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Abstract

Background: Stochastic modeling and simulation provide powerful predictive methods for the intrinsic
understanding of fundamental mechanisms in complex biochemical networks. Typically, such mathematical models
involve networks of coupled jump stochastic processes with a large number of parameters that need to be suitably
calibrated against experimental data. In this direction, the parameter sensitivity analysis of reaction networks is an
essential mathematical and computational tool, yielding information regarding the robustness and the identifiability
of model parameters. However, existing sensitivity analysis approaches such as variants of the finite difference
method can have an overwhelming computational cost in models with a high-dimensional parameter space.

Results: We develop a sensitivity analysis methodology suitable for complex stochastic reaction networks with a
large number of parameters. The proposed approach is based on Information Theory methods and relies on the
quantification of information loss due to parameter perturbations between time-series distributions. For this reason,
we need to work on path-space, i.e., the set consisting of all stochastic trajectories, hence the proposed approach is
referred to as “pathwise”. The pathwise sensitivity analysis method is realized by employing the rigorously-derived
Relative Entropy Rate, which is directly computable from the propensity functions. A key aspect of the method is that
an associated pathwise Fisher Information Matrix (FIM) is defined, which in turn constitutes a gradient-free approach
to quantifying parameter sensitivities. The structure of the FIM turns out to be block-diagonal, revealing hidden
parameter dependencies and sensitivities in reaction networks.

Conclusions: As a gradient-free method, the proposed sensitivity analysis provides a significant advantage when
dealing with complex stochastic systems with a large number of parameters. In addition, the knowledge of the
structure of the FIM can allow to efficiently address questions on parameter identifiability, estimation and robustness.
The proposed method is tested and validated on three biochemical systems, namely: (a) a protein
production/degradation model where explicit solutions are available, permitting a careful assessment of the method,
(b) the p53 reaction network where quasi-steady stochastic oscillations of the concentrations are observed, and for
which continuum approximations (e.g. mean field, stochastic Langevin, etc.) break down due to persistent oscillations
between high and low populations, and (c) an Epidermal Growth Factor Receptor model which is an example of a
high-dimensional stochastic reaction network with more than 200 reactions and a corresponding number of
parameters.
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Background
The need of an intrinsic understanding of the inter-
play between complexity and robustness of biological
processes and their corresponding design principles is
well-documented, see for instance [1-5]. The concept of
robustness can be described as “a property that allows
a system to maintain its functions against internal and
external perturbations” [3]. When referring to mathemat-
ical models of complex biological processes, one of the
mathematical tools to describe the robustness of a sys-
tem to perturbations is sensitivity analysis which attempts
to determine which parameter directions (or their com-
binations) are the most/least sensitive to perturbations
and uncertainty, or to errors resulting from experimen-
tal parameter estimation. Recently there has been sig-
nificant progress in developing sensitivity analysis tools
for low-dimensional stochastic processes, modeling well-
mixed chemical reactions and biological networks. Some
of the mathematical tools included log-likelihood meth-
ods andGirsanov transformations [6-8], polynomial chaos
[9], finite difference methods and their variants [10,11]
and pathwise sensitivity methods [12]. However, existing
sensitivity analysis approaches can have an overwhelm-
ing computational cost, either due to high variance in the
gradient estimators, or in models with a high-dimensional
parameter space, [13].
The aforementioned methods focus on the sensitivity of

stochastic trajectories and corresponding averages. How-
ever, it is often the case that we are interested in the
sensitivity of probability density functions (PDF), which
are typically non-Gaussian in nonlinear and/or discrete
systems. In that latter direction, there is a broad recent
literature relying on information theory tools, and where
sensitivity is estimated by using the Relative Entropy and
the Fisher Information Matrix between PDFs, providing a
quantification of information loss along different param-
eter perturbations. We refer to [14-18] for the case when
the parametric PDF is explicitly known. For instance,
in [16] the parametric PDF’s structure is known as it
is obtained through an entropy maximization subject to
constraints. Knowing the form of the PDF allows to carry
out calculations such as estimating the relative entropy
and identifying the most sensitive parameter combina-
tions. Furthermore, the pathwise PDFs are also known in
reaction networks when a Linear Noise Approximation
(LNA) is employed and for this case the relative entropy
can be explicitly computed allowing thus to carry out
parametric sensitivity analysis, [18]. However, for complex
stochastic dynamics of large reaction networks, spatial
Kinetic Monte Carlo algorithms and molecular dynamics,
such explicit formulas for the PDFs are not available in
general.
In [19], we address such challenges by introducing a new

methodology for complex stochastic dynamics based on

the Relative Entropy Rate (RER) which provides a mea-
sure of the sensitivity of the entire time-series distribution.
Typically, the space of all such time-series is referred in
probability theory as the “path space” . RER measures
the loss of information per unit time in path space after
an arbitrary perturbation of parameter combinations. RER
and the corresponding Fisher Information Matrix (FIM)
become computationally feasible as they admit explicit
formulas which depend only on the propensity functions
(see (4) and (6), respectively). In fact, we showed in [19]
that the proposed pathwise approach to sensitivity analy-
sis has the following features: First, it is rigorously valid for
the sensitivity of long-time, stationary dynamics in path
space, including for example bistable, periodic and pulse-
like dynamics. Second, it is a gradient-free sensitivity
analysis method suitable for high-dimensional parameter
spaces as the ones typically arising in complex biochemi-
cal networks. Third, the RER method does not require the
explicit knowledge of the equilibrium PDFs, relying only
on information for local dynamics and thus making it suit-
able for non-equilibrium steady state systems. In [19], we
demonstrated these features by focusing on two classes of
problems: Langevin particle systems with either reversible
(gradient) or non-reversible (non-gradient) forcing, high-
lighting the ability of the method to carry out sensi-
tivity analysis in non-equilibrium systems; and spatially
extended Kinetic Monte Carlo models, showing that the
method can handle high-dimensional problems.
In this paper, we extend and apply the pathwise sen-

sitivity analysis method in [19] to biochemical reaction
networks, and demonstrate the intrinsic sensitivity struc-
ture of the network. Such systems are typically mod-
eled as jump Markov processes and they are simulated
using either exact algorithms such as the Stochastic Sim-
ulation Algorithm (SSA), [20-22] and the next-reaction
method [23], or by employing approximations such as
mean field ODEs, tau-leap [24] and stochastic Langevin
methods [25].
We show that the proposed pathwise method allows

us to discover the intrinsic sensitivities of the reaction
network by decomposing the FIM into diagonal blocks.
The block-diagonal structure of the proposed FIM reveals,
in a straightforward way, the sensitivity interdependen-
cies between the system parameters. For instance, if each
propensity function depends only on one parameter –
usually the reaction constant– then the FIM is a diagonal
matrix (see (14)). The sparse representation of the FIM
can be essential in optimal experimental design as well
as in parameter identifiability and robustness where each
subset of the parameters defined by a block of the FIM
can be treated separately. Moreover, our earlier rigorous
analysis [19] for the stationary regime suggests suitable
extensions in the transient case which are here tested
and validated. Finally, we present strategies for efficiently
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and reliably implementing the proposed method for high-
dimensional, complex stochastic systems using an array
of existing accelerated versions of the SSA algorithm such
as mean field, stochastic Langevin, τ -leap approximations
and their variants, [21,24-27].
We test the proposed set of methods and computational

strategies in three examples of biochemical networks.
First, we consider a prototypical protein produc-
tion/degradation model, i.e, a single-species birth/death
model, with explicitly known formulas for the stationary
and the time-dependent distribution. Thismodel serves as
a benchmark where the differences between the proposed
pathwise FIM and the stationary FIM are highlighted.
Second, we study the parameter sensitivities of a p53 gene
model for cell cycle regulation and response to DNA dam-
age, that incorporates the feedback between the tumor
suppressor p53 gene and the oncogene Mdm2 [28]. This
is a reaction network that exhibits random oscillations in
its steady state, and for which continuum approximations
of the SSA such as LNA break down due to persistent
oscillations between high and low populations. Using
the proposed method, we also study a far more complex
network, the epidermal growth factor receptor (EGFR)
model, describing signaling processes between mam-
malian cells [29-31]. This is a high-dimensional system
both in the number of variables and parameters, includ-
ing 94 species and 207 reactions. Having a gradient-free
method for this example with parameter space of dimen-
sion 207 provides a significant advantage over gradient
methods such as finite differencing, where the computa-
tion of a very high number of partial derivatives and/or
directional derivatives is needed and with possibly sig-
nificant variance that scales with the dimension, [11].
By contrast, the eigenvalue/eigenvector analysis of the
proposed FIM identifies the order from least to most sen-
sitive directions (determined by the eigenvectors of the
FIM) by the corresponding eigenvalues.
In Methods, we present the derivation of the Relative

Entropy Rate and its corresponding Fisher Information
Matrix for continuous-time jump Markov processes as
well as we reveal the block-diagonal structure of the FIM
for commonly encountered reaction networks, continued
by the presentation of both unbiased and biased –but
accelerated– statistical estimators for RER and FIM. Then,
in the Results, we apply and validate the proposed path-
wise sensitivity analysis methodology in three complex
biological reaction networks.

