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Abstract

Background: An in silico vaccine discovery pipeline for eukaryotic pathogens typically consists of several
computational tools to predict protein characteristics. The aim of the in silico approach to discovering subunit
vaccines is to use predicted characteristics to identify proteins which are worthy of laboratory investigation. A major
challenge is that these predictions are inherent with hidden inaccuracies and contradictions. This study focuses on
how to reduce the number of false candidates using machine learning algorithms rather than relying on expensive
laboratory validation. Proteins from Toxoplasma gondii, Plasmodium sp., and Caenorhabditis elegans were used as
training and test datasets.

Results: The results show that machine learning algorithms can effectively distinguish expected true from expected
false vaccine candidates (with an average sensitivity and specificity of 0.97 and 0.98 respectively), for proteins
observed to induce immune responses experimentally.

Conclusions: Vaccine candidates from an in silico approach can only be truly validated in a laboratory. Given any
in silico output and appropriate training data, the number of false candidates allocated for validation can be
dramatically reduced using a pool of machine learning algorithms. This will ultimately save time and money in the
laboratory.
Background
This study addresses a major problem raised from a pre-
vious feasibility study [1] of a high-throughput in silico
vaccine discovery pipeline for eukaryotic pathogens. A
typical in silico pipeline output is a collection of different
protein characteristics that are predicted by freely avail-
able bioinformatics programs [1]. These protein charac-
teristics (referred henceforth as an evidence profile)
represent potential evidence from which a researcher
can make an informed decision as to a protein’s suitabil-
ity as a vaccine candidate. The problem is that this evi-
dence can be in different formats, contradicting, and
inaccurate culminating in large numbers of false positive
and negative decisions. The current solution is to accept
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that candidates will inevitably be missed due to the na-
ture of an in silico approach and to rely on the labora-
tory validation to identify false candidates. The study
herein focuses on how to reduce the false error rates
using a computational approach.
Eukaryotic pathogens are extremely complicated sys-

tems comprised of thousands of unique proteins that
are expressed in multifaceted life cycles and in response
to varying environmental stimuli. A desired aim of an
in silico approach for subunit vaccine discovery is to
identify which of these proteins will evoke a protective,
yet safe, immune response in the host [2,3]. It is cur-
rently impossible, however, to know within an in silico
environment how a host will truly respond to a single
protein or combination of proteins. Consequently, an
in silico approach is not an attempt to replace experi-
mental work but is a complementary approach to pre-
dict which proteins among thousands are worthy of
tral Ltd. This is an open access article distributed under the terms of the
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, provided the original work is properly cited.
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further laboratory investigation. Vaccine discovery tools
have been developed for prokaryotes [4,5], though,
there is no in silico pipeline available to the public for
eukaryotic pathogens and no clear consensus as to what
type of protein constitutes an ideal subunit vaccine.
Currently, the characteristics of proteins guaranteed to
induce the desired immune response are poorly de-
fined. Nevertheless, some protein characteristics which
are considered relevant to vaccine discovery are sub-
cellular location; presence of signal peptides, trans-
membrane domains, and epitopes [2,6-8].
The poor reliability of the in silico output arises be-

cause an unknown percentage of the in silico input (e.g.
protein sequences, database annotations, and predicted
evidence itself ) are acknowledged incorrect or missing.
Bioinformatics programs used to predict protein charac-
teristics are, in general, inaccurate [9-15]. The inaccur-
acy can be a consequence of erroneous input data or
overly simplistic algorithms, or simply due the complex-
ity of the problem being solved. Since most prediction
programs are imprecise, it can be expected that a per-
centage of the predicted protein characteristics will be
incorrect. The difficulty encountered by a program user
is to ascertain which of these predictions are correct and
can contribute to the collection of evidence that sup-
ports a protein’s vaccine candidacy.
Given an in silico output, we propose that supervised

machine learning methods can accurately classify the suit-
ability of a protein, among potential thousands, for further
laboratory investigation. Applying machine learning algo-
rithms to solving biological problems is not novel. How-
ever, applying them to classify eukaryotic proteins for
vaccine discovery is novel and this is reflected by the pres-
ence of only a few publications on the topic [16-18]. We
illustrate the proposal on an in silico output comprising
evidence from proteins experimentally shown to induce
Table 1 Datasets used for training and testing machine learn

Namea Number of proteins in each groupb Org

Membrane-
associated

Secreted Neither membrane-
associated nor secreted

T. gondii 8 13 18 Tox

Plasmodium 47 26 51 Pla

C. elegans 324 56 380 Cae

Combined species 379 95 449 Com

Benchmark 70c 70 Com

aThis is the name used to refer to the dataset throughout the paper.
bProteins (except for the benchmark dataset) were initially grouped in accordance w
accordance to cross-validation testing, epitope presence, and reference to other Un
published studies (70 experimentally shown to induce immune responses).
cCombination of proteins from membrane-associated, secreted, and unknown subc
Note: Membrane-associated and Secreted proteins are expected ‘YES’ classification
expected ‘NO’ classification. There was an attempt to create an equal representation
immune responses (referred henceforth as the bench-
mark dataset) and hence expected to be likely vaccine
candidates.

Results and discussion
Five datasets (see Table 1) containing evidence profiles
were used in various ways to test the classification of a
protein as either a vaccine candidate (YES classification)
or non-vaccine candidate (NO classification). These evi-
dence profiles for proteins from Toxoplasma gondii,
Neospora caninum, Plasmodium sp., and Caenorhabditis
elegans, were compiled from the output predictions
made by seven bioinformatics programs (see Table 2).
A typical profile is a mixture of data types correspond-

ing to an accuracy measure, a perceived reliability, or a
type of score for the protein characteristic being pre-
dicted (see Figure 1 and 2). There will always be consid-
erable uncertainty in the profile due to inherent
inaccuracies in the source of the evidence. That is,
there is an unknown but expected percentage of in-
accuracy in the input sequence, training data (if re-
quired), and program algorithm itself impeding precise
prediction. This is irrespective of the target pathogen.
The key question to be answered is whether we can
classify potential vaccine candidates based on evidence
profiles with hidden inaccuracies.

