HMC, domain values of the vari-
able form a hierarchy, such as the GOhierarchy for protein
functions. Therefore, it is possible to define network auto-
correlation for individual nodes and for various levels of
the hierarchy.
In predictive modeling, network autocorrelation can be

a problem, since the i.i.d. assumption is violated, but also
an opportunity, if it is properly considered in the model.
This is particularly true for the task of hierarchical multi-
label classification considered in this work. Indeed, due to
non-stationary autocorrelation, PPI network data can pro-
vide useful (and diverse) information for each single class
at each level of the hierarchy. Intuitively, genes belonging
to classes at higher levels of the hierarchy tend to par-
ticipate in very general types of interactions, while genes
belonging to classes at lower levels of the hierarchy tend
to participate in very specific and localized interactions.
In any case, the effect of autocorrelation changes from
level to level (this aspect is also mentioned by Gillis and
Pavlidis [20]). For this reason, we explicitly measure auto-
correlation and we build a model such that its value is
maximized.

Geary’s C for HMC
In order to measure the autocorrelation of the response
variable Y in the network setting for HMC, we propose a
new statistic, namedAY (U), whose definition draws inspi-
ration from Global Geary’s C [21]. Global Geary’s C is a
measure of spatial autocorrelation for a continuous vari-
able. Its basic definition (used in spatial data analysis [22])
is given in Additional file 2.

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 6 of 18
http://www.biomedcentral.com/1471-2105/14/285

Let ui = (xi, yi) ∈ U ⊆ X × 2C be an exam-
ple pair in a training set U of N examples. Let K be
the number of classes in C, possibly defining a hier-
archy. We represent yi as a binary vector Li of size
K, such that Li,k = 1 if ck ∈ yi and Li,k = 0 otherwise,
and each Li satisfies the hierarchical constraint. Let
d(Li, Lj) be a distance measure defined for two binary
vectors associated to two examples ui = (xi, yi) and
uj = (xj, yj), which takes the class-label hierarchy into
account.
The network autocorrelation measure AY (U), based on

Geary’s C, is defined as follows:

AY (U) = 1 − (N − 1) · ∑
i
∑

j wij · d(Li, Lj)2

4 · ∑
i
∑

j wij · ∑
i d(Li, L)2

(5)

where L is the vector representation of the mean vec-
tor computed on all binary vectors associated to example
pairs in U. The constant 4 in the denominator is included
for scaling purposes. The new autocorrelation measure
AY (U) takes values in the unit interval [0, 1], where 1 (0)
means strong positive (negative) autocorrelation and 0.5
means no autocorrelation.

The Algorithm
We can now proceed to describe the top-down induc-
tion algorithm for building Network HMC trees. The
main differece with respect to CLUS-HMC is that
the heuristic is different. The network is considered
as background knowledge and exploited only in the
learning phase. Below, we first give an outline of the
algorithm, before giving details on the new search
heuristics, which takes autocorrelation into account. We
discuss how the new search heuristics can be computed
efficiently.

Outline of the algorithm The top-down induction algo-
rithm for building PCT for HMC from network data is
given below (Algorithm 1). It takes as input the network
G = (V ,E) and the corresponding HMC dataset U,
obtained by applying η : V �→ X×2C to the vertices of the
network.
In practice, this means that for each gene ui (see

Figure 1(b)) there is a set of (discrete and continu-
ous) attributes describing different aspects of the genes.
For the experiments with the yeast genome, these
include sequence statistics, phenotype, secondary struc-
ture, homology, and expression data (see next Section)
and a class vector, Li i.e., functional annotations associated
to it.
The algorithm recursively partitions U until a stopping

criterion is satisfied (Algorithm 1 line 2). Since the imple-
mentation of this algorithm is based on the implementa-
tion of the CLUS-HMC algorithm, we call this algorithm
NHMC (Network CLUS-HMC).

Algorithm 1 Top-down induction of NHMC
1: procedure NHMC(G,U) returns tree
2: if stop(U) then
3: return leaf(Prototype(U))

4: else
5: (t∗, h∗,P∗) = (null, 0,∅)

6: for each possible Boolean test t according to the
values of attribute X in dataset U do

7: P = {U1,U2} partition induced by t on U
8: h = α ·

(|U1|·AY (U1)+|U2|·AY (U2)|U|
)

+ (1 − α) ·(
Var′(U) − |U1|·Var′(U1)+|U2|·Var′(U2)|U|

)
9: if (h > h∗) then

10: (t∗, h∗,P∗) = (t, h,P)

11: end if
12: end for
13: tree1 = NHMC(G,U1)
14: tree2 = NHMC(G,U2)
15: return node(t∗, tree1, tree2)
16: end if

Search space As in CLUS-HMC, for each internal node
of the tree, the best split is selected by considering all avail-
able attributes. Let Xi ∈ {X1, . . . ,Xm} be an attribute and
DomXi its active domain. A split can partition the current
sample space D according to a test of the form Xi ∈ B,
where B ⊆ DomXi . This means that D is partitioned into
two sets, D1 and D2, on the basis of the value of Xi.
For continuous attributes, possible tests are of the form

X ≤ β . For discrete attributes, they are of the form
X ∈ {ai1 , ai2 , . . . , aio} (where {ai1 , ai2 , . . . , aio} is a non-
empty subset of the domain DomX of X). In the for-
mer case, possible values of β are determined by sorting
the distinct values in D, then considering the midpoints
between pairs of consecutive values. For b distinct values,
b − 1 thresholds are considered. When selecting a sub-
set of values for a discrete attribute, CLUS-HMC relies
on the non-optimal greedy strategy proposed by Mehta
et al. [23].

Heuristics The major difference between NHMC and
CLUS-HMC is in the heuristics they use for the evaluation
of each possible split. The variance reduction heuris-
tics employed in CLUS-HMC (Additional file 1) aims at
finding accurate models, since it considers the homo-
geneity in the values of the target variables and reduces
the error on the training data. However, it does not
consider the dependencies of the target variables values
between related examples and therefore neglects the pos-
sible presence of autocorrelation in the training data. To
address this issue, we introduced network autocorrelation
in the search heuristic and combined it with the variance
reduction to obtain a new heuristics (Algorithm 1).

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 7 of 18
http://www.biomedcentral.com/1471-2105/14/285

More formally, the NHMC heuristics is a linear combi-
nation of the average autocorrelation measure AY (·) (first
term) and variance reduction Var(·) (second term):

h =α ·
(|U1| · AY (U1) + |U2| · AY (U2)

|U|
)

+ (1 − α)·
(
Var′(U)− |U1| · Var′(U1) + |U2| · Var′(U2)

|U|
)

(6)

where Var′(U) is the min-max normalization of Var(U),
required to keep the values of the linear combination in
the unit interval [0, 1], that is:

Var′(U) = Var(U) − δmin
δmax − δmin

, (7)

with δmax and δmin being the maximum and the minimum
values of Var(U) over all tests.
We point out that the heuristics in NHMC combines

information on both the network structure, which affects
AY (·), and the hierarchical structure of the class, which is
embedded in the computation of the distance, d(·, ·) used
in formula (5) and (2). We also note that the tree struc-
ture of the NHMC model makes it possible to consider
different effects of the autocorrelation phenomenon at dif-
ferent levels of the tree model, as well as at different levels
of the hierarchy (non-stationary autocorrelation). In fact,
the effect of the class weights ω(cj) in Equation (3) is that
higher levels of the tree will likely capture the regularities
at higher levels of the hierarchy.
However, the efficient computation of distances accord-

ing to Equation 3 is not straightforward. The difficulty
comes from the need of computing A(U1) and A(U2)
incrementally, i.e., from the statistics already computed
for other partitions. Indeed, the computation of A(U1)
and A(U2) from scratch for each partition would increase
the time complexity of the algorithm by an order ofmagni-
tude and would make the learning process too inefficient
for large datasets.