Methods
We consider a well-mixed reaction network with N spe-
cies, S = {S1, . . . , SN }, andM reactions,R = {R1, . . . ,RM}.
The state of the system at any time t ≥ 0 is denoted by an
N-dimensional vector X(t) = [X1(t), . . . ,XN (t)]T where
Xi(t) is the number of molecules of species Si at time t.

Let the N-dimensional vector νj correspond to the stoi-
chiometry vector of j-th reaction such that νi,j is the sto-
ichiometric coefficient of species Si in reaction Rj. Given
that the reaction network at time t is in state X(t) = x, the
propensity function, aj(x), is defined so that the infinites-
imal quantity aj(x)dt gives the transition probability of
the j-th reaction to occur in the time interval [ t, t + dt].
Propensities are typically dependent on the state of the
system and the reaction conditions (i.e., external param-
eters) of the network such as temperature, pressure, etc.
Mathematically, {X(t)}t∈R+ is a continuous-time, time-
homogeneous, jump Markov process with countable state
space E ⊂ N

N . The transition rates of the Markov pro-
cess are the propensity functions aj(·), j = 1, . . . ,M. The
transition rates determine the clock of the updates (or
jumps) from a current state x to a new (random) state x′
through the total rate a0(x) := ∑M

j=1 aj(x) while the tran-
sition probabilities of the process are determined by the
ratio aj(x)

a0(x) . We refer to Algorithm 1 for the details of the
stochastic simulation.

Relative entropy
Assume that two probability distributions (or more gen-
erally probability measures) P and P̃ have corresponding
probability densities p = p(x) and p̃ = p̃(x). Then, the
Relative Entropy or Kullback-Leibler divergence of P with
respect to P̃ is defined as [32,33]

R
(
P|P̃

)
:=

∫
p(x) log

(
p(x)
p̃(x)

)
dx . (1)

In a more general setting, relative entropy is defined
as R

(
P|P̃

)
:= ∫

log
(
dP
dP̃

)
dP where dP

dP̃ is a func-
tion known as Radon-Nikodym derivative while the
integration is performed with respect to the prob-
ability measure P , [34]. A necessary condition for
the relative entropy to be well-defined is that the
Radon-Nikodym derivative exists which is satisfied when
P is absolutely continuous with respect to P̃ . Rel-
ative entropy has been utilized in a diverse range
of scientific fields from statistical mechanics [34]
to coding in telecommunications (information theory)
[33] and finance [35], and it possesses the following three
fundamental properties:

(i) it is always non-negative,
(ii) it equals to zero if and only if P = P̃ P-almost

everywhere, and,
(iii) R

(
P|P̃

)
< ∞ if and only if P and P̃ are absolutely

continuous with respect to each other.

From an information theory perspective, relative
entropy quantifies the loss of information when P̃ is uti-
lized instead of P , [33]. In other words, relative entropy
quantifies the inefficiency of assuming an incorrect or
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perturbed distribution P̃ instead of employing the true
distribution P . Therefore, even though not a metric, rel-
ative entropy has been used as a suitable quantity for the
assessment of parametric sensitivities since the higher the
relative entropy (i.e., the information loss) in some per-
turbed direction, the larger the sensitivity should be in this
direction.

Pathwise relative entropy and relative entropy rate
Proceeding to the pathwise formulation of the relative
entropy, we assume that the propensities depend on a
parameter vector θ ∈ R

K (i.e., aj(x) ≡ aθ
j (x)) while

the continuous-time jump Markov process {X(t)}t∈R+
lies in the stationary regime. We denote by μθ(x) the
steady state (or stationary) distribution of the stochas-
tic process X(t). The stationary path distribution of the
process in the interval [0,T] is denoted by Qθ

[0,T]. Notice
that path distributions (i.e., time-series distributions) are
high-dimensional complex objects; for instance, if we con-
sider the simpler discrete-time Markov chain, {Zn}n∈Z+ ,
defined by the transition probability density p(z, z′), then,
utilizing repeatedly the Markov property, the station-
ary path distribution of the time-series (z0, z1, . . . , zT ) is
given by

Q[0,T]({Zn = zn}0≤n≤T ) = Prob(z0, . . . , zT )

= μ(z0)p(z0, z1) . . . p(zT−1, zT ).

Proceeding, we consider another continuous-time jump
Markov process {X̃(t)}t∈R+ defined by perturbing the
propensity functions by a small vector ε ∈ R

K . The corre-
sponding steady state and path distributions of {X̃(t)}t∈R+
are denoted by μθ+ε(x) and Qθ+ε

[0,T], respectively. Let the
two path distributions Qθ

[0,T] andQθ+ε
[0,T] be absolutely con-

tinuous with respect to each other which is satisfied when
aθ
j (x) = 0 if and only if aθ+ε

j (x) = 0 holds for all x ∈ E and
j = 1, . . . ,M. Then, the Relative Entropy of the path dis-
tribution Qθ

[0,T] with respect to Qθ+ε
[0,T] is defined similarly

to (1) as

R
(
Qθ
[0,T] |Qθ+ε

[0,T]

)
:=

∫
log

(
dQθ

[0,T]

dQθ+ε
[0,T]

)
dQθ

[0,T], (2)

where
dQθ

[0,T]
dQθ+ε

[0,T]
is the Radon-Nikodym derivative of Qθ

[0,T]

with respect to Qθ+ε
[0,T]. In fact, using the Girsanov’s

formula, we can obtain an explicit expression for the
Radon-Nikodym derivative in terms of the propensities,
[34]. In the context of sensitivity analysis, the path-
wise relative entropy R

(
Qθ
[0,T] |Qθ+ε

[0,T]

)
is a measure of

information loss due to an ε-perturbation of the model
parameters, and consequently it is a natural measure of
parametric sensitivity.

Moreover, in the stationary regime, relative entropy
increases linearly in time, hence the Relative Entropy Rate
(RER) which is the time average of the relative entropy,

H
(
Qθ |Qθ+ε

)
:= lim

T→∞
1
T
R

(
Qθ
[0,T] |Qθ+ε

[0,T]

)
, (3)

is a well-defined quantity, [36]. As first proposed in [19],
H

(
Qθ |Qθ+ε

)
is a suitable time-independent measure of

sensitivity: it measures the rate of the loss of informa-
tion due to an ε-perturbation of the model parameters, in
the long-time, stationary dynamics regime of the stochas-
tic process. Furthermore, RER admits an explicit formula
given by (see Additional file 1 for a rigorous derivation)

H
(
Qθ |Qθ+ε

) = Eμθ

⎡
⎣ M∑

j=1
aθ
j (x) log

aθ
j (x)

aθ+ε
j (x)

− (aθ
0(x) − aθ+ε

0 (x))

⎤
⎦ .

(4)

Thus, from a practical point of view, RER is an observ-
able of the stochastic process which can be computed
numerically as an ergodic average, requiring only the
knowledge of the propensity functions and the stoichio-
metric matrix (ν)i,j. Nevertheless, in order to carry out the
sensitivity analysis in the parameter vector θ , the compu-
tation of RER for different ε’s is necessary which can be
computationally challenging for high-dimensional param-
eter spaces. Thus, a sensitivity analysis methodology
which does not depend on ε’s –such methods are called
“gradient-free”– is desirable and is developed next.