Contents of evidence profiles
The Columns in the evidence profile are as follows:
1 = UniProt ID. 2 = Number of predicted transmem-
brane helices (Phobius_TM). 3 = A ‘Y’ or ‘N’ to indi-
cate a predicted signal peptide (Phobius_SP) – a ‘Y’ is
more likely to be a secreted protein. 4 = Probability of
a secretory signal peptide (SignalP). 5 = Probability of a
secretory signal peptide (TargetP_SP). 6 = Predicted local-
isation based on the scores: M = mitochondrion, S =
ing models

anism Comments

oplasma gondii

smodium Includes falciparum, yoelii yoelii, and berghei

norhabditis elegans

bination of organisms Includes T. gondii, C. elegans, P. falciparum,
P. yoelii yoelii, and P. berghei

bination of two organisms T. gondii and Neospora caninum
(excludes the proteins in T. gondii dataset)

ith the subcellular location descriptor in UniProtKB, then fine-tuned in
iProtKB annotations and Gene Ontology. Benchmark proteins were taken from

ellular locations.
for vaccine candidacy. Neither membrane-associated nor secreted proteins are
of YES and NO classifications in the training datasets.



Table 2 High-throughput standalone programs used in this study to predict protein characteristics

Name Version Predicted protein characteristic URL (last viewed November 2013) Published
accuracya

WoLF PSORT 0.2 Protein localisation http://wolfpsort.org/WoLFPSORT_package/version0.2/ 80.0% [11]

SignalP 4.0 Secretory signal peptides http://www.cbs.dtu.dk/services/SignalP/ 93.0%b [9]

TargetP 1.1 Secretory signal peptides http://www.cbs.dtu.dk/services/TargetP/ 90.0% [10]

TMHMM 2.0 Transmembrane domains http://www.cbs.dtu.dk/services/TMHMM/ 97.0% [13]

Phobius _ Transmembrane domains and
signal peptides

http://phobius.binf.ku.dk/instructions.html 94.1% [12]

Peptide-MHC I Bindingc Peptide binding to MHC class I http://tools.immuneepitope.org/main/html/download.html 95.7%d [14]

Peptide-MHC II Bindingc Peptide binding to MHC class II http://tools.immuneepitope.org/main/html/download.html 76.0%d [15]
aPredictive accuracies taken from publications by the creators of the programs. The prediction accuracy varies for different target pathogens.
bSignalP version 3.0.
cPrediction Tools from The Immune Epitope Database and Analysis Resource (IEDB) [http://www.iedb.org].
dArea under curve value (AUC). Program uses different methods. For MHC I best method = artificial neural network (ANN) [14] and MHC II best method =
Consensus [15].
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secretory pathway, U = other location (TargetP_loc). 7 =
Reliability class (RC) – from 1 (most reliable) to 5
(least reliable) and is a measure of prediction certainty
(TargetP_RC). 8 = Expected number of amino acid res-
idues in transmembrane helices (the higher the number
the more likely the protein is membrane-associated)
(TMHMM_AA). 9 = Expected number of residues in the
transmembrane helices located in first 60 amino acids of
ID Phobius SignalP TargetP TMHMM Wo

Q9UB12 0 0.495 0.708 13.4 2

O96451 1 0.218 0.051 20.48 1

B6KEU8 3 0.308 0.881 44.72 9

B6KLA4 0 0.105 0.055 0.63 0

Q27002 0 0.808 0.952 10.91 2

B6KN48 2 0.779 0.879 41.56 2

Q9UAE6 0 0.104 0.079 0.36 0

Each row contain
of evidence for 

Each column contains a score for 
protein characteristic  predicted 
by a particular program

(input variable or predictor)

Different scoring
methods

Figure 1 A schematic of a typical in silico vaccine discovery pipeline out
characteristics that are predicted by bioinformatics programs. The schematic d
with these predicted characteristics. A collection of scores for one protein is re
potential input variable or predictor for machine learning algorithms. The last
vaccine candidate (a requirement for machine learning training data) and repr
protein. The larger the number the more likely the pre-
dicted transmembrane helix in the N-terminal is a signal
peptide (TMHMM_First60). 10 = Number of predicted
transmembrane helices (TMHMM_TM). 11 = Number of
nearest neighbours that have a similar location (WoLF
PSORT). 12 = Predicted subcellular location (Secreted
or Membrane or NOT_secreted_or_membrane) (WoLF_
PSORT_annotation). 13 = Probability score encapsulating
LF
WoLF

annotation MHCI Program ‘X’ Expected

3 Secreted 0.5351 9.13 YES

9 Secreted 0.5397 20.41 YES

Membrane 0.9105 22.3 YES

Cytoplasm 0.2195 0.01 NO

7 Secreted 0.8065 4.48 YES

0 Secreted 0.8079 20.82 YES

Nuclear 0.3536 0 NO

s a collection 
each protein

Different data
types

 

New column added 
for each additional 
program

Target 
variable

put. A typical in silico pipeline output is a collection of different protein
epicts a collection of some of the scores (potential evidence) associated
ferred to as an evidence profile in the study. Each column represents a
column is a ‘YES’ or ‘NO’ as to whether the protein is expected to be a
esents the target variable i.e. the variable to be predicted for new profiles.

http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/TMHMM/
http://phobius.binf.ku.dk/instructions.html
http://tools.immuneepitope.org/main/html/download.html
http://tools.immuneepitope.org/main/html/download.html
http://www.iedb.org/