Efficient computation of the heuristics In our imple-
mentation, in order reduce the computational complexity,
Equation (6) is not computed from scratch for each test
to be evaluated. Instead, the first test to be evaluated is
that which splits U in U2 �= ∅ and U1 �= ∅ such that |U2|
is minimum (1 in most of cases, depending on the first
available test) and U1 = U − U2. Only on this partition,
Equation (6) is computed from scratch. The subsequent
tests to be evaluated progressively move examples from
U1 to U2. Consequently, AY (U1),AY (U2),Var(U1) and
Var(U2) are computed incrementally by removing/adding
quantities to the same values computed in the evaluation
of the previous test.

Var(·) can be computed according to classical meth-
ods for incremental computation of variance. As regards
AY (·), its numerator (see Equation (5)) only requires
distances that can be computed in advance. There-
fore, the problem remains only for the denominator of
Equation (5). To compute it incrementally, we consider the
following algebraic transformations:

∑
ui∈U d(Li, LU)2 =

∑
ui∈U

K∑
k=1

ω(ck)(Li,k − LUk)
2

=
K∑

k=1
ω(ck)

∑
ui∈U

(Li,k − LUk)
2

=
K∑

k=1
ω(ck)

∑
ui∈U ′

(Li,k − LU ′k)
2

+ (Lt,k − LU ′k)(Lt,k − LUk)

=
∑
ui∈U ′

d(Li, LU ′)2 + (Lt,k − LU ′k)

× (Lt,k − LUk)

where U = U ′ ∪ {ut} and LU (LU ′) is the average class
vector computed on U (U ′).
This allows us to significantly optimize the algorithm, as

described in the following section.

Time complexity In NHMC, the time complexity of
selecting a split test represents the main cost of the algo-
rithm. In the case of a continuous split, a threshold β has
to be selected for the continuous variable. IfN is the num-
ber of examples in the training set, the number of distinct
thresholds can be N-1 at worst. Since the determination
of candidate thresholds requires an ordering of the exam-
ples, its time complexity isO(m ·N · logN), wherem is the
number of descriptive variables.
For each variable, the system has to compute the heuris-

tic h for all possible thresholds. In general, this computa-
tion has time-complexityO((N−1) ·(N+N ·s) ·K), where
N−1 is the number of thresholds, s is the average number
of edges for each node in the network, K is the number of
classes, O(N) is the complexity of the computation of the
variance reduction and O(N · s) is the complexity of the
computation of autocorrelation.
However, according to the analysis reported before, it is

not necessary to recompute autocorrelation values from
scratch for each threshold. This optimization makes the
complexity of the evaluation of the splits for each variable
O(N · s · K). This means that the worst case complexity
of creating a split on a continuous attribute is O(m · (N ·
logN + N · s) · K).
In the case of a discrete split, the worst case complex-

ity (for each variable and in the case of optimization) is
O((d−1)·(N+N ·s)·K), where d is the maximum number

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 8 of 18
http://www.biomedcentral.com/1471-2105/14/285

of distinct values of a discrete variable (d ≤ N). Overall,
the identification of the best split node (either continuous
or discrete) has a complexity of O(m · (N · logN + N · s) ·
K)+O(m·d·(N+N ·s)·K), that isO(m·N ·(logN+d·s)·K).
This complexity is similar to that of CLUS-HMC, except
for the s factor which equals N in the worst case, although
such worst-case behavior is unlikely.

Additional remarks The relative influence of the two
parts of the linear combination in Formula (6) is deter-
mined by a user-defined coefficient α that falls in the
interval [0,1]. When α = 0, NHMC uses only auto-
correlation, when α = 0.5, it weights equally variance
reduction and autocorrelation, while when α = 1 it works
as the original CLUS-HMC algorithm. If autocorrelation
is present, examples with high autocorrelation will fall
in the same cluster and will have similar values of the
response variable (gene function annotation). In this way,
we are able to keep together connected examples without
forcing splits on the network structure (which can result
in losing generality of the induced models).
Finally, note that the linear combination that we use

in this article (Formula (6)) was selected as a result of
our previous work on network autocorrelation for regres-
sion [12]. The variance and autocorrelation can also be
combined in some other way (e.g., by multiplying them).
Investigating different ways of combining them is one of
the directions for our future work.

Results and discussion
In this section, we present the evaluation of the system
NHMC on several datasets related to predicting gene
function in yeast. Before we proceed to presenting the
empirical results, we provide a description of the datasets
used and the experimental settings.

Data sources
We use 12 datasets for gene function prediction in yeast
(Saccharomyces cerevisiae) as considered by Clare and
King [1], but with the class labels used by Vens et al. [4]b.
The seq dataset records sequence statistics that depend

on the amino acid sequence of the protein for which the
gene codes. These include amino acid frequency ratios,
sequence length, molecular weight and hydrophobicity.
The pheno dataset contains phenotype data, which rep-

resent the growth or lack of growth of knock-out mutants
that are missing the gene in question. The gene is removed
or disabled and the resulting organism is grown with a
variety of media to determine what themodified organism
might be sensitive or resistant to.
The struc dataset stores features computed from the

secondary structure of the yeast proteins. The secondary
structure is not known for all yeast genes; however, it can
be predicted from the protein sequence with reasonable

accuracy, using Prof [24]. Due to the relational nature of
secondary structure data, Clare and King [1] performed
a preprocessing step of relational frequent pattern min-
ing; the struc dataset includes the constructed patterns as
binary attributes.
The hom dataset includes, for each yeast gene, informa-

tion from other, homologous genes. Homology is usually
determined by sequence similarity; here, PSI-BLAST [25]
was used to compare yeast genes both with other yeast
genes and with all genes indexed in SwissProt v39. This
provided for each yeast gene a list of homologous genes.
For each of these, various properties were extracted (key-
words, sequence length, names of databases they are listed
in, . . .). Clare and King [1] preprocessed these data in a
similar way as the secondary structure data to produce
binary attributes.
The cellcycle, church, derisi, eisen, gasch1, gasch2,

spo, exp datasets include microarray yeast data [1].
Attributes for these datasets are real valued. They repre-
sent fold changes in gene expression levels.
We construct two versions of each dataset. The values

of the descriptive attributes are identical in both versions,
but the classes are taken from two different classification
schemes. In the first version, they are from FUN (http://
mips.helmholtz-muenchen.de/proj/funcatDB/), a scheme
for classifying the functions of gene products, developed
by MIPS [26]. FUN is a tree-structured class hierarchy; a
small part is shown in Figure 1(a). In the second version of
the data sets, the genes are annotated with terms from the
Gene Ontology (GO) [6] (http://www.geneontology.org),
which forms a directed acyclic graph instead of a tree: each
term can have multiple parents (we use GO’s “is-a” rela-
tionship between terms). Only annotations from the first
six levels were taken.
In addition, we use two protein-protein interaction

networks (PPIs) for yeast genes. In particular, the net-
works BioGRID [27] and DIP [28] are used, which con-
tain 323578 and 51233 interactions among 6284 and
7716 proteins, respectively. BioGRID stores physical and
genetic interactions, DIP (Database of Interacting Pro-
teins) stores and organizes information on binary protein-
protein interactions that are retrieved from individual
research articles.
The basic properties of the datasets in terms of the

number of examples, number of attributes (features) and
number of (hierarchically organized) classes are given in
Table 1. For both networks, binary (0/1) weights are con-
sidered in NHMC. Exceptions are explicitly mentioned.