Pathwise Fisher informationmatrix
Even though not directly evident from (4), a Taylor series
expansion of RER in terms of ε reveals that RER is locally
a quadratic function of the parameter vector ε ∈ R

K .
Indeed, RER is non-negative when ε 
= 0 and equals to
zero when ε = 0 thus the linear term in the Taylor expan-
sion is zero. Therefore, RER is written –under smoothness
assumptions on the propensity functions with respect to
the parameter vector θ– as [19],

H
(
Qθ |Qθ+ε

) = 1
2
εTFH(Qθ )ε + O(|ε|3), (5)

where FH(Qθ ) is a K × K matrix that can be consid-
ered as a pathwise analogue for the steady state Fisher
Information Matrix (FIM). Similarly to the steady state
FIM for parametrized distributions [33], FH(Qθ ) is the
Hessian of the RER which geometrically corresponds to
the curvature around the minimum value of the rela-
tive entropy rate. The pathwise FIM contains up to third
order accuracy all the sensitivity information for the path
distribution at point θ for any perturbation direction ε,
therefore, the computation of the FIM is sufficient up to
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third order for the evaluation of all the local sensitivi-
ties of the path distribution around the parameter vector
θ . Moreover, an explicit formula for the pathwise FIM is
given by (see Additional file 1 for a derivation)

FH(Qθ ) := Eμθ

⎡
⎣ M∑

j=1
aθ
j (x)∇θ log aθ

j (x)∇θ log aθ
j (x)

T

⎤
⎦ .

(6)

The implications of this explicit formula are twofold.
First, it reveals that for many typical reaction networks the
FIM has a special block-diagonal structure which reflects
the parameter interdependencies and it is discussed in
detail below. Second, the FIM is based on the propensity
functions as well as on their derivatives which are known –
actually, they define the process– thus the FIM, similarly
to RER, is numerically computable as an observable of
the process. Subsequent sections present various strate-
gies to numerically estimate both the RER and the FIM in
an efficient fashion .
Furthermore, the pathwise FIM, FH(Qθ ), can be used

not only for the estimation/approximation of RER via (5)
but also to infer intrinsic knowledge for the system’s sen-
sitivities [16,37]. In general, the spectral analysis of the
FIM reveals the (local) comparativelymost/least sensitive
directions of the system around θ . Indeed, by ordering the
eigenvalues of the FIM as

λθ
1 ≥ . . . ≥ λθ

K ≥ 0,

it can be inferred that the most sensitive direction cor-
responds to the eigenvector with eigenvalue λθ

1 while the
least sensitive direction corresponds to the eigenvector
with eigenvalue λθ

K . Additionally, the FIM is one of the
most useful tools for optimal experimental design. Many
of the optimality criteria such as D-optimality where the
determinant of the FIM is maximized or A-optimality
where the trace of the inverse of the FIM is minimized are
based on FIM, [37].
In the same direction, robustness of the system to

parameter perturbations or errors as well as parameter
identifiability can be studied utilizing spectral analysis of
the FIM. For instance, parameter identifiability is satis-
fied when all the eigenvalues of the FIM are above a given
threshold, [18].

Sensitivity analysis at the logarithmic scale
In many biochemical reaction networks, the model
parameters differ by orders of magnitude and a reasonable
option for carrying out sensitivity analysis is to perform
perturbations which are proportional to the parameter
magnitude. This can be carried out by perturbing the log-
arithm of the model parameters instead of the parameters
itself. Using the chain rule ∇log θ f (θ) = ∇θ f (θ).∇log θ θ =
θ .∇θ f (θ) where ‘ . ’ is defined as the element by element

multiplication (i.e., (a.b)k = akbk , k = 1, . . . ,K), we
obtain the logarithmically-scaled FIM:(

FH(Qlog θ )
)
k,l

= θkθl
(
FH(Qθ )

)
k,l , k, l = 1, . . . ,K ,

(7)

where FH(Qθ ) is given by (6). Similarly, the logarithmic
perturbation for the RER is carried out using the pertur-
bation vector θ .ε instead of ε. Notice that (5) continues to
be valid for the logarithmic scale, i.e.,

H
(
Qθ |Qθ+θ .ε) = 1

2
εTFH(Qlog θ )ε + O(|ε|3) . (8)

Linking relative entropy and observables
As we discussed in the previous sections, relative entropy
provides a mathematically elegant and computationally
tractable methodology for the parameter sensitivity analy-
sis of complex, stochastic dynamical systems. Such results
focus on the sensitivity of the entire probability distribu-
tion, either at equilibrium or at the path-space level, i.e.,
for the entire stationary time-series. However, in many
situations of chemical and biological networks, the inter-
est is focused on observables such as mean populations,
population correlations, population variance as well as
path-space observables such as time autocorrelations and
extinction times. Therefore, it is plausible to attempt to
connect the parameter sensitivities of observables to the
relative entropy methods proposed here. Indeed, relative
entropy can provide an upper bound for a large family
of observable functions through the Pinsker (or Csiszar-
Kullback-Pinsker) inequality, [33].
More precisely, for any bounded observable function f,

the Pinsker inequality states that

|EQθ [ f ]−EQθ+ε [ f ] | ≤ ||f ||∞
√
2R

(
Qθ |Qθ+ε

)
, (9)

where || · ||∞ denotes the supremum (here, maximum)
of f. An obvious outcome of this inequality is that if the
(pseudo-)distance between two distributions defined by
R

(
Qθ |Qθ+ε

)
is controlled, then the error between the two

distributions is also controlled for any bounded observ-
able. In the context of sensitivity analysis, inequality (9)
states that if the relative entropy is small, i.e., insensitive
in a particular parameter direction, then, any bounded
observable f is also expected to be insensitive towards
the same direction. In this sense, (9) can be viewed as a
“conservative” –but not necessarily sharp– bound for the
parametric sensitivity analysis of observables, including
path-dependent observables such as long-time averages
and autocorrelations.
From a practical perspective, (9) can be used as an

indicator that suggests –even in the presence of a very
high-dimensional parameter space– which are the insen-
sitive parameter directions for observables of stochastic
dynamical systems. The least-sensitive directions can be
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verified computationally and we present in the sequel
two examples of this practical strategy in the p53 and
the EGFRmodels. More generally, determining insensitive
directions in parameter space can by particularly useful in
multi-parameter models in systems biology characterized
by “sloppiness” , i.e., when most model parameters allow
for a vast range of perturbations without affecting the
dynamics, [38]. As we concretely show in the EGFR exam-
ple, our methodology can easily demonstrate and quantify
such properties in stochastic dynamics through the use
of the spectral analysis of the pathwise FIM, even if the
models include a very large number of parameters.

Remark 1. We note that in order to carry out such
an analysis in a mathematically rigorous manner which
includes both sensitive and insensitive parameters, we
need to require that the norm || · ||∞ in (9) is controlled.
For instance, typical observables in biochemical reaction
networks are the number of molecules for each species,
hence f (x) = x. Thus, for reaction networks where the
population size is large, the Pinsker inequality (9) will
provide a bound that may not be sharp. In fact, it was
recently shown that there are alternative bounds which
are expected to be practically more useful than (9) in the
sense that they provide sharp upper bounds for observ-
ables in terms of the relative entropy, [39]. These sharp
bounds rely on the variational representation of the rel-
ative entropy and the existence of an explicit minimizer
for the upper bound. Furthermore, [39] combined with
our work on RER and pathwise FIM suggests new mathe-
matical questions towards pursuing practical sharp upper
bounds involving RER and pathwise FIM. In view of these
comments, we conclude that (9), (a) constitutes a the-
oretical indicator that relative entropy is a reliable tool
for sensitivity analysis and more generally for uncertainty
quantification; (b) from a practical perspective, it is capa-
ble to rule out insensitive directions in parameter space,
which in turn provides a significant advantage in the study
of “sloppy” multi-parameter models.