Figure 2 An extract of evidence profiles. Specific values from high-throughput standalone prediction programs are extracted and compiled to
generate evidence profiles. Each row contains the collection of evidence for one protein (i.e. an evidence profile). Each column contains the score
for a protein characteristic predicted by a specific program (i.e. an input variable or predictor). See the ‘Contents of evidence profiles’ subsection
for a description of the columns.
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the collective potential of T-cell epitopes on protein
with respect to vaccine candidacy (MHCI). Raw affinity
scores derived from IEDB Peptide-MHC I Binding pre-
dictor. 14 = Probability score encapsulating the collect-
ive potential of T-cell epitopes on protein with respect to
vaccine candidacy (MHCII). Raw affinity scores derived
from IEDB Peptide-MHC II Binding predictor. 15 = Ex-
pected ‘YES’ or ‘NO’ vaccine candidacy (Target variable).

Classifying with one individual piece of evidence
The first test was to determine whether proteins could be
correctly classified using an individual piece of evidence
(i.e. one input variable from an evidence profile). Figure 3
shows an example of how the test was applied. The sensi-
tivity and specificity of the classification is shown in
Table 3. The most notable observation is that non-vaccine
candidates are predominantly correctly classified but the main
trade-off is a substantial number of false negatives, as
B6KA68 8 YES
B9PRA8 3 YES
B6KC72 1 NO
B6K9N1 1 NO
…..
B6KIG0 1 YES
Q27797 0 NO
Q2Y2R0 0 NO
Q6YDA6 0 YES
B6KKV6 0 NO
A7UDC8 0 YES

UniProt ID Phobius_TM
Expected

classification

YE

NO

Figure 3 Example of test applied to a predicted protein characteristic
are listed in descending order based on the number of transmembrane (TM
value = Phobius_TM). A threshold value of 0 is applied to the score (i.e. num
Above the threshold is ‘YES’ for vaccine candidacy and below or equal is ‘N
determine sensitivity and specificity performance measures.
evidenced by the low sensitivity scores. The conclusion here is
that there is no one individual input variable that can precisely
determine the classification. This is not an unexpected result
because each input variable represents only one particular pro-
tein characteristic and there is currently no one characteristic
that conclusively epitomises a vaccine candidate.
Classifying with a rule-based approach
The next test was to determine if a combination of two
or more input variables could efficiently perform the
vaccine classification by applying an appropriate rule.
Figure 4 illustrates the rule-based approach. A total of
17 combinations were tested with a programmed trial
and error approach to obtain the maximum sensitivity
and specificity. Table 4 shows the best rule from each
combination. The best result achieved when tested on
the benchmark dataset was 0.43 and 0.97 for sensitivity
S if Score > threshold

 if Score <= threshold 

Threshold = 0

Vaccine

Non-vaccine

Test criterion

for the purpose of binary classification. In this example, proteins
) domains per protein predicted by the program Phobius (input
ber of TM domains) to segregate the list into two classifications.
O’. The classification is compared with the expected classification to



Table 3 Sensitivity and specificity performance measures of binary classification for individual input variables taken
from datasets

Datasets (comprising evidence profiles)

Input variablea Typeb Datac T. gondii Plasmodium C. elegans Benchmark

SN SP SN SP SN SP SN SP

Phobius_TM TM D 0.57 0.89 0.85 0.90 0.91 0.97 0.74 0.93

Phobius_SP SP T 0.52 0.89 0.39 1.00 0.25 0.99 0.49 0.96

SignalP SP C 0.52 1.00 0.39 1.00 0.25 1.00 0.39 1.00

TargetP_SP SP C 0.67 1.00 0.77 1.00 0.34 1.00 0.56 1.00

TargetP_loc SP T 0.67 0.94 0.76 1.00 0.27 1.00 0.56 1.00

TMHMM_AA TM C 0.62 0.89 0.66 0.98 0.91 1.00 0.80 1.00

TMHMM_First60 SP C 0.43 0.93 0.26 1.00 0.37 1.00 0.49 0.97

TMHMM_TM TM D 0.57 0.89 0.65 1.00 0.90 1.00 0.77 1.00

WoLF_PSORT Sub C 0.76 0.94 0.42 1.00 0.77 0.98 0.60 0.97

WoLF_PSORT_annotation Sub T 1.00 0.56 0.92 0.74 1.00 0.72 0.96 0.73

MHCI B C 0.76 0.56 0.78 0.84 0.77 0.69 0.74 0.84

MHCII B C 0.86 0.39 0.80 0.74 0.90 0.52 0.54 0.84

Abbreviations: SN = sensitivity; SP = specificity; T. gondii = Toxoplasma gondii; Plasmodium = species in the genus Plasmodium including falciparum, yoelii yoelii, and
berghei; C. elegans = Caenorhabditis elegans; Benchmark = dataset comprising evidence for T. gondii and Neospora caninum proteins from published studies.
aInput variable = predicted protein characteristic (i.e. a column from evidence profile).
bType = prediction type: transmembrane domains (TM), secretory signal peptide (SP), sub-cellular location (Sub), peptide-MHC binding (B).
cData = data type: discrete (D), continuous (C), text (T).
The values underlined denote the best performing input variable for classifying the published proteins.
Test criteria on input variable for binary classification:
Phobius_TM: YES if number of transmembrane domains > 0 else NO.
Phobius_SP: YES if = ‘Y’ else NO.
SignalP: YES if > 0.5 else NO.
TargetP_SP: YES if > 0.5 else NO.
TargetP_loc: YES if = ‘S’ else NO.
TMHMM_AA: YES if > 0 18$$ else NO.
TMHMM_ First60: YES if > 10$$ else NO.
TMHMM _TM: YES if number of transmembrane domains > 0 else NO.
Wolf_PSORT: YES if > 16$$ else NO.
WoLF_PSORT_annotation: YES if = ‘membrane’ or ‘secreted’ else NO.
MHCI: YES if > 0.5 else NO.
MHCII: YES if > 0.5 else NO.
$$A value recommended by the creator of the program.
Specificity ¼ True Negatives