Experimental setup
In the experiments, we deal with several dimensions: dif-
ferent descriptions of the genes, different descriptions of
gene functions, and different gene interaction networks.
We have 12 different descriptions of the genes from the

http://mips.helmholtz-muenchen.de/proj/funcatDB/
http://mips.helmholtz-muenchen.de/proj/funcatDB/
http://www.geneontology.org

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 9 of 18
http://www.biomedcentral.com/1471-2105/14/285

Table 1 Basic properties of the datasets

Dataset FUN GO

#Instances #Attributes #Classes #Instances #Attributes #Classes

seq 3932 476 499 3900 476 4133

pheno 1592 67 455 1587 67 3127

struc 3838 19629 499 3822 19629 4132

hom 3848 47035 499 3567 47035 4126

cellcycle 3757 77 499 3751 77 4125

church 3779 550 499 3774 550 4131

derisi 2424 63 499 2418 63 3573

eisen 3725 79 461 3719 79 4119

gasch1 3764 172 499 3758 172 4125

gasch2 3779 51 499 3758 51 4131

spo 3703 79 499 3698 79 4119

exp 3782 550 499 3773 550 4131

We use 12 yeast (Saccharomyces cerevisiae) datasets (as considered by [1]) and two functional annotation (FUN and GO) schemes.

Clare and King’ datasets [1] and 2 class hierarchies (FUN
and GO), resulting in 24 datasets with several hundreds of
classes each. Furthermore, we use BioGRID and DIP PPI
networks for each of those. Moreover, for each dataset,
we extracted the subset containing only the genes that
are most connected, i.e., have at least 15 interactions in
the PPI network (highly connected genes). We will focus
on presenting the results for the datasets with GO anno-
tations, while the results for the FUN versions of the
datasets are given in the Additional files 3 and 4.
As suggested by Vens et al. [4], we build models trained

on 2/3 of each data set and test on the remaining 1/3. The
results reported in this paper are obtained using exactly
the same splits as [4]. The subset containing genes with
more than 15 connections uses the same 2/3-1/3 training-
testing split. This is necessary in order to guarantee a
direct comparison of our results with results obtained
in previous work. However, in order to avoid problems
due to randomization, we also performed experiments
according to a 3-fold cross validation schema.
To prevent over-fitting, we used two pre-pruning meth-

ods: the minimal number of examples in a leaf (set to 5)
and F-test pruning. The latter uses the F-test to check
whether the variance reduction achieved after adding a
test is statistically significant at a given level (0.001, 0.005,
0.01, 0.05, 0.1, 0.125). The algorithm takes as input a vec-
tor of significance levels/ p-values and by internal 3-fold
cross-validation selects the one which leads to the smallest
error.
Following Vens et al. [4], we evaluate the proposed

algorithm by using as a performance metric the Aver-
age Area Under the Precision-Recall Curve (AUPRC), i.e.,
the (weighted) average of the areas under the individual
(per class) Precision-Recall (PR) curves, where all weights

are set to 1/|C|, with C the set of classes. The closer the
AUPRC is to 1.0, the better the model is. A PR curve plots
the precision of a classifier as a function of its recall. The
points in the PR space are obtained by varying the value
for the threshold τ from 0 to 1 with a step of 0.02. In the
considered datasets, the positive examples for a given class
are rare as compared to the negative ones. The evaluation
by using PR curves (and the area under them), is the most
suitable in this context, because we are more interested in
correctly predicting the positive instances (i.e., that a gene
has a given function), rather than correctly predicting the
negative ones.
In order to evaluate the performance of the proposed

NHMC algorithm, we compare it to CLUS-HMC (NHMC
works just as CLUS-HMC when α = 1) which takes
into account the attributes, as well as the hierarchical
organization of classes, but does not consider network
information. We also compare NHMC with the Function-
alFlow (FF) [29] and Hopfield (H) [30] approaches, which
exploit the network information, but consider neither the
attributes nor the hierarchical organization of classes. We
report the results of NHMC with α = 0, when it uses only
autocorrelation as a heuristic, and with α = 0.5, when
it equally weights variance reduction and autocorrelation
within the heuristic.

Results for GO hierarchical multi-label classification
For each of the datasets, we report in Table 2 the AUPRC
results obtained with NHMC (using α = 0.5 and α = 0.0),
CLUS-HMC (i.e., NHMC with α = 1 which does not
consider network information), FF and H (which do not
consider the attributes and the hierarchical organization
of classes). Two variants of each dataset are considered,
one with all genes and the other with the subset of highly

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 10 of 18
http://www.biomedcentral.com/1471-2105/14/285

Table 2 The performance of NHMC and competitive methods in predicting gene function for different datasets and PPI
networks

All genes

Network DIP BioGRID

Method CLUS-HMC NHMC FF H NHMC FF H

Dataset α = 0 α = 0.5 α = 0 α = 0.5

seq 0.023 0.032 0.030 0.004 0.003 0.011 0.011 0.006 0.006

pheno 0.019 0.016 0.016 0.001 0.001 0.016 0.016 0.003 0.002

struc 0.018 0.012 0.012 0.001 0.001 0.012 0.012 0.003 0.002

homo 0.040 0.013 0.013 0.000 0.000 0.012 0.012 0.001 0.002

cellcycle 0.019 0.287 0.288 0.004 0.003 0.012 0.012 0.006 0.006

church 0.014 0.015 0.012 0.003 0.002 0.012 0.012 0.006 0.006

derisi 0.017 0.015 0.017 0.004 0.003 0.044 0.317 0.006 0.006

eisen 0.030 0.024 0.024 0.005 0.003 0.015 0.334 0.006 0.008

gasch1 0.024 0.018 0.019 0.003 0.002 0.050 0.354 0.006 0.006

gasch2 0.020 0.021 0.021 0.004 0.003 0.012 0.012 0.006 0.006

spo 0.019 0.018 0.015 0.004 0.003 0.012 0.012 0.006 0.006

exp 0.023 0.017 0.016 0.003 0.002 0.012 0.012 0.006 0.006

Average: 0.022 0.041 0.040 0.003 0.002 0.018 0.093 0.005 0.005

Highly connected genes

Network DIP BioGRID

Method CLUS-HMC NHMC FF H NHMC FF H

Dataset α = 0 α = 0.5 α = 0 α = 0.5

seq 0.037 0.072 0.1 0.003 0.001 0.025 0.035 0.007 0.007

pheno 0.051 0.016 0.051 0.002 0.002 0.051 0.051 0.006 0.005

struc 0.078 0.078 0.078 0.001 0.002 0.078 0.078 0.003 0.003

homo 0.047 0.068 0.068 0.001 0.001 0.023 0.023 0.002 0.003

cellcycle 0.027 0.036 0.018 0.004 0.005 0.026 0.041 0.007 0.007

church 0.017 0.025 0.025 0.004 0.004 0.025 0.025 0.007 0.007

derisi 0.078 0.078 0.106 0.004 0.004 0.044 0.042 0.007 0.007

eisen 0.043 0.061 0.146 0.005 0.005 0.030 0.045 0.007 0.007

gasch1 0.051 0.094 0.095 0.004 0.005 0.050 0.046 0.007 0.007

gasch2 0.04 0.088 0.107 0.004 0.005 0.025 0.043 0.007 0.007

spo 0.04 0.078 0.09 0.004 0.005 0.026 0.035 0.007 0.007

exp 0.045 0.036 0.092 0.004 0.004 0.025 0.025 0.007 0.007

Average: 0.046 0.061 0.081 0.003 0.003 0.036 0.041 0.006 0.006

We use the 2/3-1/3 training-testing evaluation schema. We report the AUPRC of the CLUS-HMC (α = 1), NHMC (α = 0.5 and α = 0), FunctionalFlow (FF), and Hopfield
(H) methods, when predicting gene function in yeast using GO annotations. We use 12 yeast (Saccharomyces cerevisiae) datasets (as considered by [1]). We consider all
genes. Results for two PPI networks (DIP and BioGRID) are presented.

connected genes (with at least 15 connections). Further-
more, results for DIP and BioGRID are presented. For
all genes, we also report 3-fold cross-validation AUPRC
results in Table 3.
On the datasets with all genes, the best results are over-

all obtained by NHMC with α = 0. For the DIP network,
there is no clear difference between NHMC with α = 0
and NHMC with α = 0.5. Note that in the DIP network

only a half of the genes have at least one connection to
other genes.
On average, NHMC outperforms CLUS-HMC. The dif-

ference in performance is especially notable for some
datasets, i.e., cellcycle when using the DIP network and
derisi, eisen and gasch1 when using the BioGRID network.
This indicates that while some form of autocorrelation
on the GO labels is present in both networks (DIP and