Block-diagonal structure of the pathwise FIM
In chemical reaction networks, reactions typically depend
only on a small subset of the parameter vector. Mathemat-
ically, this is described as

aθ
j (x) = aj(x; θk1 , . . . θkLj ), (10)

where k1, . . . , kLj ∈ {1, . . . ,K} while Lj � K is the num-
ber of involved parameters in reaction Rj. Using (6), it can
be shown that this parametric dependence of the propen-
sities is directly reflected on the pathwise FIM. Indeed,
after grouping the reactions into subsets in such a way
that each subset contains the minimum number of reac-
tions having common parameters, the pathwise FIM –
upon rearrangement of the parameter vector– becomes

a block-diagonal matrix. The pathwise FIM is then
written as

FH(Qlog θ ) =

⎡
⎢⎢⎢⎣
Aθ
1 0
. . .

0 Aθ
I

⎤
⎥⎥⎥⎦ (11)

where Aθ
1, . . . ,A

θ
I are block matrices. The block matrices

which are defined by the reaction subsets with the same
parametric dependence are easily obtained by creating a
graph whose nodes are the reactions and the parameters
while the edges are their dependences. Then, the param-
eter nodes contained in a connected subgraph define a
parameter subset which in turn corresponds to a block
of the FIM. An illustration of this procedure is shown in
Figure 1 where a reaction network with M = 9 reactions
and K = 7 parameters is plotted. The parametric depen-
dencies of the reactions are shown in the left panel where
4 subgroups of parameters are defined based on the graph
connectivity. The resulting block-diagonal structure of the
FIM is shown on the right panel of Figure 1.
Before proceeding with the theoretical computation of

the FIM for various well-known classes of biochemical
reaction networks, we list some of the implications of this
simplified structure of the FIM in sensitivity analysis and
elsewhere.

(i) The sparsity of the FIM is proportional to the
parametric decoupling between the reactions.
Knowing a priori the zero elements of the FIM, there
is no need to numerically compute them. It is clear
that the computation cost for each sample drops
from O(K2) to O(KL) where L is the largest
dimension of the block matrices.

(ii) The inverse of the FIM is also block-diagonal and
each block of the inverse FIM is the inverse of the
respective block. This fact allows us in the parameter
estimation problem to easily evaluate the lower
bound of the variance, at least for the complete-data
case [40], i.e., obtain Cramer-Rao bounds, [41,42]
which are given by the diagonal elements of the
inverse of the FIM.

(iii) Relation (11) implies that that optimality criteria in
optimal experiment design, [37], are significantly
simplified. For example, the determinant employed in
the D-optimality test is given by the relation
det(FH) = ∏I

i=1 det(Ai), while the trace of the
inverse of the FIM utilized in the A-optimality
reduces to tr(FH

−1) = ∑I
i=1 tr(A

−1
i ).

(iv) Given that parametric identifiability is characterized
by the magnitude of the eigenvalues of the FIM, e.g. a
zero eigenvalue corresponds to a non-identifiable
direction in parameter space, [18,43], then the
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Figure 1 The graph representation (left panel) of the dependencies between the reactions (left column) and the model parameters (right
column) as well as the corresponding block-diagonal structure of the FIM (right panel). The grouping of the parameters is carried out by
noting the connected parts of the graph. In this example K = 7 while the largest dimension of the blocks is L = 3.

block-diagonal structure (11) can provide additional
insights in parameter identification. For instance, the
identifiability of the parameters of the group that
corresponds to the i -th block, Ai, will be increased if
the smaller eigenvalues of the i -th block can be
increased. On the other hand, if the determinant of
the i -th block equals to zero then at least one of its
eigenvalues is zero and thus the corresponding linear
combinations of parameters are non-identifiable.
Similarly, the robustness of the system to
perturbations of the parameters of the i -th group will
be increased if there is a way to decrease the larger
eigenvalues of the i -th block.

Overall, we note that extracting useful information regar-
ding model parameters can be performed for each block
of the pathwise FIM independently. Next, we discuss
two specific examples of biochemical reaction networks
where the explicit calculation of the block-diagonal FIM is
demonstrated.

Reactions with independent reaction constants (mass action
kinetics)
An important class of well-mixed reaction networks take

the general form “αjAj + βjBj
θj→ . . .” where Aj and Bj

are the reactant species while αj and βj are the respec-
tive number of molecules needed for the reaction. The
reaction constant, θj, is the parameter of the j-th reaction.
The propensity function for the j-th reaction is given as
the product between a rate constant and a function of the
current state x:

aj(x) = θjgj(x), j = 1, . . . ,M . (12)

Typically, gj(x) = (xAj
αj

)(xBj
βj

)
which stems from the law

of mass action, however, it can take different forms
depending on the modeling of the physical process.
This reaction network has K = M parameters, while
each propensity depends only on one parameter, i.e.,
Lj = 1 in (10) for j = 1, . . . ,M. The (k, l)-th element
of the FIM in the logarithmic scale is explicitlyl
given by
(
FH(Qlog θ )

)
k,l

= θkθl

× Eμθ

⎡
⎣ M∑

j=1
aθ
j (x)∂θk log a

θ
j (x)∂θl log a

θ
j (x)T

⎤
⎦,

(13)

where μθ is the stationary distribution of the stochastic
process. Furthermore, it holds that ∂θk log aθ

j (x) = 1
θk

δk(j)
where δ(·) is the Dirac function, therefore the pathwise
FIM is a diagonal matrix with elements given by

(
FH(Qlog θ )

)
k,l

=
⎧⎨
⎩
Eμθ

[
aθ
k(x)

]
, l = k

0 , l 
= k
. (14)

This result demonstrates that the sensitivity of a reac-
tion constant is proportional to the equilibrium aver-
age of the respective propensity function. Moreover,
due to the diagonal form of the FIM, it is straightfor-
ward to carry out the eigenvalue analysis and infer the
most/least sensitive directions of the reaction network:
the eigenvalues of the FIM are its diagonal elements while
the eigenvectors are the standard basis vectors of R

K .
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Hence, the most (respectively least) sensitive parame-
ter is obtained from the largest (respectively smallest)
diagonal element of the FIM. Furthermore, (14) demon-
strates that the (local) robustness of the reaction net-
work to a specific parameter is inversely proportional
to the mean propensity of the corresponding reaction.
Another observation stemming from the diagonal struc-
ture of the pathwise FIM is that each rate constant
can be estimated from time-series data independently
from the other rate constants. This observation has been
already pointed out and discussed in the context of max-
imum likelihood estimation for the complete-data case
([40], Sec. 10.2).
Additionally, the mean firing rate of a reaction is equal

to the mean propensity. Hence, it can be stated that the
parameters that correspond to the faster reactions, i.e., to
reactions with larger mean firing rate, are more sensitive
in a pathwise entropy sense. It should be noted, however,
that not all observables are sensitive to the parameters
that correspond to the faster reactions and there are
examples (see the protein production-degradation model
in the Results section) where steady state observables
such as the equilibrium distribution remain insensitive to
specific perturbation directions even though their mean
propensity may be increased. Finally, we would like to
remark that even though Eμθ

[
aθ
k(x)

] = θkEμθ

[
gθ
k (x)

]
trivially holds true, the diagonal elements of the FIM
are not linear functions of the corresponding reaction
constants since the steady state distribution μθ , depends
also on the parameter vector θ . In fact, high reaction
constants do not necessarily imply large mean propensi-
ties and hence a more sensitive parametric dependence.
This is specifically due to the mean value in (14) and
as an illustrative example we refer to the simple pro-
tein production-degradation model (e.g., compare (24)
and (27)).

Michaelis-Menten kinetics
Another class of reaction networks is the Michaelis-
Menten kinetics. In its simplest form (e.g., single-
substrate reaction without intermediate), this chemical
network contains a reaction between species A and B (i.e.,
A → B) with propensity function given by

aθ
k(x) = θkxA

θk′ + xA
.

This reaction sub-network which is derived under
a quasi-steady-state assumption is one of the best-
known models of enzyme kinetics in biochemistry [44].
The parameter θk (usually denoted by Vmax) repre-
sents the maximum rate achieved by the system, at
maximum (saturating) substrate concentrations while

the Michaelis constant θk′ (usually denoted by Km) is
the substrate concentration at which the reaction rate
is half the maximum value. The propensities of this
Michaelis-Menten sub-network depend on two parame-
ters (Lk = 2 in (10)) thus the corresponding FIM block
is a 2 × 2 matrix. The elements of the FIM matrix are
given by

(
FH(Qlog θ )

)
k,l

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Eμθ

[
aθ
k(x)

]
, l = k

−θk′Eμθ

[
aθ
k (x)

θk′+xA

]
, l = k′

0 , l 
= k, k′

(15)

for the k-th row while the k′-th row is given by

(
FH(Qlog θ )

)
k′,l

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θ2k′Eμθ

[
aθ
k (x)

(θk′+xA)2

]
, l = k′

−θk′Eμθ

[
aθ
k (x)

θk′+xA

]
, l = k

0 , l 
= k′, k .
(16)

In general, biochemical reaction networks may have sig-
nificantly more complex propensities, nevertheless, the
computation of the FIM follows exactly the same calcula-
tion lines for any propensity function.