True NegativesþFalse Positives
Sensitivity ¼ True Positives

True PositivesþFalse Negatives
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and specificity respectively. There were two main obser-
vations made from the rule-based testing: a rule that
works well with one dataset does not necessarily gener-
alise to another, and it is difficult to strike the ideal bal-
ance between sensitivity and specificity. For example,
judicious adjustments to the rule threshold values can cap-
ture all proteins classified ‘YES’ in a test dataset (i.e. highly
sensitive with zero false negatives) but at the expense of
more false positives. Furthermore, if this adjusted rule is
then applied to another dataset there are still false classifi-
cations. The conclusion here is that it is not feasible to
compose a universal set of rules applicable to all datasets
for the purpose of classifying proteins.

Classifying with machine learning algorithms
Seven, popular, supervised machine learning algorithms
were used in an attempt to improve on the rule-based
approach. Table 5 shows the sensitivity and specificity
performance measures of the binary classification. The
five datasets were used interchangeably for both training
and testing. The table is presented as a matrix with
training datasets in columns and test datasets in rows.
For example, T. gondii dataset is used to build the deci-
sion tree model and tested on the benchmark dataset.
Included in the matrix are classification results from
cross-validation, which are expected to approach 1.0
(most algorithms have an inherent unavoidable error i.e.
noise). Cross-validation results that greatly differ from
1.0 suggest there is at least one problematic evidence
profile. The combined species dataset is the combination
of the T. gondii, Plasmodium, and C. elegans datasets.
The results, therefore, are positively biased when the
combined species dataset is used for training and testing
on datasets other than the benchmark. Similarly, testing
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Figure 4 A graph of proteins from the combined training dataset using only two input variables to illustrate a rule-based approach for
binary classification. Abbreviations: TMHMM_AA = number of amino acid residues in transmembrane helices (a transmembrane domain is expected to
be greater than 18), WoLF PSORT = nearest neighbour score (16 = 50%). Triangles and circles indicate expected vaccine candidacy of proteins. The aim
of the rule-based approach is to find the optimum threshold values that segregate majority of triangles from majority of circles. Best rule for binary
classification is ‘NO if TMHMM_AA< 12 and WoLF PSORT < 15 (shaded area on graph) else YES’. Two examples of where YES and NO classification rules
are broken are shown on graph. When this best rule was applied to the benchmark dataset the sensitivity and specificity were 0.43 and 0.97 respectively.
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on the combined species dataset with species-specific
trained models is also positively biased. The main
benchmark for the algorithm comparison is the classifi-
cation of the benchmark proteins using the combined
species to train the model.
Table 4 Sensitivity and specificity of classifications on
applying rule to benchmark dataset

Rule description SN SP

NO if TMHMM_AA < 12 and WoLF PSORT < 15 else YES 0.43 0.97

NO if TMHMM_TM = 0 and WoLF PSORT < 15 else YES 0.41 0.97

NO if Phobius_TM = 0 and WoLF PSORT < 15 else YES 0.41 0.90

NO if TMHMM_TM = 0 and MHCI < 0.5 else YES 0.63 0.84

NO if Phobius_TM = 0 and MHCII < 0.5 else YES 0.46 0.80

NO if TMHMM_AA < 18 and TargetP_SP < = 0.55 else YES 0.39 1.00

NO if TMHMM_TM = 0 and Target_SP < 0.55 else YES 0.31 1.00

NO if Phobius_TM = 0 and TargetP_SP < 0.45 else YES 0.34 0.93

NO if TMHMM_TM = 0 and SignalP < 3.8 else YES 0.24 1.00

NO if TMHMM_AA < 10 and SignalP < = 0.38 else YES 0.26 1.00

NO if TMHMM_AA < 12 and Phobius_SP = ‘N’ else YES 0.31 0.96

NO if TMHMM_TM = 0 and Phobius_SP = ‘N’ else YES 0.29 0.96

NO if TMHMM_AA < 18 and TargetP_SP < = 0.55 and
MHCI < 0.5 else YES

0.31 0.84

NO if Phobius_TM = 0 and SignalP <0.45 else YES 0.21 0.93

NO if Phobius_TM = 0 and Phobius_SP = ‘N’ else YES 0.24 0.89

NO if TMHMM_AA < 18 and TargetP_SP < = 0.55 and
WoLF_PSORT_annotation = NOT_screted_or_membrane
else YES

0.37 0.73

NO if TMHMM_AA < 18 and TargetP_SP < = 0.55 and
MHCII < 0.5 else YES

0.24 0.84

Abbreviations: SN = sensitivity; SP = specificity.
Note: In benchmark dataset, number of YES classifications = 70; number of NO
classifications = 70; total number = 140.
In summary, the best benchmark performing algo-
rithm (based on the sum of sensitivity and specificity) is
naïve Bayes; then adaptive boosting; followed jointly by
random forest and support vector machines (SVM); then
neural networks, k-nearest neighbour, and finally deci-
sion tree. With the exception of decision tree, the diffe-
rence in performance is so minimal that the ranked
performance here could easily change given different
training and test datasets and/or fine-tuning of the algo-
rithm parameters. Ultimately, there was no apparent dif-
ference between the algorithms with respect to solving
this specific problem of classifying evidence profiles.