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 11 of 18
http://www.biomedcentral.com/1471-2105/14/285

Table 3 The performance of NHMC and competitive methods in predicting gene function for different datasets and PPI
networks

All genes

Network DIP BioGRID

Method CLUS-HMC NHMC FF H NHMC FF H

Dataset α = 0 α = 0.5 α = 0 α = 0.5

seq 0.030 0.025 0.025 0.003 0.002 0.022 0.022 0.004 0.006

pheno 0.021 0.018 0.019 0.002 0.001 0.018 0.018 0.004 0.002

struc 0.018 0.012 0.016 0.002 0.000 0.012 0.012 0.004 0.002

homo 0.040 0.013 0.031 0.001 0.001 0.013 0.013 0.002 0.002

cellcycle 0.017 0.297 0.273 0.004 0.002 0.013 0.013 0.006 0.006

church 0.017 0.013 0.012 0.003 0.002 0.012 0.012 0.006 0.006

derisi 0.018 0.022 0.021 0.004 0.002 0.039 0.315 0.006 0.006

eisen 0.025 0.020 0.020 0.004 0.002 0.021 0.335 0.006 0.008

gasch1 0.020 0.017 0.017 0.003 0.002 0.029 0.339 0.006 0.006

gasch2 0.019 0.020 0.018 0.004 0.002 0.015 0.016 0.006 0.006

spo 0.018 0.019 0.018 0.004 0.002 0.017 0.017 0.006 0.006

exp 0.020 0.017 0.017 0.002 0.002 0.018 0.018 0.006 0.006

Average: 0.022 0.041 0.041 0.003 0.002 0.019 0.094 0.005 0.005

We use the 3-fold cross-validation evaluation schema. The average AUPRC (estimated by 3-fold CV) of the CLUS-HMC (α = 1), NHMC (α = 0.5 and α = 0),
FunctionalFlow (FF), and Hopfield (H) methods, when predicting gene function in yeast using GO annotations. We use 12 yeast (Saccharomyces cerevisiae) datasets.
Results for two PPI networks (DIP and BioGRID) are presented.

BioGRID), they provide different information. Exceptions
are the struc and hom datasets. A possible explanation
can be the high number of attributes, which may pro-
vide information redundant with respect to the informa-
tion provided by the PPI networks. In this case, NHMC
encounters the curse of dimensionality phenomenon [31].
The advantage of NHMC over CLUS-HMC comes

from the simultaneous use of the hierarchy of classes
and the PPI information in protein function prediction.
It confirms the benefits coming from the considera-
tion of autocorrelation during the learning phase. The
tree structure of the learned models allows NHMC to
consider different effects of autocorrelation at different
levels of granularity. All these considerations are valid
for both evaluation schemata we use, that is, the 2/3-
1/3 training-testing split and the 3-fold cross-validation;
schema.
The results obtained by using two functional linkage

network (FLN) based algorithms, i.e., FunctionalFlow (FF)
[29] and Hopfield (H) [30], are comparable between them,
but are not comparable with those obtained by NHMC
and CLUS-HMC. This is due to the different classification
problem considered by FF and H, which does not take into
account the attributes or the hierarchy of classes. Thus,
NHMC and CLUS-HMC obtain far better accuracies than
FF and H.
As expected, when we use only highly connected

genes for both training and testing, we obtain better

performance. To investigate this effect in more detail, in
Figure 2 we present the AUPRC results obtained by using
CLUS-HMC and NHMC (with α = 0.5 and α = 0)
for predicting GO annotations in the gasch2 (Figure 2(a))
and cellcycle (Figure 2(b)) datasets. The graphs depict
the performance of the two models learned from highly
connected genes from each dataset, for different portions
of the genes from the testing data, ordered by the mini-
mum number of connections of the gene in the DIP PPI
network. Both CLUS-HMC and NHMC perform better
when tested on highly connected genes only (far right in
Figures 2(a) and 2(b)) as compared to being tested on all
genes (far left). For both datasets, NHMC clearly performs
better than CLUS-HMC for all subsets of the testing set.
The difference in performance is less pronounced when
all genes are considered (far left), but becomes clearly vis-
ible as soon as the genes with no or few connections are
excluded, and are most pronounced for the most con-
nected genes (far right). Note that no network information
is used by NHMC about the testing set. This means that
network information from the training set is sufficient to
obtain good predictive models.
After considering the accuracy on the subset of highly

connected genes (see Table 2), we turn our attention to the
accuracy on the subset of weakly connected genes. This
subset contains all genes that are not highly connected,
i.e., have less than 15 interactions in the PPI network.
In Table 4, we present the predictive performance of the

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 12 of 18
http://www.biomedcentral.com/1471-2105/14/285

Figure 2 AUPRC distribution. Comparison of the predictive models in terms of AUPRC learned by CLUS-HMC and NHMC (α = 0.5 and α = 0) from
the most connected subsets of genes from the (a) gasch2 and (b) cellcycle datasets annotated with labels from the GO hierarchy. The horizontal
axis gives the minimum relative number (in %) of interactions a gene must have in the DIP PPI network to be included in the testing data, whereas
the vertical axis gives the model performance on the testing data in terms of the AUPRC values. At the far right (100 on the horizontal axis), we have
the performance on the most-highly connected genes from the test set. At the far left (0 on the horizontal axis), we have the performance on all
genes for the testing set.

models trained on the subset of highly connected genes
and tested on the subset of remaining genes.
As expected, with a threshold of 15 connections (train-

ing on genes with more than 15 connections and testing
on the remaining genes) the predictive accuracy decreases
for all methods/models, but the reduction is the smallest
for NHMC (28% on average) and the largest for the FLN-
based algorithms (91% for FF and 84% for H on average).
NHMC does not use the network information in the test-
ing phase and its predictions are not affected much by this

scenario, whereas the FLN-based algorithms are highly
dependent on the network information and their accuracy
decreases drastically. Moreover, the results obtained by
using NHMC are better than those of CLUS-HMC on
the subset of weakly connected genes. This means that
NHMC can build better models because it uses both the
hierarchy of classes and the network information, as com-
pared to the models built by only using the hierarchy
of classes (by CLUS-HMC) or by only using the net-
work information (FF, H). In the case of a threshold of 5

Table 4 The performance of NHMC and competitive methods in predicting gene function on weakly connected genes

15 connections 5 connections

Dataset CLUS-HMC NHMC FF H CLUS-HMC NHMC FF H

seq 0.014 0.014 0.001 0.001 0.033 0.042 0.007 0.007

pheno 0.018 0.051 0.001 0.001 0.033 0.027 0.005 0.007

struc 0.012 0.078 0.001 0.001 0.093 0.093 0.000 0.007

homo 0.012 0.023 0.001 0.001 0.149 0.149 0.003 0.007

cellcycle 0.015 0.015 0.001 0.001 0.041 0.023 0.007 0.007

church 0.013 0.025 0.001 0.001 0.031 0.022 0.007 0.007

derisi 0.015 0.015 0.000 0.001 0.024 0.026 0.007 0.007

eisen 0.020 0.020 0.000 0.001 0.039 0.040 0.007 0.002

gasch1 0.015 0.015 0.001 0.001 0.023 0.025 0.007 0.006

gasch2 0.018 0.023 0.001 0.001 0.028 0.028 0.007 0.007

spo 0.015 0.015 0.000 0.001 0.022 0.022 0.007 0.007

exp 0.015 0.015 0.001 0.001 0.026 0.044 0.007 0.003

Average: 0.015 0.026 0.001 0.001 0.045 0.045 0.006 0.006

We report the AUPRC of the CLUS-HMC (α = 1), NHMC (α = 0.5), FunctionalFlow (FF), and Hopfield (H) methods, when predicting gene function in yeast, using GO
annotations and the BioGRID PPI network. The models are trained on the subset of highly connected genes and tested on the subset of weakly connected genes.