Strategies for the statistical estimation of RER and FIM
Previous sections introduced and justified RER and FIM
as appropriate observables for measuring the sensitivity
analysis of the reaction network’s parameters in long-time
dynamics. This section presents strategies on how to effi-
ciently estimate these quantities as ergodic averages of the
underlying stochastic process.

Unbiased statistical estimators
Since the stationary distribution,μθ , is usually not known,
both FIM and RER should be estimated numerically as
ergodic averages. Indeed, the statistical ergodic estimator
for RER is given by

H̄(n) = 1
T

n−1∑
i=0

�ti

⎡
⎣ M∑

j=1
aθ
j (xi) log

aθ
j (xi)

aθ+ε
j (xi)

−
(
aθ
0(xi) − aθ+ε

0 (xi)
)⎤
⎦

(17)
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where �ti is an exponential random variable with param-
eter given by the total rate, aθ

0(xi), while T = ∑n
i=1 �ti

is the total simulation time. The sequence {xi}ni=0 is
the embedded Markov chain with transition probabil-
ities from state xi to state xi+1 is given by the ratio
aθ
j (xi)

aθ
0(xi)

. The weight �ti, which is the waiting time at
state xi, is necessary for the unbiased estimation of the
observable, [45]. Similarly, the unbiased estimator for the
FIM is

F̄(n)
H = 1

T

n−1∑
i=0

�ti
M∑
j=1

aθ
j (xi)∇θ log aθ

j (xi)∇θ log aθ
j (xi)T .

(18)

Noticing that the computation of the local propensity
functions aθ

j (xi) for all j = 1, . . . ,M is needed for the sim-
ulation of the jump Markov process when Monte Carlo
methods such as SSA [45] is utilized, the computation of
the perturbed transition rates is the only additional com-
putational cost for the numerical RER while the additional
cost for the estimation of the FIM is the computation
of the derivatives of the propensities. Algorithm 1 sum-
marizes the numerical computation of RER and FIM,
employing the SSA for the simulation of the jumpMarkov
process.

Accelerated statistical estimators
A typical feature of biochemical systems is that the mod-
eled reaction network is large with hundreds or thou-
sands of reactions and different time scales stemming
from the orders of magnitude difference between the
reaction rates and/or between the species concentra-
tions, making the SSA extremely slow. A large num-
ber of multi-scale approximations of the original SSA
have been developed in order to handle such issues
resulting to accelerated simulation algorithms. For exam-
ple, mean-field approximation ignores the fluctuations
of the stochastic process and yields a deterministic sys-
tem of ordinary differential equations (ODE) for the
mean population of the species [46,47]. Stochastic cor-
rections to the mean-field model such as stochastic
Langevin [25] and linear noise approximation [48] can
be applied in order to improve the accuracy of the
simulation. An alternative approximation of the jump
Markov process is the tau-leap method proposed by
Gillespie [24] where a batch of events occurs at each
time-increment, τ . Several improvements of the basic
tau-leap algorithm on how to select adaptively the
τ [49] or avoiding negative populations [27,50] have
been proposed, however, their performance is heavily
model-dependent.

Algorithm 1 SSA-based numerical computation of RER
and FIM
1. Initialize: x = x0, T = 0, H̄ = 0 and F̄ = 0.
2. FOR i = 1, . . . , n

(a) Compute:
{
aθ
j (x)

}M
j=1

, aθ
0(x). Compute also{

aθ+ε
j (x)

}M
j=1

(only for RER) and{
∇θ log aθ

j (x)
}M
j=1

(only for FIM).

(b) �t = − log(u1)/aθ
0(x) where u1 ∼ U(0, 1).

(c) Update time: T = T + �t
(d) Update RER: H̄ = H̄ + �t

[∑M
j=1 aθ

j (x)log

× aθ
j (x)

aθ+ε
j (x)

−
(
aθ
0(x)−aθ+ε

0 (x)
)]
.

(e) Update FIM: F̄ = F̄ + �t
∑M

j=1 aθ
j (x)∇θ log aθ

j
(x)∇θ log aθ

j (x)T .
(f) Find j∗ such that

∑j∗−1
j=1 aθ

j (x) < u2aθ
0(x)

<
∑M

j=j∗ aθ
j (x) where u2 ∼ U(0, 1).

(g) Update state: x = x + νj∗ .

3. Normalize: H̄ = H̄/T and F̄ = F̄/T .

In this subsection, we propose such approximations in
order to efficiently compute the FIM and/or RER observ-
ables, while maintaining controlled bias in the statistical
estimators. As an illustration, we present the well-known
mean-field approximation. The popularity of the mean-
field modeling stems from their computational efficiency.
To proceed, the stochastic process can be written as

X(t) = x(t) + ηξ(t) (19)

where x(t) is the deterministic part (mean) of the pro-
cess, ξ(t) is the stochastic zero-mean part while η is the
amplitude of the stochastic term. The amplitude of the
stochastic term is proportional to the inverse square root
of the reactant populations [25,48,51]. Thus, for large
populations, the fluctuations of the time-evolving species
populations become vanishingly small compared to the
deterministic contributions. Consequently, the dominant
part of the process is the deterministic term whose
dynamics are governed by the ODE system

ẋi(t) =
M∑
j=1

νj,iaθ
j (x(t)) , i = 1, . . . ,N . (20)

This ODE system is also known as reaction rate
equations [25]. Restricted for simplicity to the special
case with independent rate constants for each reaction,
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the diagonal elements of the FIM are approximated using
(19) as

(
FH(Qlog θ )

)
k,k

= Eμθ

[
aθ
k(x)

] ≈ 1
T

n∑
i=1

�tiaθ
k(X(ti))

= 1
T

n∑
i=1

�ti aθ
k (x(ti) + ηξ(ti))

= 1
T

n∑
i=1

�ti aθ
k(x(ti)) + O(η)

(21)

Typically, such ODE system is solved using an adap-
tive time-step numerical integrator up to final time T =∑n

i=0 �ti. Thus, for large species populations (|Si| � 1),
the following numerical estimator for the FIM’s diagonal
elements is obtained:

( ¯̄F(n)
H

)
k,k

= 1
T

n∑
i=1

�ti aθ
k(x(ti)) , k = 1, . . . ,K (22)

Relation (22) suggests an algorithm similar toAlgorithm 1
for the numerical computation of the FIM where instead
of SSA, an ODE solver is employed.

Remark 2. Multi-scale approximations are usually valid
for large populations and relatively simple systems which
do not exhibit complex dynamics such as bistability or
intermittency. Indeed, large deviation arguments [52]
or even explicitly available formulas for escape times
[53] demonstrate that stochastic approximations cannot
always capture correctly exit times, rare events, strong
intermittency, etc. even in relatively simple systems. How-
ever, in order to simulate large biochemical systems there
is often no other alternative than such approximate mod-
els, which nevertheless need to be employed with the
necessary caution.

Remark 3. In biochemical systems, we are interested
not only in the steady state, i.e., the stationary distribu-
tion or time-series, but also in the transient regime, e.g.
signaling phenomena. The extension of the proposed sen-
sitivity analysis method to the transient regime is justified
by the fact that the time-normalized relative entropy can
be also decomposed as a sum of simple integrals [33]
which results to the fact that the statistical estimators
(17) and (18) remain valid. In a subsequent section we
present an example of a biochemical system (EGFR) which
exhibits transient behavior, and where the proposed sensi-
tivity analysis tools are tested and validated. The rigorous
mathematical derivation of the relative entropy rate for the
transient regime is out of the scope of this publication and

a dedicated mathematical article on the time-dependent
relative entropy rate will follow.