Factors affecting performance of machine
learning algorithms
It is the content of the training dataset and in particular
the number of problematic profiles in both the training
and test datasets that have the greatest impact on the
performance of the algorithm. Certain profiles are more
problematic than others for some algorithms to classify
and tend to be consistently misclassified. The T. gondii
trained model performed the poorest when tested on the
benchmark proteins irrespective of the algorithm used.
It is tempting to assume that the poor performance from
the T. gondii trained model was due to a misclassifica-
tion of the target input variable for some of the evidence
profiles. However, there are two other proposed reasons
for this inaccuracy: the training dataset contains the least
number of evidence profiles (39 in total), but more im-
portantly it contains three labelled profiles with question-
able evidence (i.e. erroneous evidence predictions identified
when manually assessing them). Cross-validation is a useful
indication that a particular profile is problematic. Proble-
matic profiles, both in the training and test datasets, tend to



Table 5 Sensitivity and specificity performance measures of binary classification on different test datasets when using
machine learning algorithms with different training datasets

Test dataset Training dataset

T. gondii Plasmodium C. elegans Combined species Benchmark

SN SP SN SP SN SP SN SP SN SP

Decision Treea

T. gondii 1.00b 0.81b 0.95 0.89 1.00 0.83 1.00 0.83 1.00 0.83

Plasmodium 0.84 0.90 1.00b 1.00b 0.85 0.96 1.00 0.92 1.00 0.98

C. elegans 0.87 0.93 1.00 0.99 1.00b 1.00b 1.00 0.99 1.00 0.98

Combined species 0.87 0.92 1.00 0.99 0.98 0.99 1.00b 0.98b 1.00 0.97

Benchmark 0.86 0.91 0.97 0.96 0.96 0.96 0.97 0.91 1.00b 1.00b

Adaptive boostinga

T. gondii 0.51b 0.06b 0.96 0.88 1.00 0.83 1.00 0.91 1.00 0.83

Plasmodium 0.82 0.99 0.98b 0.96b 0.95 0.96 1.00 1.00 1.00 0.98

C. elegans 0.87 0.99 1.00 1.00 1.00b 1.00b 1.00 1.00 1.00 0.98

Combined species 0.87 0.99 1.00 0.99 0.99 0.99 1.00b 0.99b 1.00 0.98

Benchmark 0.85 0.99 0.97 0.98 0.97 0.96 0.99 0.99 0.98b 0.97b

Random foresta

T. gondii 0.97b 0.90b 1.00 0.83 1.00 0.89 1.00 1.00 1.00 0.83

Plasmodium 0.87 1.00 0.99b 0.99b 1.00 1.00 1.00 1.00 1.00 0.98

C. elegans 0.83 1.00 0.98 1.00 1.00b 1.00b 1.00 1.00 1.00 1.00

Combined species 0.84 1.00 0.98 0.99 1.00 1.00 1.00b 1.00b 1.00 0.99

Benchmark 0.82 1.00 0.99 0.99 0.99 1.00 0.97 0.99 0.99b 0.99b

k-Nearest neighbour

T. gondii 0.80b 0.83b 1.00 0.83 0.95 0.83 1.00 0.83 0.90 0.78

Plasmodium 0.77 0.96 0.95b 0.84b 0.88 0.96 0.99 0.94 0.81 0.96

C. elegans 0.88 0.99 0.99 0.95 0.96b 0.98b 0.99 0.99 0.95 0.98

Combined species 0.87 0.98 0.99 0.94 0.97 0.98 0.96b 0.97b 0.92 0.97

Benchmark 0.93 0.96 1.00 0.90 0.96 0.96 0.96 0.97 0.98b 0.96b

Naive bayes classifier

T.gondii 1.00b 0.91b 1.00 0.78 1.00 0.83 1.00 0.83 1.00 0.83

Plasmodium 0.97 0.98 0.98b 0.99b 1.00 0.92 1.00 0.96 1.00 0.98

C. elegans 0.87 1.00 0.92 0.95 1.00b 0.98b 0.97 0.98 1.00 0.99

Combined species 0.89 0.99 0.93 0.95 1.00 0.97 0.98b 0.97b 1.00 0.98

Benchmark 0.81 1.00 0.97 0.94 1.00 0.93 1.00 0.99 1.00b 1.00b

Neural networksa

T. gondii 0.98b 0.90b 0.99 0.83 1.00 0.84 1.00 0.91 0.99 0.83

Plasmodium 0.88 0.92 0.99b 0.89b 0.99 0.97 0.97 0.98 0.93 0.97

C. elegans 0.83 0.99 0.92 0.98 0.99b 0.99b 1.00 1.00 0.98 0.97

Combined species 0.91 0.96 0.93 0.98 0.99 0.98 0.99b 0.98b 0.97 0.97

Benchmark 0.78 0.97 0.97 0.97 0.99 0.95 0.99 0.96 1.00b 0.95 b

Support vector machines

T.gondii 0.83b 0.92b 0.89 1.00 0.89 0.89 1.00 0.89 1.00 0.83

Plasmodium 0.88 0.97 0.98b 0.98b 0.96 0.98 1.00 0.98 1.00 0.98
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Table 5 Sensitivity and specificity performance measures of binary classification on different test datasets when using
machine learning algorithms with different training datasets (Continued)