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 13 of 18
http://www.biomedcentral.com/1471-2105/14/285

connections, we have better results both for CLUS-HMC
andNHMC.However, in this case, the advantage provided
by the network information does not allow NHMC to
outperform CLUS-HMC in all the datasets and the accu-
racies obtained by the two systems are very similar. This is
mainly due to the noise present in the PPI networks (espe-
cially present in weakly connected genes) which works
against the beneficial effect of the networkc.
A different perspective of the results is presented in

Table 5, where we compare the use of binary weights (used
until now) with the use of a simple weighting that consid-
ers the number of times that an interaction is identified in
the experiments. Results show that non-binary weighting
is, in general, not beneficial. This behavior is observed not
only for NHMC but also for FF and H. A possible expla-
nation can be found in the quality of the weights which,
according to the way they are generated, may introduce
noise.
A final remark concerns the sensitivity of NHMC to the

presence of highly redundant features and how NHMC
works in combination with a feature selection algorithm.
With this goal in mind, we have used a spectral fea-
ture selection algorithm [32] with a normalized cut to
select the 15%, 10%, 5% and 1% top ranked features for
the two datasets characterized by a very large number
of attributes, that is, struc and homo (19,629 and 47,035
attributes, respectively). The results obtained after learn-
ing models with reduced sets of features are reported in
Table 6. They essentially show that NHMC is not affected
by the high number of features. This can be explained
by the top-down tree induction approach, which, at each
internal node of the tree, selects the best attribute to
be considered in the test and ignores the others, thus

implicitly implementing an embedded feature selection
[33] algorithm.

Results for FUN Hierarchical Multi-label Classification
In addition to the experiments with GO annotations, we
also perform experiments with FUN annotations. The
results are reported in Additional file 3 and summarized
here. They agree with results obtained with GO annota-
tions, apart for the fact that when using all genes, NHMC
performs comparably to CLUS-HMC. When working
with highly connected genes, NHMC yields very good
results, mainly better than CLUS-HMC, independently of
the considered network.
We also compare the results of NHMCusing FUN anno-

tations to the results of additional methods from other
studies. In particular, we compare our results to the results
of three recent bio-inspired strategies which work in the
HMC setting, but do not consider network information.
The three methods are Artificial Neural Networks (HMC-
LMLP), Ant Colony Optimization (hmAnt-Miner), and
a genetic algorithm for HMC (HMC-GA) [34]. While
the first algorithm is a 1-vs-all (it solves several binary
classification problems) method based on artificial neural
networks trained with the back-propagation algorithm,
the latter two are methods that discover HMC rules.
The algorithms are evaluated on 7 yeast FUN annotated
datasets [1], using the same experimental setup we use for
CLUS-HMC and NHMC, i.e., the setup proposed by Vens
et al. [4].
In Additional file 4, we present the performance

(AUPRC results) obtained by using HMC-GA, HMC-
LMLP, hmAnt-Miner andNHMC (α = 0.5) on 7 (from the
above 12) FUN annotated datasets. NHMC outperforms

Table 5 Weighted features

Binary connections Weighted connections

Dataset NHMC FF H NHMC FF H

seq 0.011 0.006 0.006 0.021 0.006 0.006

pheno 0.016 0.003 0.002 0.016 0.004 0.004

struc 0.012 0.003 0.002 0.093 0.002 0.003

homo 0.012 0.001 0.002 0.149 0.006 0.006

cellcycle 0.012 0.006 0.006 0.013 0.007 0.006

church 0.012 0.006 0.006 0.012 0.007 0.006

derisi 0.317 0.006 0.006 0.013 0.007 0.006

eisen 0.334 0.006 0.006 0.041 0.006 0.006

gasch1 0.354 0.006 0.006 0.016 0.007 0.006

gasch2 0.012 0.006 0.006 0.016 0.007 0.006

spo 0.012 0.006 0.006 0.016 0.007 0.006

exp 0.012 0.006 0.006 0.015 0.007 0.006

Average: 0.093 0.005 0.005 0.035 0.006 0.006

Binary vs. weighted connections: AUPRC of NHMC (α = 0.5) with weighted distances in the BioGRID PPI network.

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 14 of 18
http://www.biomedcentral.com/1471-2105/14/285

Table 6 The performance of NHMC in predicting gene function in combination with feature selection

Dataset

Struc Homo

Feature set No. of features AUPRC No. of features AUPRC

All the features 19624 0.012 47034 0.012

Top 15% 2944 0.0115 7055 0.012

Top 10% 1962 0.0115 4703 0.012

Top 5% 981 0.0115 2351 0.012

Top 1% 196 0.0115 470 0.0115

AUPRC of NHMC (α = 0.5) with BioGRID PPI network for struc and homo datasets, when working on all the features, top 15% of the features, top 10% of the features,
top 5% of the features and top 1% of the features. The datasets struc and homo are chosen because of their very high number of features as compared to the other
datasets.

all other methods by a wide margin. An exception is only
the church dataset, for which NHMC performs worse
than hmAnt-Miner. Note that the AUPRC [34] measure
used in this comparison is similar to AUPRC, but uses
weights that consider the number of examples in each
class. We use AUPRC here to make our results easily
comparable to the results obtained with the other three
methods: The study by Cerri et al. [34] only gives their
results in terms of AUPRC.

Using different PPI networks within NHMC
Although all PPI networks are frequently updated and
maintained, many works have pointed out that the PPI
networks are also very noisy (e.g., [35]). In the following,
we argue that NHMC can be a valid tool for assessing
the quality of network data in the context of exploiting
information coming from PPI networks for gene func-
tion prediction. Before we compare the results obtained
by NHMC using different PPI networks, we discuss some
functional and topological properties of the 2 considered
yeast PPI networks: DIP and BioGRID.
Table 7 shows the percentage of proteins that are cov-

ered (i.e., connected to other proteins within) by each of
the PPI networks. While BioGRID has almost complete
coverage, within the other network (DIP) only half of the
proteins interact with other proteins. Next, Table 7 shows
the percentage of function-relevant interactions. An inter-
action is considered to be function-relevant (with respect
to a given hierarchy) if the two proteins involved in the
interaction have at least one function (from the hierarchy)
in common. In the 2 networks and across the 12 datasets,
the degree of function relevance varies widely, i.e, 2%–33%
of the observed interactions are function relevant. How-
ever, a closer look at the statistics reveals that the connec-
tions aremuchmore function-relevant with respect to GO
annotations than with respect to FUN annotations. This
is largely due to the fact that GO contains a much larger
number of functions. In addition, Table 7 gives the aver-
age degree of a node, i.e., the average number of neighbors
that a node has in the network.

Having described some of the characteristics of the
different PPI networks used in this study, we can now pro-
ceed with the comparison of the results obtained by using
these networks within NHMC. Comparing the NHMC
results obtained with DIP and BioGRID for GO annota-
tions (Table 2), we see that DIP leads to higher AUPRC
results. The “% of function-relevant interactions” is on
average higher for DIP, even though the number of con-
nected genes in BioGRID is twice as high as the one in
DIP (see Table 7). This indicates that BioGRID, although
denser than DIP, does not provide the same quantity/type
of information for the gene function prediction task as
DIP. Similar conclusions hold for predicting gene func-
tions within the FUN annotation scheme, as evident from
Additional file 3.
Finally, comparing the results in Tables 2 and 3 and the

table reported in Additional file 3, we see that, although
for GO we have a higher “% of function-relevant inter-
actions” in both the DIP and the BioGRID networks, the
learning task for GO is more complex than that for FUN.
This is primarily due to the significantly higher number of
classes in GO. This explains the better AUPRC values for
FUN in comparison to those for GO, when comparing the
results of NHMC on the same dataset and using the same
network.