Results and discussion
A simple protein production/degradation model
We first consider an elementary stochastic model for pro-
tein production and degradation, [54], which is also a
component of more complex models for gene regulatory
networks, [55]. In this simplifiedmodel, the protein is pro-
duced at a constant rate k1, while it is degraded with rate
k2, corresponding to the reactions

∅ k1
�
k2

X . (23)

Accordingly, the corresponding propensity functions for
the current state x = x are:

a1(x) = k1 and a2(x) = k2x . (24)

We consider this simple stochastic model due to the
available analytic representations of the steady state
(equilibrium) distribution, time-dependent moments and
autocorrelations, ([46], Sec. 7.1). Consequently, we can
both illustrate the proposed pathwise sensitivity analy-
sis, as well as compare it to the standard equilibrium
FIM, revealing concretely differences between the two
approaches.
The equilibrium distribution, μθ , of this simple network

is a Poisson distribution with parameter k1
k2 . Therefore, the

equilibrium FIM for the parameter vector θ =[k1, k2]T is
given in logarithmic scale by

FR(μlog θ ) = k1
k2

[
1 −1

−1 1

]
. (25)

On the other hand, the pathwise FIM is computed via
(14):

FH(Qlog θ ) = k1
[
1 0
0 1

]
, (26)

where we used that

Eμθ [a1(x)]= Eμθ [a2(x)]= k1 . (27)

The complete calculations can be found in the
Additional file 2. Some of the implications of the differ-
ences between these two FIMs are discussed next.
First, we observe that the equilibrium FIM, (25), is sin-

gular, i.e., one of the eigenvalues is zero. We readily see
that in the parameter direction defined by the correspond-
ing eigenvector, i.e., when the parameter ratio, k1k2 , remains
constant, the system is expected to be insensitive, at least
with respect to the equilibrium distribution. Clearly, this
is a fact verified directly from the Poisson equilibrium
distribution μθ which depends only on the ratio. On the
other hand, the pathwise FIM, (26), is not singular and
all the directions are equally sensitive. This fact suggests
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that observables for dynamic quantities may be sensi-
tive not only to parameter ratio perturbations but also to
other parameter perturbations. Indeed, one such exam-
ple is the stationary autocorrelation function, which in the
case of the simple protein production/degradation model
is explicitly given by ([46], Sec. 7.1),

〈Xt ,X0〉s = k1
k2

e−k2t , (28)

where 〈·, ·〉s denotes stationary averaging. Based on this
formula, it is obvious that the autocorrelation function is
also sensitive to k2, in addiction to the ratio k1

k2 . This exam-
ple demonstrates that in contrast to the pathwise FIM,
the equilibrium FIM is inadequate to fully capture the
dynamic properties of the process. Moreover, the path-
wise FIM depends linearly only on k1, which shows that
the reaction rate constants and propensity functions in
(24) alone, can be misleading in the assessment of para-
metric sensitivity. Contrary, the mathematically correct
equilibrium averaging of the propensities, i.e., (14) can
lead to a completely different outcome, as can be readily
seen when we compare (24) and (27).
In terms of parameter identifiability, the fact that one

of the eigenvalues of (25) is zero implies that that the
two-dimensional parameter vector of the system is non-
identifiable. Indeed, the asymptotic normality of the max-
imum likelihood estimators, [41,42], states that their
variance (also a lower bound according to the Cramer
Rao theorem), which determines parameter identifiabil-
ity of k1 and k2, is the reciprocal of the eigenvalues of
(25). A straightforward calculation involving the eigen-
vectors of (25) shows that the only identifiable parameter
is the ratio of the reaction constants appearing in (25).
Therefore parametric inference for both parameters from
equilibrium data is not possible. On the other hand, the
pathwise FIM (26) is not singular, which readily implies
that both parameters can be identified through (complete)
time-series data, provided that k1 
= 0. Summarizing,
this birth/death model is an example where equilibrium
sampling is not enough for the identifiability of all the
parameters, however, if dynamics data are available and
are taken into account then all the parameters become
identifiable as pathwise FIM asserts.

The p53 genemodel
The p53 gene plays a crucial role for effective tumor sup-
pression in humans as its universal inactivation in cancer
cells suggests [28,56,57]. The p53 gene is activated in
response to DNA damage and gives rise to a negative feed-
back loop with the oncogene protein Mdm2. Models of
negative feedback are capable of oscillatory behavior with
a phase shift between the gene concentrations. Here, we
perform sensitivity analysis to a simplified reaction net-
work between three species, p53, Mdm2-precursor and

Mdm2 introduced in [28]. The model consists of five
reactions and seven parameters provided in Table 1. The
nonlinear feedback regulator of p53 through Mdm2 takes
place in the second reaction while the remaining four
reactions fall in the special class where each reaction
depends on one parameter. Due to these mechanisms a
nontrivial steady state regime exists and can be charac-
terized by random oscillations, see for instance Figure 2.
The proposed sensitivity methodology is directly appli-
cable, and the corresponding pathwise FIM, see (13) and
Figure 1, consists of 5 diagonal blocks with respective size
1 × 1, 3 × 3, 1 × 1, 1 × 1, 1 × 1. Furthermore, the sen-
sitivity analysis of this model has been performed earlier
in [18] based on a linear noise approximation. Here, we
present a detailed comparison between the two sensitivity
analysis methodologies, since the one proposed here does
not involve any approximation of the stochastic network
dynamics.
Figure 2 shows the time-series of the species for the

parameter values in Table 2. Evidently, oscillatory behav-
ior is observed at this parameter regime, where persistent
random oscillations occur, ranging between high and low
populations. On the other hand, the frequency of the
oscillations is less variable as it has been already reported
both experimentally and numerically [28]. Another inter-
esting observation is that the concentration of p53 species
usually attains the lower bound of its admissible value
(populations cannot be negative) which results in stochas-
tic effects far away fromGaussianity, as can be readily seen
also in Figure 2.
Proceeding, we denote by θ = [bx, ax, ak , k, by, a0, ay]T

the parameter vector. The numerical estimator for RER as
well as for the pathwise FIM in the logarithmic scale are
computed utilizing Algorithm 1. Logarithmic sensitivity
analysis is preferred because the range of the parameters
values varies by orders of magnitude as can be seen in
Table 2. The upper plot in Figure 3 shows the RER as a
function of time for various perturbations. Viewing RER
as an observable, it is striking the speed of relaxation of the
estimator. Within two or three oscillation periods, RER

Table 1 The reaction table with x corresponding to p53, y0
to Mdm2-precursor while ycorresponds toMdm2

Event Reaction Rate Rate’s derivative

R1 ∅ → x a1(x) = bx ∇θa1(x) = [1, 0, 0, 0, 0, 0, 0]T

R2 x → ∅ a2(x) = axx + aky
x+k x ∇θa2(x) = [0, x, xy/(x + k),

−akxy/(x + k)2, 0, 0, 0]T

R3 x → x + y0 a3(x) = byx ∇θa3(x) = [0, 0, 0, 0, x, 0, 0]T

R4 y0 → y a4(x) = a0y0 ∇θa4(x) = [0, 0, 0, 0, 0, y0, 0]T

R5 y → ∅ a5(x) = ayy ∇θa5(x) = [0, 0, 0, 0, 0, 0, y]T

The state of the reaction model is defined as x = [ x, y0, y ]T while the parameter
vector is defined as θ = [ bx , ax , ak , k, by , a0 , ay ]T .
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Figure 2Molecule concentration of p53, Mdm2-precursor and Mdm2. Concentration oscillations as well as time delays (phase shifts) between
the species are present due to the negative feedback loop. Furthermore, the concentration of p53 periodically approaches zero and since negative
concentrations are not allowed, the stochastic characteristics of p53 are far from Gaussian.

has been converged to its value even though the three
species have significant oscillations and stochasticity, as
Figure 2 shows. A primary reason for the fast relaxation
is the numerical estimator of RER where the summation
is over all reactions even though only one reaction takes
places at each jump (see (18)). Having the important prop-
erty of fast convergence, global sensitivity analysis, where
not only a point of the parameter regime but also large
subsets of the parameter space, can be efficiently per-
formed, [15]. The lower panel of Figure 3 shows the RER
when only one of the parameters are perturbed by +10%
or by -10%. Additionally, the RER computed from the FIM,
utilizing (5), is also provided. The FIM approximation of
RER is a second order approximation in terms of |ε|, hence
the computation of FIM is typically enough to fully resolve
the local sensitivities of a model. Evidently, the most sensi-
tive parameters here are bx and ak while the least sensitive
parameters are ax and k.