C. elegans 0.83 0.89 0.98 0.99 0.94b 0.99b 0.99 1.00 0.91 0.99

Combined species 0.84 0.91 0.98 0.98 0.99 0.99 0.92b 0.99b 0.93 0.98

Benchmark 0.74 0.99 0.96 0.96 0.94 0.99 0.96 1.00 0.83b 0.92b

Abbreviations: SN = sensitivity; SP = specificity; T. gondii = Toxoplasma gondii; Plasmodium = species in the genus Plasmodium including falciparum, yoelii yoelii, and
berghei; C. elegans = Caenorhabditis elegans; Combined species = combination of T. gondii, Plasmodium, and C. elegans datasets; Benchmark = dataset comprising
evidence for T. gondii and Neospora caninum proteins from published studies.
aResults from the same input data fluctuate. The algorithm-specific R functions were executed 100 times and the prediction outcomes (false positives and nega-
tives, true positives and negatives) were averaged to calculate SN and SP.
bObtained from multiple cross-validations i.e. the algorithm-specific R functions randomly used 70% of the training dataset to build a model and the remaining
30% was used in the binary classification test. The cross-validation was executed 100 times and the prediction outcomes were averaged to calculate SN and SP.
The values underlined denote the best performing training dataset for classifying the benchmark proteins.
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contain ambiguous evidence which can cause the algorithm
to make an unexpected classification. Based on cross-
validation, the T. gondii data contained the most proble-
matic profiles for all algorithms, followed by Plasmodium,
benchmark and C. elegans datasets. Removing problematic
profiles improves performance in cross-validation. It is
therefore tempting to remove these problematic profiles
from the training datasets for deployment but their removal
negatively impacts performance. The motivation behind
using the machine learning algorithms is to overcome the
effects of erroneous evidence that is currently inherent in
the in silico vaccine discovery output. Consequently, the
training data should retain problematic profiles for building
models for deployment. They need to be retained in the ap-
plication of the model because it is unclear whether these
problematic profiles are incorrect or whether they are cor-
rect but rare (i.e. they are outliers). New profiles for classifi-
cation are expected to contain an unknown percentage of
similar erroneous evidence. Algorithms vary in their ability
to handle problematic profiles according to what other
profiles are represented in the training dataset. For example,
the combined species trained model is a collection of
exactly the same profiles as those in the individual species
trained models. However, the algorithms when trained
with the combined species are able to correctly classify
the problematic profiles more effectively than individual
species trained models.
The results in Table 5 show that there is no funda-

mental difference between evidence profiles from diffe-
rent eukaryotic species. For example, the benchmark
dataset is composed of T.gondii and N. caninum data
and yet both the Plasmodium and C. elegans trained
models outperformed the T. gondii trained model. The
ideal training dataset for the classification problem de-
scribed herein is one that contains the most variety of
evidence profiles irrespective of the source species.
None of the algorithms can consistently classify evi-

dence profiles without false predictions irrespective of
the training dataset. Each algorithm nonetheless per-
formed better than the rule-based approach with a col-
lective average sensitivity and specificity of 0.97 and
0.98. The main reason why the machine learning algo-
rithms performed better than the rule-based approach in
this study is related to how they handle erroneous evi-
dence. For example, a classification rule, applied to a
combination of input variables, fails when only one input
variable is erroneous. Machine learning algorithms, des-
pite erroneous evidence in both the training and test
datasets, can still exploit a generalised pattern within the
collection of evidence for the purpose of classification.

A proposed classification system
The proposed classification system (see Figure 5) uses
the ensemble of classifiers, excluding the decision tree,
to make a final classification based on voting and a ma-
jority rule decision from predictions of the individual
classifiers. In the case of a tied vote, the decision is
deemed a YES classification. The logic behind this deci-
sion is that false positives are preferential to false nega-
tives as they can be identified later during the laboratory
validation. Table 6 shows the UniProt identifier for pro-
teins from the benchmark dataset that were consistently
incorrectly classified by the machine learning algorithms.
At least one of the six algorithms failed to correctly clas-
sify six proteins (Q27298, B0LUH4, P84343, Q9U483,
B9PRX5, B9QH60) that were expected to be YES and
three proteins (B6K9N1, B9Q0C2, B9PK71) expected to
be NO. Table 7 provides a description of these misclassi-
fied proteins. After applying the majority rule approach,
all proteins were classified as expected. The final pre-
dicted classification of protein Q27298 was YES based
on a tied decision. There are three possible reasons why
a protein in the final classification process might be mis-
classified: 1) the expected classification is incorrect, 2)
the majority of algorithms fail, and 3) the evidence pro-
file is too problematic. The misclassifications in Table 6
suggest that they were mainly due to the failure of a par-
ticular algorithm when considering the successful classi-
fication by other algorithms. The evidence profiles for
Q27298 and B9PRX5 are possibly problematic for the al-
gorithms that made the misclassification. This is most
likely because the algorithms have not been trained for a



Figure 5 Overview of a proposed classification system using a pool of machine learning algorithms to determine the suitability of
proteins for vaccine candidacy. Protein sequences for a target species are input into seven prediction programs. These programs provide
evidence as to whether the proteins associated with the sequences are either membrane-associated or secreted, and contain epitopes. Evidence
for each protein is collated to create an evidence profile. A collection of evidence profiles are used as input to a pool of six independent machine
learning algorithms for classification. Final classification is based on voting and a majority rule decision.

Table 6 Misclassified proteins from the benchmark
dataset by machine learning algorithms

Algorithm Incorrect YES
classifications

Incorrect NO
classifications

Adaptive boosting Q27298

k-Nearest Neighbour B6K9N1 B0LUH4

B9Q0C2 P84343

Q9U483

Naive Bayes Classifier B9PK71

Neural Networks

Random Forest Q27298

B9PRX5

Support Vector Machines Q27298

B9QH60

B9PRX5

Protein identifiers e.g. Q27298 are UniProt IDs. Refer to Additional file 1 for a
description of the protein and its relevance as a vaccine candidate.
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profile of this type i.e. the training dataset is failing. In
this case (or in the case of any classified vaccine candi-
date), false positives can only be identified in the labora-
tory. Interpreting the relationship between evidence
profiles and an immune response in host remains a chal-
lenge to the in silico vaccine discovery approach.