Related work
Many machine learning approaches that tackle the prob-
lem of protein function prediction have been proposed
recently (starting from the seminal work by Pavlidis et al
[36]). A review of the plethora of existing methods can
be found in [3,37]. In this section, we will only discuss
related works which are close to ours along two dimen-
sions: using hierarchical annotations [8,38,39] and using
network information [5,40,41].

HMC for predicting gene function
Our work builds on the foundations by Vens et al. [4],
where the hierarchical constraint is enforced by the algo-
rithm CLUS-HMC that learns predictive clustering trees

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 15 of 18
http://www.biomedcentral.com/1471-2105/14/285

Table 7 Basic properties of the yeast PPI networks

Dataset % of connected genes % of function-relevant interactions Avg. degree of node

FUN GO FUN GO FUN GO

DIP BioGRID DIP BioGRID DIP BioGRID DIP BioGRID DIP BioGRID DIP BioGRID

seq 46 96 46 97 8 8 15 8 7.09 7.09 7.15 54.97

pheno 46 98 46 99 6 11 16 11 3.53 27.67 17.57 27.75

struc 13 98 59 98 7 14 14 14 7.27 54.74 7.07 54.97

hom 45 97 48 14 7 16 14 16 7.22 54.301 7.79 58.57

cellcycle 72 99 47 99 2 17 17 16 7.36 55.63 7.38 55.72

church 46 99 46 99 15 16 13 15 7.35 56.21 7.39 56.28

derisi 72 100 73 100 7 17 11 16 11.17 84.43 11.19 84.64

eisen 35 65 35 65 9 19 19 17 4.68 32.47 4.69 32.52

gasch1 47 99 47 99 9 17 19 16 7.41 55.83 7.42 55.92

gasch2 47 98 47 99 7 17 17 16 7.35 55.62 7.39 55.93

spo 48 99 48 99 3 13 17 16 7.31 55.27 7.32 55.35

exp 46 99 46 99 15 16 39 15 7.35 56.16 7.36 56.3

The percentage of connected genes, the percentage of function-relevant interactions and the average degree of nodes for 2 different PPI networks (DIP [28] and
BioGRID [27].

(PCTs) for HMC. Recently, Cerri et al. [34] applied a
genetic algorithm (HMC-GA) to solve the HMC prob-
lem. In their method, the antecedents of decision rules
evolve with a biased fitness function towards rules with
high example coverage. The method also removes from
the training set examples already covered by the gener-
ated rules. Valentini [42] developed the true-path rule
(hierarchical constraint) ensemble learner for genome-
wide gene function prediction, where positive (negative)
probabilistic predictions for a node transitively influence
the ancestors (descendants) of the node. While [4] and
[34] ignore information coming from relationships among
examples, [42] exploits PPI networks. However, the con-
sidered information is limited to binary (input) attributes,
which describe the interaction of a gene with specific
other genes.

Using PPI networks in predicting gene function
Recent reviews of the latest techniques that use PPI data
for protein function prediction [2,37,43,44] suggest that
it is possible to distinguish two major approaches. The
first one explores direct annotation schemes and infers
the function of a protein based on its connections in the
network. The second one, module-assisted, first identifies
modules of related proteins and then annotates eachmod-
ule. The first approach is followed by Letovsky and Kasif
[45], who apply a Markov random field model. There, a
node’s label probability is entirely a function of its neigh-
bors’ states. In addition, Karaoz et al. [30] (similarly to
Vazquez et al. [46]) presented a functional linkage network
(FLN) based algorithm (Hopfield), inspired by discrete-
state Hopfield Networks as used in physics, for predicting

the functions of genes. The method constructs a graph,
whose nodes are genes and edges connect genes that
may share the same function, by integrating gene expres-
sion data, protein-protein interactions and protein-DNA
binding data. FunctionalFlow [29] generalizes the guilt-
by-association principle to groups of proteins that may
interact with each other physically. The algorithm anno-
tates nodes as an infinite reservoir of functional flow.
Initially, each node with known GO functional annotation
is a “source” for that function. In each round, “function”
flows along the weighted edges of the graph. In Nariai
et al. [47], nodes in the graph are genes and edges rep-
resent evidence for functional similarity based on gene
expression data, protein-protein interactions and protein-
DNA binding data. Some form of autocorrelation, limited
to directly connected nodes, is considered. However, the
above approaches [29,30,45-47] do not consider the hier-
archy of categories.
The second approach attempts to define the relationship

between the PPI network topology and biological protein
function. Milenkovic and Przulj [48] relate the PPI net-
work structure to protein complexes. They group proteins
by considering local topology of the PPI network and
show that these protein groups belong to the same protein
complexes, perform the same functions, are localized in
the same compartments, and have the same tissue expres-
sions. The work by Borgwardt et al. [49] uses graph ker-
nels thatmeasure the similarity between graphs and learns
a support vector machine classifier for protein function
prediction. The graph model combines sequential, struc-
tural and chemical information about proteins. Gillis and
Pavlidis [20] recommend to test the effect of critical edges

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 16 of 18
http://www.biomedcentral.com/1471-2105/14/285

(based on node degree) when assessing network quality
using GBA-like approaches. Tao et al. [50] modified the
traditional k-NN classification algorithm to consider the
semantic similarity between functional classes when pre-
dicting the functions of genes based on GO annotations.
Pandey et al. [51] used the same algorithm and the same
similarity measure, but using a different definition that
also includes the similarity between the sets of functional
labels of two proteins. The difference between these two
approaches [50,51] and our approach is that they use GO
to identify the distances, while we use PPI networks to
identify relationships and classify genes according to GO.

What distinguishes our work from related work As
discussed above, many approaches exist for gene func-
tion prediction, some take into account PPI networks and
some take into account the hierarchical organization of
annotation schemes. Most approaches in the first cate-
gory do not consider the hierarchical constraint directly,
but rather in a post-processing phase. Most approaches in
the second category do not explicitly consider the effect of
network autocorrelation of gene function.Moreover, none
of them, takes into account simultaneously the hierarchi-
cal constraint and network autocorrelation in predicting
gene function.
In contrast to related works, in general and the related

work described above in particular, our approach consid-
ers both the network autocorrelation that arise in the PPI
networks and the hierarchical organization of the annota-
tion schemes. In general, our approach NHMC performs
better than the approaches that consider only the net-
work or only the hierarchy of classes. This was clearly
demonstrated above through the empirical comparison of
NHMC with FunctionalFlow and Hopfield algorithms, on
one hand, and with CLUS-HMC, HMC-GA, HMC-LMLP
and hmAnt-Miner on the other hand.
Moreover, the network setting that we use in this work

is different from that used in other studies where the net-
work is not considered at all (although PPI networks give
valuable information) or is considered in tight connec-
tion to the data so that predictions can be made only for
genes for which interactions with other genes are known.
In our approach, the network structure is considered only
during the training phase (model creation) and is disre-
garded during the testing phase. This key feature of the
proposed approach is especially attractive from a practical
perspective when the function we want to predict of new
genes for which interactions with other genes may exist,
but are not known or still need to be confirmed.

Conclusion
In this work, we address the problem of learning to pre-
dict gene/protein function by exploiting their individual
properties as well as their interactions (as captured in

protein-protein interaction / PPI networks). In contrast to
most existing approaches, which use only one of the two
sources (properties or networks), we use both. Moreover,
we only use the network information in the training phase
and can thus make predictions for genes/proteins whose
interactions are yet to be investigated.
We view the problem of gene/protein function predic-

tions as a problem of hierarchical multi-label classifica-
tion, where instances may belong to multiple classes and
the relationships between the classes are hierarchical. We
also consider relations among the instances, i.e., interac-
tions of the proteins within a PPI network: These relations
introduce autocorrelation and violate the assumption that
instances are independently and identically distributed
(i.i.d.), which underlines most machine learning algo-
rithms. While the consideration of these relations intro-
duces additional complexity into the learning process, it
can also bring substantial benefits.
The major contributions of our paper are as follows.