Comparison to the LNA-based sensitivity approach
In [18], the authors suggested a linear noise approxi-
mation (LNA) for the stochastic evolution around the
nonlinear mean-field equation, and based on this approx-
imation a system of ODEs is derived for the mean and the
covariance matrix of the approximation process. Since the
noise of LNA is Gaussian, the mean and the covariance
matrix contains all necessary information regarding the
approximate stochastic model. Then, the associated FIM

Table 2 Parameter values for the p53model

Parameter bx ax ak k by a0 ay

Value 90 0.002 1.7 0.01 1.1 0.8 0.8

is derived and based on it, the sensitivities for each param-
eter are computed. Although there are regimes where
this approximation is applicable (short times, high popu-
lations, systems with a single steady state, etc.), for sys-
tems with nontrivial long-time dynamics, e.g. metastable,
it is not correct as large deviation arguments [52] and
explicit formulas for escape times [53] show. Similar issues
with non-gaussianity in the long-time dynamics arise in
stochastic systems with strongly intermittent (pulse-like)
or random oscillatory behavior [58]. In the p53 model
considered in [18] which had the same parameter values as
here, Figure 2 reveals that the time-series of the p53 popu-
lations persistently fluctuate between high and low values,
thus the LNA approximation may not be accurate at least
when the concentration of the species is very low.
At first pass, when the parameters are grouped into two

classes depending on their sensitivities, the two sensitivity
approaches produce qualitatively similar results. Indeed,
by visual inspecting the lower plot of Figure 3 in the cur-
rent publication and Figure three in [18], the (more) sensi-
tive parameters in both methods are bx, by, ak , a0, ay while
the practically insensitive parameters are ax, k. However,
upon closer inspection, the two methods produce differ-
ent results. Figure 4 shows the proposed FIM (left) based
on the exact (without any approximations) pathwise rel-
ative entropy theory, as well the FIM proposed in [18]
which is derived from the LNA of the reaction system. The
results are completely different and the proposed pathwise
FIM is sparse as expected. A striking difference between
the two sensitivity approaches is that the sensitivity of
parameter bx in our proposed method is relatively high
compared to the other parameters while the sensitivity of
bx in the LNA-based method is at least one order lower
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Figure 3 RER in time (upper panel) for the parameter perturbation of bx (blue), k (green) and ay (red) by+10% (i.e., ε0 = 0.1) as well as
RER for various perturbation directions (lower panel) computed either directly (blue and red bars) or based on FIM (green bars). Direction
ek corresponds to perturbation of parameter θk .

compared to the other parameters, see Figure 4 (dark
blue) and also compare Figure 3 of this publication and
Figure three in [18].
As a means of comparison between the methods, we

perturb bx as well as by by the same amount and observe
the Power Spectral Density (PSD), i.e., the square of
the absolute value of the Fourier transform of each
species’ time-series. Given the sustained random oscilla-
tions observed in the p53 model, see Figure 2, the PSD
is a suitable observable since it identifies the dominant
periodicities and corresponding amplitudes in station-
ary time-series, [41]. Using the Pinsker inequality (9) as
a guideline, we expect that the observable will not be
sensitive to the least sensitive directions of the FIM, there-
fore, we focus on the most sensitive directions of the
FIM identified in Figure 4. Figure 5 shows the averaged
PSD for the three species of the model for the unper-
turbed case (black lines), the perturbation of bx only
(blue lines) as well as the perturbation of by only (yellow
lines). One hundred realizations were used for the averag-
ing procedure while the perturbation strength was +20%.
The L1-norm, i.e., the integral of the absolute difference,
between the unperturbed PSD and the bx-perturbation is
8.56 · 105 while the L1-norm between the unperturbed
PSD and and the by-perturbation is 4.32 · 105 which is
about the half value. Hence, the averaged PSD –primarily

the amplitude of the oscillations– is more sensitive to
perturbations of bx rather than to perturbations of by as
our sensitivity analysis method predicted while the LNA-
based method suggested the reverse order of sensitivity.
We note that the choice of the L1 norm for the PSDs
is justified since it describes the total energy (power)
of the time-series, when viewed as a signal, [41]. An
explanation of the performance of the LNA-based sen-
sitivity analysis stems from the fact that the p53 species
does not have Gaussian noise when the population is
close to zero, and which can indeed occur frequently,
see Figure 2 (blue line). Additionally, notice that both
bx and by affect the concentration of p53 explicitly or
implicitly through the associated reactions thus their sen-
sitivities are heavily biased due to the wrong statistical
approximation of the p53 species. Moreover, we note that
other observables, e.g., the argmax (location of the max-
imum) of the PSD, can be sensitive to perturbations of
by, see Figure 5. This observation is not contradictory
to the findings of the proposed sensitivity methodology
for two reasons: first, even though the Pinsker inequality
(9) points towards the right direction regarding sensitive
parameters for observables, it is only an upper (possibly
crude) bound. Second, even though bx is more sensitive
in absolute value than by in terms of the proposed path-
wise FIM, both bx and by sensitivities have the same order
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of magnitude (see Figure 4) therefore there should exist
observables which are also sensitive to by perturbations.
Finally, for the sake of completeness, we report the observ-
able values for the insensitive parameters. The L1-norm
between the unperturbed PSD and the ax-perturbation is
9.03 · 103 which is approximately two orders of magni-
tude less than the L1-norm for the sensitive parameters.
Similar results hold for the other insensitive param-
eter, k. Thus, the outcome of the Pinkser inequality
(9), i.e., that small RER values imply relatively insensi-
tive parameters for the observables, is also numerically
verified.

Epidermal growth factor receptor model
The EGFR model is a well-studied system describing sig-
naling phenomena of (mammalian) cells [29-31]. As its
name suggests, EGFR regulates cell growth, survival, pro-
liferation and differentiation and plays a complex and
crucial role during embryonic development and in tumor
progression [60,61]. In this paper, we study the reac-
tion network model for the dynamics of EGFR developed
by Schoeberl et al. [31] which consists of 94 species
and 207 reactions. Figure 6 presents the EGFR reac-
tion network in an abstract level. Initially, the extra-
cellular binding of EGF with the EGF receptors induce
receptor dimerization. Then, two principal pathways,
Shc-dependent and Sch-independend, are initiated lead-
ing to activation of Ras-GTP. Subsequently phospho-
rylation of MEK kinase through the activation of Raf
kinase occurs leading to the phosphorylation of ERK
kinase which regulates several proteins and nuclear tran-
scription factors inside the cell. The detailed graphi-
cal description of the reaction network can be found
in the Figures one & two of supplementary informa-
tion in [31]. For completeness, all the reactions along
with their rates are provided in the Additional file 3 of
this publication.
The propensity functions for the reactions R1, . . . ,

R97,R100, . . . ,R207 of the EGFR network are written in the
general form

aj(x) = kj
(
xAj

αj

)(
xBj
βj

)
, j = 1, . . . , 97, 100, . . . , 207

(29)

with the exception of reaction pair R98,R99 where their
propensity functions are governed by the Michaelis-
Menten kinetics

aj(x) = VmaxxAj/(Km + xAj), j = 98, 99 (30)

where x is the current state of the reaction system whileAj
corresponds to the reacting species. The parameter vector
contains all the reaction constants,