Future developments
The outcome of the classification system is a list of proteins
that are worthy of laboratory investigation. Each protein in
the list is assumed to have an equal chance of being a vac-
cine candidate. An improvement to the proposed classifica-
tion system is to score the proteins according to a
likelihood or confidence level that the classifications are
correct. The R functions for SVM and random forest sup-
port class-probabilities i.e. an estimated probability for each
protein belonging to ‘YES’ and ‘NO’ classes. For such an ex-
tension, the format of the training datasets are the same ex-
cept the target value would no longer be a ‘YES’ or ‘NO’
but a single probability score that attempts to encapsulate



Table 7 Description of proteins from the benchmark dataset that were misclassified by at least one machine
learning algorithm

UniProt
ID

Protein name Subcellular
annotation

Expected
classification

Final
classificationa

Misclassification
by algorithmb

Evidence profilec

Q27298 SAG1 protein (P30 Membrane YES YES AB RF SVM Q27298,0,Y,0.297,0.141,M,2,7.30,0.56,0,21.5,
Secreted,0.255,0.205,YES

B0LUH4 Microneme protein 13 Unknown YES YES kNN B0LUH4,0,Y,0.888,0.907,S,1,0.11,0.11,0,29.0,
Secreted,0.270,0.355,YES

P84343 Peptidyl-prolyl cis-trans
isomerase

Unknown YES YES kNN P84343,0,Y,0.817,0.963,S,1,1.11,1.11,0,29.0,
Secreted,0.465,0.536,YES

Q9U483 Microneme protein Nc-P38 Unknown YES YES kNN Q9U483,0,Y,0.427,0.587,S,4,0.23,0.23,0,30.0,
Secreted,0.355,0.1736,YES

B9PRX5 Proteasome subunit
alpha type

Unknown YES YES RF SVM B9PRX5,0,Y,0.250,0.254,M,2,16.81,7.23,0,22.0,
Secreted,0.648,0.515,YES

B9QH60 Acetyl-CoA carboxylase,
putative

Unknown YES YES SVM B9QH60,1,N,0.322,0.019,M,1,22.02,0.00,1,5.0,
Secreted,0.846,0.437,YES

B6K9N1 Cytochrome P450 (putative) Unknown NO NO kNN B6K9N1,1,N,0.131,0.041,U,2,15.35,0.03,0,5.0,
Membrane,0.197,0.480,NO

B9Q0C2 Anamorsin homolog Cytoplasm NO NO kNN B9Q0C2,0,Y,0.245,0.108,U,4,0.54,0.00,0,20.0,
Secreted,0.382,0.210,NO

B9PK71 DNA-directed RNA
polymerase subunit

Nucleus NO NO NB B9PK71,0,N,0.188,0.223,U,4,0.00,0.00,0,22.0,
Secreted,0.368,0.380,NO

aFinal classification takes into account predictions from each algorithm and the most frequent classification type is used i.e. a majority rule approach. A YES
classification is adopted for tied votes e.g. Q27298.
bAlgorithms are executed multiple times on the same input data. An in-house Perl script summarises the multiple runs and indicates the number of times
(as a percentage) the predicted classification of protein differs from the expected. Proteins are regarded as misclassified if the number of times = 100%.
cColumn headers: 1 = ID, 2 = Phobius_TM, 3 = Phobius_SP, 4 = SignalP, 5 = TargetP_SP, 6 = TargetP_loc, 7 = TargetP_RC, 8 = TMHMM_AA, 9 = TMHMM_First60,
10 = TMHMM_TM, 11 =WoLF_PSORT, 12 =WoLF_PSORT_annotation, 13 = MHCI, 14 = MHCII, 15 = Expected classification.
Abbreviations: AB = Adaptive boosting, RF = random forest, SVM = support vector machines, NB = Naive Bayes, kNN = k-Nearest neighbour, NN = neural network.

Goodswen et al. BMC Bioinformatics 2013, 14:315 Page 10 of 13
http://www.biomedcentral.com/1471-2105/14/315
each snippet of evidence representing the evidence profile.
Determining such a score is a challenge that still remains.
The advantage of an appropriate scoring system is that the
proteins in the vaccine candidacy list can then be ranked. A
caveat here is that the ranking is based on a confidence
level of prediction. A protein with a high probability score
does not necessarily imply a high probability of an immune
response when injected in a host.
The proposed classification system is intended to illus-

trate a framework on which researchers can build more ef-
ficient systems. For example, only seven high-throughput
prediction programs were used here to create the evidence
profiles. There are other bioinformatics programs [1] that
could be used to predict similar or additional protein char-
acteristics from protein sequences, such as GPI anchoring,
molecular function, and biological process involvement.
At the time of writing, there is no high-throughput stan-
dalone GPI predictor. Appropriate values that support
vaccine candidacy could be extracted from these extra
program outputs and added to the evidence profile as add-
itional columns in the training datasets.
There are examples of proteins with annotated interior

subcellular locations that have been observed to induce
an immune response [19]. It is assumed here that these
proteins are not naturally exposed to the immune sys-
tem but were exposed as a consequence of experimental
conditions. Nevertheless, the important point here is
that they do induce an immune response and are poten-
tial vaccine candidates. These interior proteins are
missed by the current proposed classification system. All
protein types that induce an immune response in theory
need to be addressed to create a totally encompassing
system for in silico vaccine discovery. This can only be
accomplished if distinguishing characteristics that exem-
plify antigenicity can be predicted given proteins se-
quences. A prediction program that distinguishes antigenic
and non-antigenic interior proteins is sought.