First, we formulate the problem of hierarchical multi-
label classification in a network setting: To the best of our
knowledge, the HMC task of structured-output predic-
tion has not been considered in a network setting before.
Second, we define the notion of autocorrelation for such a
setting and introduce an appropriate measure of network
autocorrelation for HMC. Third, we develop a machine
learning method for solving the task of HMC in a network
setting, which successfully exploits the network informa-
tion (via autocorrelation) during the learning phase.
Finally, we perform an extensive empirical evaluation of

the proposed machine learning method for HMC in a net-
work setting on the task of predicting yeast gene/protein
function in a PPI network context. We use a variety of
datasets describing genes in different ways, two functional
annotation schemes (GO and FUN) and two different
PPI networks (DIP and BioGRID). In sum, the results
of the evaluation show that our method, which uses
both gene/protein properties and network information,
yields better performance than the methods using each
of these two sources separately: Overall, this holds across
the different gene descriptions, annotation schemes, and
different networks. The benefits of using the network
information are diminished (more difficult to reap) when
the genes/proteins are described with a very large number
of features, i.e., under the curse of dimensionality.
More specifically, the properties of the PPI network

used have a strong influence on the overall performance.
Best results are achieved when the PPI network is reason-
ably dense and contains a large proportion of function-
relevant interactions. The DIP and BioGRID networks
rate best in this respect and lead to most notable improve-
ments in performance when used within our method. It
is worth noting here that networks (such as BioGRID) are
nowadays often tuned for function-relevance with respect

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 17 of 18
http://www.biomedcentral.com/1471-2105/14/285

to the commonly used Gene Ontology (GO) annotation
scheme.
Finally, note that the use of network information

improves the accuracy of gene function prediction not
only for highly connected genes, but also for genes with
only a few connections (or none at all). Note also that we
do not need information on the network around a gene
when we want to predict the function for a new gene: This
is important for genes that are not well known (especially
in terms of interactions). In such a case, we can expect bet-
ter predictions from the models learned by our approach,
regardless of whether the gene is well connected or only
weakly connected to other genes and regardless of the fact
whether its connectivity is known or unknown.
We will explore several avenues for development and

evaluation of our approach in further work. In terms of
development, we plan to consider different ways for com-
bining variance reduction and autocorrelation within the
search heuristic used in our approach. In terms of eval-
uation, we plan to use additional datasets and networks.
This will include new datasets for organisms other that
yeast and networks based on sequence similarity (usually
implying homology) among genes, as well as more recent
function labels for the presently considered datasets. In
the context of the latter, we will consider additional net-
works with non-binary weights that reflect the strength of
the connections within the network.

Availability of supporting data
Project Name: NHMC
Project Home Page: http://kt.ijs.si/daniela_stojanova/
NHMC/
Available resources: NHMC software and user manual,
and the datasets.

Endnotes
a Note that the tree structure induced by CLUS-HMC

does not directly reflect the hierarchy of classes. For this
reason, in this paper, we will distinguish between the
terms hierarchy (of classes) and tree (model for HMC).

b The function labels were downloaded in 2008. On
one side, this facilitates comparison with previous work.
On the other side, it is possible that results with new
labels would be slightly different.

c Obviously, the considered case is an extreme
situation where the evaluation suffers from the
non-random distribution of the examples.

Additional files

Additional file 1: Algorithm 2: Pseudo-code of the CLUS-HMC
algorithm for top-down induction of HMC trees.

Additional file 2: Geary’s C for Spatial Regression.

Additional file 3: The performance of the models for predicting FUN
annotations.

Additional file 4: The performance of NHMC and other methods in
predicting FUN annotations of yeast genes.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SD conceived of the study, which was primarily carried out by DS and MC. DS
designed and implemented NHMC, while DS and MC carried out the
experimental evaluation of NHMC and other methods on the different tasks of
gene function prediction. DS, MC, SD and DM contributed to the manuscript
drafting and finalization. MC, SD and DM participated in the design of the
study. SD and DM participated in the BioGRID: a general repository for
interaction datasets 2006.coordination of the study. All authors read and
approved the final manuscript.

Acknowledgements
DS and SD were supported by the following institutions and grants: The
Slovenian Research Agency (Grant P2-0103), the European Commission
(Grants ICT-2010-266722, ICT-2011-287713, and ICT-2013-612944), and the
Operation no. OP13.1.1.2.02.0005 financed by the European Regional
Development Fund (85%) and the Ministry of Education, Science, and Sport of
Slovenia (15%). SD, MC and DM were supported by the EU-funded project
MAESTRA (Project No. 612944). The authors thank Hossein Rahmani who
provided some datasets and Fran Supek who provided useful feedback.

Author details
1Department of Knowledge Technologies, Jožef Stefan Institute, Jamova cesta
39, Ljubljana, Slovenia. 2Jožef Stefan International Postgraduate School,
Jamova 39, 1000 Ljubljana, Slovenia. 3Dipartimento di Informatica, Università
degli Studi di Bari “Aldo Moro”, via Orabona 4, Bari, Italy. 4Centre of Excellence
for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39,
1000 Ljubljana, Slovenia.

Received: 9 August 2012 Accepted: 18 September 2013
Published: 26 September 2013

References
1. Clare A, King RD: Predicting gene function in Saccharomyces

cerevisiae. Bioinformatics 2003, 19(Suppl 2):ii42–ii49.
2. Qi Y, Noble W: Protein interaction networks: protein domain

interaction and protein function prediction. In Handbook of
Computational Statistics: Statistical Bioinformatics. Edited by Lu HH,
Scholkopf B, Zhao H. Heidelberg: Springer-Verlag; 2011.

3. Radivojac P, et al.: A large-scale evaluation of computational protein
function prediction. Nat Methods 2013, 10(3):221-227.

4. Vens C, Struyf J, Schietgat L, Džeroski S, Blockeel H: Decision trees for
hierarchical multi-label classification.Mach Learn 2008, 73(2):185–214.

5. Jiang X, Nariai N, Steffen M, Kasif S, Kolaczyk E: Integration of relational
and hierarchical network information for protein function
prediction. BMC Bioinformatics 2008, 9(350).

6. Ashburner M, et al.: Gene ontology: tool for the unification of biology.
The gene ontology consortium. Nat Genet 2000, 25:25–29.

7. Mewes H, Heumann K, Kaps A, Mayer K, Pfeiffer F, Stocker S, Frishman D:
MIPS: A database for protein sequences and complete genomes.
Nucleic Acids Res 1999, 27:44–48.

8. Barutcuoglu Z, Schapire RE, Troyanskaya OG: Hierarchical multi-label
prediction of gene function. Bioinformatics 2006, 22(7):830–836.

9. Cressie N: Statistics for Spatial Data. New York: Wiley; 1993.
10. Horne D: Prediction of protein helix content from an autocorrelation

analysis of sequence hydrophobicities. Biopolymers 1988, 27:451–477.
11. Blockeel H, De Raedt L, Ramon J: Top-down induction of clustering

trees. In Proc. 15th Intl. Conf. onMachine Learning. San Francisco: Morgan
Kaufmann; 1998:55–63.

12. Stojanova D, Ceci M, Appice A, Džeroski S: Network regression with
predictive clustering trees. DataMining Knowl Discov 2012,
25(2):378–413.

http://kt.ijs.si/daniela_stojanova/NHMC/
http://kt.ijs.si/daniela_stojanova/NHMC/
http://www.biomedcentral.com/content/supplementary/1471-2105-14-285-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-285-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-285-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-285-S4.pdf

Stojanova et al. BMC Bioinformatics 2013, 14:285 Page 18 of 18
http://www.biomedcentral.com/1471-2105/14/285

13. Neville J, Simsek O, Jensen D: Autocorrelation and relational learning:
challenges and opportunities. In Proc. Wshp. Statistical Relational
Learning; 2004.