θ = [k1, . . . , k97,Vmax,Km, k100, . . . , k207]T ,

with all values provided in the Additional file 3. Due to the
specific values of the reaction constants as well as the ini-
tial population of the species (see Table 3), the firing rates
between reactions differ bymany orders of magnitude giv-
ing rise to a highly stiff network. Therefore, even though
there are some stochastic implementations, [27], here for
the purposes of RER and FIM calculations, we adopt
the mean-field approximation discussed in the acceler-
ated estimators subsection.We solve the derived system of
ODEs with Matlab’s routine ode15s and compute the FIM
at the steady state regime which corresponds to the time
interval [500, 700]. The completion of the internalization
process needs about 500 seconds. It should be noted here
that even though the simulation of the EGFR is performed
utilizing a deterministic approximation model, the com-
puted pathwise FIM has been derived from the stochastic
network, i.e., (13). This approximation is expected to be
valid in the sense of (19) due to the large populations con-
sidered here. Overall, the computed FIM is a sparsematrix
and measures efficiently the sensitivities of the stochastic
model in a gradient-free manner.
The upper plot of Figure 7 shows the diagonal ele-

ments of the FIM in descending order computed at the
steady state regime. We report our results in the for-
mat of Figure 7 in order to be able to accommodate
the large number of parameters in the model. The k-th
diagonal element of the FIM corresponds to RER where
the perturbation takes place only to the k-th parameter
(see (5)). Figure 7 (upper plot) in conjunction with
Table S1 of the Additional file 4 fully describe the
(local) sensitivities of the reaction network. Table S1
in Additional file 4 presents the reaction constants
ordered from the most sensitive to the least sensitive
parameter. Moreover, the FIM is diagonal –except a
small 2 × 2 block associated with the Michaelis-Menten

Figure 6 Building blocks of the EGFR reaction network. Each module communicates with the adjacent modules through few species only.
Additionally, with the exception of the first module, all the others are double, one external (i.e., outside the cell surface) and one internal.
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Table 3 Initial population of the species for the EGFR network

EGF EGFR GAP Grb2 Sos Ras-GDP Shc

4.98e10 5e4 1.2e4 5.1e4 6.63e4 1.14e7 1.01e6

Raf Phosphatase 1 Phosphatase 2 Phosphatase 3 MEK ERK Pxrot

4e4 4e4 4e4 1e6 2.2e7 2.1e7 8.1e4

reactions– therefore the diagonal elements correspond
to the eigenvalues of the FIM. The sensitivity analy-
sis depicted in Figure 7, demonstrates that most model
parameters allow for a vast range of perturbations with-
out affecting the dynamics. Furthermore, this robustness
to variations in most parameters was also reported in the
original, fully deterministic EGFR model in [31]. This is
a feature shared by many multi-parameter models in sys-
tems biology and which is known as “sloppiness” , [38].
Our methodology can easily demonstrate such properties
in stochastic dynamics, as we can readily see in Figure 7,
even if the models include a large number of parameters.
The previous discussion refers to the analysis of the

EGFR model to the steady state regime. On the other
hand, EGFR is a signaling model whose transient regime,
in addition to the steady state, is of great interest. As dis-
cussed in Remark 3, we can justify the application of the
RER and FIM sensitivity analysis in the transient regime.

Therefore, we compute the proposed FIM at the time
interval [0, 10], using (22). The lower plot of Figure 7
shows the diagonal elements of the pathwise FIM in
the transient regime while keeping the ordering of the
parameters unchanged from the upper, steady state plot.
The parameter sensitivity ordering is completely different
meaning that the sensitivities are time-dependent in the
transient regime. For instance, the most sensitive parame-
ters in the stationary regime correspond to the final prod-
ucts of the reaction network, however, in the time interval
[0, 10] these species have not been produced yet resulting
to insensitive reaction constants. In terms of parameter
identification and estimation, the time-dependent sensi-
tivities imply that in order to extract the maximum infor-
mation content from the experimental data, we have to
estimate the parameters drawing samples from different
time intervals. These time intervals should be defined
based on the respective sensitivity indices and selected
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Figure 7 Diagonal elements of the FIM computed at the steady state regime (upper plot) and at the transient regime (lower plot). Note
the changes in sensitivity and consequently the parameter identifiability. The parameter sensitivities differ by orders of magnitude.
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in order to maximize the identifiability for each set of
parameters.
Finally, the Pinsker inequality (9) suggests that insen-

sitive parameters can be perturbed, even significantly,
without affecting species concentrations or other observ-
able. As an illustration of this fact, we present in Figure 8
the concentrations of various critical species of the EGFR
model when the 140-th (k65) most sensitive parameter is
perturbed (see Table S1 in Additional file 4). The rate con-
stant k65 corresponds to a reaction of the Shc-dependent
pathwaymodule. Solid blue lines correspond to the unper-
turbed parameter case while the dashed red lines corre-
spond to the perturbed case where the perturbation is a
multiplication by a factor of ten of k65. We present the
total number of (EGF-EGFR*)2 binding species without
Sch* (top, left panel) and with Sch* (top, middle panel)
as well as Ras-GTP (top, right panel), total activated Raf
or total Raf* (low, left panel), doubly phosphorated MEK
or MEK-PP (low, middle panel) and doubly phosphor-
ated ERK or ERK-PP. These species are important for the
understanding of the system since the differentmodules of
the EGFR reaction network communicate through them
(see Figure 6). It is evident from Figure 8 that the various
species concentrations remain unchanged to perturba-
tions of the insensitive parameter k65 as it was expected

from (9). Moreover, we notice that although the average
populations become large, which implies that the maxi-
mum norm in (9) is also large, we still obtained robust
results regarding k65’s parameter sensitivity.

Conclusions
In this paper, we applied and extended a recently proposed
parametric sensitivity analysis methodology to complex
stochastic reaction networks. This sensitivity analysis
approach is based on the quantification of informa-
tion loss along different parameter perturbations between
time-series distributions. This is achieved by employing
the Relative Entropy Rate, which is directly computable
from the propensity functions. A key aspect of themethod
is that we can derive rigorously an associated Fisher
Information Matrix on path-space, which in turn consti-
tutes a gradient-free approach for parametric sensitivity
analysis; as such it provides a significant advantage in
stochastic systems with a large number of parameters.
We demonstrated that the structure of the pathwise FIM
revealed hidden parameter interdependencies between
the reactions. The block-diagonal structure of the FIM
highlighted the sparsity of the matrix which resulted in
further improvements in the computational efficiency of
the proposed method. Therefore, parametric sensitivity
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analysis for high-dimensional stochastic reaction systems
becomes tractable since it is well-known that in high
dimensional stochastic systems sensitivity analysis tech-
niques can involve estimators of very high variance, e.g.
in finite difference methods and their recently proposed
variants, which can present an overwhelming computa-
tional cost. Additionally, we proposed the use of mul-
tiscale numerical approximations of stochastic reaction
networks in order to derive efficient statistical estimators
for the FIM and implemented one such approximation
(mean-field) in a high-dimensional system.
The proposed pathwise sensitivity analysis method is

tested and validated on three biological systems: (a) a sim-
ple protein production/degradation model where explicit
solutions are available, (b) the p53 reaction network where
quasi-steady stochastic oscillations of the concentrations
are observed and where multiscale stochastic approxi-
mations break down due to the persistent oscillations
between low and high populations, and (c) a stochastic
EGFR model which is an example of a high-dimensional
reaction network with more than 200 reactions and a cor-
responding number of parameters. In the EGFR reaction
network, we combined the proposed pathwise FIM which
has been derived from the stochastic network and the
mean-field approximation which is used for the efficient
estimation of the pathwise FIM. Moreover, our earlier rig-
orous analysis for the steady state regime [19] suggests
suitable extensions in the transient regime which were
tested and validated for the EGFR model. We will present
the full rigorous theory in an upcoming publication.
Finally, we note that the relation between RER and

various observables is not straightforward. However, we
note that the path distribution contains all information
regarding the process including the steady state and all
time-dependent observables: practically, our proposed
sensitivity analysis represents a “conservative” sensitivity
estimate in the sense that insensitive directions for the
relative entropy on path-space will yield insensitive direc-
tions for every observable. This latter statement can be
justified mathematically through the Pinsker inequality
(9) which was tested in the examples considered here.
Based on these observations, the proposed sensitivity
analysis methods can be deployed in complementary fash-
ion with existing sensitivity analysis tools, as it can be
used to narrow down the most sensitive directions in
a system.

Additional files

Additional file 1: The detailed derivation of relative entropy rate and
the associated Fisher information matrix.

Additional file 2: The calculation of equilibrium and pathwise FIMs
for the protein production/degradation model.

Additional file 3: This file contains in plain text the reactions and the
reaction constants of the EGFRmodel.

Additional file 4: The ordering of the parameter sensitivities for the
EGFRmodel.
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