14. Angin P, Neville J: A shrinkage approach for modeling non-stationary
relational autocorrelation. In Proc. 8th Intl. Conf. on DataMining.
Washington D.C.: IEEE Computer Society; 2008:707–712.

15. Stojanova D, Ceci M, Malerba D, Džeroski S: Learning hierarchical
multi-label classification trees from network data. In Discovery
Science, Volume 8140 of Lecture Notes in Computer Science. Edited by
Fürnkranz J, Hüllermeier E, Higuchi T. Heidelberg: Springer; 2013:
233–248.

16. Quinlan RJ: C4.5: Programs for Machine Learning. San Francisco: Morgan
Kauffmann; 1993.

17. Schietgat L, Vens C, Struyf J, Blockeel H, Kocev D, Džeroski S: Predicting
gene function using hierarchical multi–label decision tree
ensembles. BMC Bioinformatics 2010, 11(2).

18. Steinhaeuser K, Chawla NV, Ganguly AR: Complex networks as a unified
framework for descriptive analysis and predictive modeling in
climate science. Stat Anal DataMining 2011, 4(5):497–511.

19. Doreian P: Network autocorrelation models: Problems and
prospects. In Spatial Statistics: Past, Present, and Future. Ann Arbor: Ann
Arbor Institute of Mathematical Geography; 1990.

20. Gillis J, Pavlidis P: “Guilt by Association” is the exception rather than
the rule in gene networks. PLoS Comput Biol 2012, 8(3):e1002444+.

21. Legendre P: Spatial autocorrelation: trouble or new paradigm?
Ecology 1993, 74(6):1659–1673.

22. Stojanova D, Ceci M, Appice A, Malerba D, Dzeroski S: Dealing with
spatial autocorrelation when learning predictive clustering trees.
Ecol Inform 2013, 13:22–39.

23. Mehta M, Agrawal R, Rissanen J: SLIQ: A fast scalable classifier for data
mining. In Proc. 5th Intl. Conf. Extending Database Technology. Heidelberg:
Springer-Verlag; 1996:18–32. [Lecture Notes in Computer Science, volume
1057].

24. Ouali M, King R: Cascadedmultiple classifiers for secondary structure
prediction. Protein Sci 2000, 9(6):1162–1176.

25. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D:
Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Res 1997, 25:3389–3402.

26. Ruepp, et al.: The FunCat, a functional annotation scheme for
systematic classification of proteins fromwhole genomes. Nucleic
Acids Res 2004, 32(18):5539–5545.

27. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M:
BioGRID: a general repository for interaction datasets. Nucleic Acids
Res 2006, 34(suppl 1):D535–D539.

28. Deane CM, Salwiński Ł, Xenarios I, Eisenberg D: Protein interactions.Mol
Cell Proteomic 2002, 1(5):349–356.

29. Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M:Whole-proteome
prediction of protein function via graph-theoretic analysis of
interaction maps. Bioinformatics 2005, 21:302–310.

30. Karaoz U, Murali TM, Letovsky S, Zheng Y, Ding C, Cantor CR, Kasif S:
Whole-genome annotation by using evidence integration in
functional-linkage networks. Proc Natl Acad Sci USA 2004,
101:2888–2893.

31. Hughes G: On the mean accuracy of statistical pattern recognizers.
IEEE Trans Inf Theory 1968, 14:55–63.

32. Zhao Z, Liu H: Spectral feature selection for supervised and
unsupervised learning. In ICML, Volume 227 of ACM International
Conference Proceeding Series. Edited by Ghahramani Z. New York: ACM;
2007:1151–1157.

33. Appice A, Ceci M, Rawles S, Flach PA: Redundant feature elimination
for multi-class problems. In ICML, Volume 69 of ACM International
Conference Proceeding Series. Edited by Brodley CE. New York:
ACM; 2004.

34. Cerri R, Barros RC, de Carvalho ACPLF: A genetic algorithm for
hierarchical multi-label classification. In Proc. 27th Annual ACM
Symposium on Applied Computing. New York: ACM; 2012:250–255.

35. Shi L, Lei X, Zhang A: Protein complex detection with semi-supervised
learning in protein interaction networks. Proteome Sci 2011, 9:41–42.

36. Pavlidis P, Weston J, Cai J, Noble WS: Learning gene functional
classifications frommultiple data types. J Comput Biol 2002,
9(2):401–411.

37. Pandey G, Kumar V, Steinbach M: Computational approaches for
protein function prediction. Tech. Rep. TR 06-028, Department of
Computer Science and Engineering, University of Minnesota, Twin Cities
2006.

38. Eisner R, Poulin B, Szafron D, Lu P, Greiner R: Improving protein function
prediction using the hierarchical structure of the Gene Ontology. In
Proc. IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology. Washington D.C.: IEEE Computer Society; 2005.

39. Shahbaba B, Neal RM: Gene function classification using Bayesian
models with hierarchy-based priors. BMC Bioinformatics 2006, 7:448.

40. Sokolov A, Ben-Hur A: Hierarchical classification of gene ontology
terms using the GOstruct method. J Bioinformatics Comput Biol 2010,
8(2):357–376.

41. Astikainen K, Pitkänen E, Rousu J, Holm L, Szedmák S: Reaction kernels -
structured output prediction approaches for novel enzyme
function. Bioinformatics 2010:48–55.

42. Valentini G: True path rule hierarchical ensembles for genome-wide
gene function prediction. IEEE ACM Trans Comput Biol Bioinformatics
2010, 8(3):832–847.

43. Sharan R, Ulitsky I, Shamir R: Network-based prediction of protein
function.Mol Syst Biol 2007, 3(88).

44. Wang PI, Marcott EM: It’s the machine that matters: Predicting gene
function and phenotype from protein networks. J Proteomic 2010,
73(11):2277–2289.

45. Letovsky S, Kasif S: Predicting protein function from protein/protein
interaction data: a probabilistic approach. Bioinformatics 2003,
19(suppl 1):i197—i204.

46. Vazquez A, Flammini A, Maritan A, Vespignani A: Global protein
function prediction from protein-protein interaction networks. Nat
Biotechnol 2003, 21(6):697–700.

47. Nariai N, Kolaczyk E, Kasif S: Probabilistic protein function prediction
from feterogeneous genome-wide data. PLoS ONE 2007, 2(3):e337.

48. Milenkovic T, Przulj N: Uncovering biological network function via
graphlet degree signatures. Cancer Inform 2008, 6:257–273.

49. Borgwardt KM, Ong CS, Schönauer S, Vishwanathan SVN, Smola AJ,
Kriegel HP: Protein function prediction via graph kernels.
Bioinformatics 2005, 21(suppl 1):i47—i56.

50. Tao Y, Sam L, Li J, Friedman C, Lussier YA: Information theory applied to
the sparse gene ontology annotation network to predict novel gene
function. Bioinformatics 2007, 23(13):i529—i538.

51. Pandey G, Myers C, Kumar V: Incorporating functional
inter-relationships into protein function prediction algorithms. BMC
Bioinformatics 2009, 10(142).

doi:10.1186/1471-2105-14-285
Cite this article as: Stojanova et al.: Using PPI network autocorrelation in
hierarchical multi-label classification trees for gene function prediction.
BMC Bioinformatics 2013 14:285.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions

	Background
	Introduction
	Motivation and contributions

	Methods
	CLUS-HMC
	Search heuristics
	Predictions

	NHMC
	Network setting for HMC
	Network autocorrelation for HMC
	Geary's C for HMC
	The Algorithm
	Outline of the algorithm
	Search space
	Heuristics
	Efficient computation of the heuristics
	Time complexity
	Additional remarks

	Results and discussion
	Data sources
	Experimental setup
	Results for GO hierarchical multi-label classification
	Results for FUN Hierarchical Multi-label Classification
	Using different PPI networks within NHMC
	Related work
	HMC for predicting gene function
	Using PPI networks in predicting gene function
	What distinguishes our work from related work

	Conclusion
	Availability of supporting data
	Endnotes
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