Conclusion
We conclude the following when given a high-throughput
in silico vaccine discovery output consisting of predicted
protein characteristics (evidence profiles) from thousands
of proteins: 1) machine learning algorithms can perform
binary classification (i.e. yes or no vaccine candidacy) for
these proteins more accurately than human generated rules;
2) there is no apparent difference in performance (i.e. sensi-
tivity and specificity) between the algorithms; adaptive
boosting, random forest, k-nearest neighbour classifier,
naive Bayes classifier, neural networks, and SVM, when per-
forming this particular classification task; 3) none of the al-
gorithms can consistently classify evidence profiles without
false predictions using the training datasets in this study; 4)
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there is no fundamental difference in patterns in evidence
profiles compiled from different species e.g. a model trained
on one species can classify proteins from another and
hence no target specific training datasets are required; 5) an
ideal training dataset is one that contains the most variety
of evidence profiles irrespective of the source species e.g.
quality and variety are indisputably the most important fac-
tors that impact the accuracy of algorithms; and 6) a pool
of algorithms with a voting and majority rule decision can
perform classification with a high degree of accuracy e.g.
100% sensitivity and specificity was demonstrated in this
study by correctly determining the expected classification
of the benchmark dataset.
Vaccine candidates from an in silico approach can only be

truly validated in a laboratory. There are essentially two op-
tions. One is to rely on laboratory validation to identify false
candidates. The other is to use our proposed classification
system to identify those proteins more worthy of laboratory
validation. This will ultimately save time and money by re-
ducing the false candidates allocated for validation.

Methods
Eukaryotic pathogens used in study
Toxoplasma gondii, Plasmodium sp., and Caenorhabditis
elegans were the chosen species to train the machine
learning algorithms. Toxoplasma gondii is an apicom-
plexan pathogen responsible for birth defects in humans
[20] and is an important model system for the phylum
Apicomplexa [21-23]. Species in the genus Plasmodium
are also apicomplexan pathogens and can cause the disease
malaria [24]. These species were selected because in com-
parison to most other pathogens, they have experimentally
validated data for protein subcellular location, albeit lim-
ited for T. gondii. Caenorhabditis elegans is a free-living
nematode that is not a pathogen but is rich in validated
data [25]. This species was particularly chosen to investi-
gate whether a universal training dataset could be used for
the classification of proteins from any eukaryotic pathogen
or whether target specific training datasets are required.

Training data for machine learning algorithms
Two sets of distinct evidence profiles for each training
dataset were required. One set representing evidence for
proteins that are vaccine candidates and another for non-
vaccine candidates. The major challenge here is that there
are too few examples of protein subunit vaccines, irrespect-
ive of the target pathogen, to create ideal training datasets.
Consequently, the training datasets used in this study are
based on proteins that are only likely vaccine candidates –
‘likely’ in this context is based on two a priori held hypoth-
eses:1) a protein that is either external to or located on, or
in, the membrane of a pathogen is more likely to be access-
ible to surveillance by the immune system than a protein
within the interior of a pathogen [26]; and 2) a protein
containing peptides (T-cell epitopes) that bind to major
histocompatibility complex (MHC) molecules fulfils one of
several prerequisites for a vaccine based on this protein.
That is, a protein vaccine candidate needs to contain T-cell
epitopes to induce the creation of a memory T-cell reper-
toire capable of recognizing a pathogen [27,28].
Appropriate protein sequences for T. gondii, C. elegans,

and Plasmodium species were downloaded from the
Universal Protein Resource knowledgebase (UniProtKB at
http://www.uniprot.org/). In UniProtKB at the time of
writing, there were 19261 proteins for T. gondii species
(this includes strains such as ME49, VEG, RH, and GT1),
25765 for C. elgans, and 75,507 for the genus Plasmo-
dium. Despite T. gondii being a well-studied organism,
only 55 proteins had the status of manually annotated and
reviewed. In comparison, C. elegans had 3360 reviewed
and Plasmodium 488. A challenge was that the protein’s
annotations in UniProtKB (e.g. protein name, domains,
protein families, subcellular location etcetera) were not
necessarily indicative to selecting the desired three classes
of proteins: secreted, membrane-associated, and other.
The subcellular location annotation was the most inform-
ative out of all annotations. Of the reviewed proteins, 39
for T. gondii, 1190 for C. elegans and 202 for Plasmodium
had experimental evidence to support the annotation for
their subcellular location. To aid in creating a preliminary
training dataset, proteins from the desired subcellular lo-
cations were selected using the advanced search facility in
UniProt and entering either a partial or whole term in the
subcellular location field. Using the word ‘membrane’ in
the UniProt advanced search, 11 of the 39T. gondii pro-
teins were selected. Similarly, 10 out of 39 were selected
using the word ‘secreted’. For C. elegans, 796 of the 1190
proteins with experimentally derived subcellular locations
had the word ‘membrane’ and 47 had ‘secreted’ (unlike
apicomplexan pathogens, C. elegans do not secrete pro-
teins for the purpose of invasion and survival within host
cells). There were only four Plasmodium proteins with ‘se-
creted’ annotation in contrast to 134 with membrane
(there are many more secreted proteins in UniProtKB but
not yet reviewed). This broad word search selected un-
desired proteins with subcellular descriptions such as
parasitophorous vacuole membrane and golgi apparatus
membrane. Proteins with inappropriate subcellular de-
scriptions were manually removed or reclassified in the
training datasets on consultation with the UniProt con-
trolled vocabulary (http://www.uniprot.org/docs/subcell).
The expected ‘YES’ or ‘NO’ classification for each protein
in the training datasets was fined-tuned in accordance to
cross-validation testing, epitope presence as per reference
to the Immune Epitope Database and Analysis Resource
(http://www.iedb.org), and reference to other UniProtKB
annotations and Gene Ontology. Descriptions of the data-
sets are shown in Table 1.

http://www.uniprot.org/
http://www.uniprot.org/docs/subcell
http://www.iedb.org
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Bioinformatics prediction programs
The downloaded protein sequences from UniProtKB were
used as input to seven prediction programs (WoLF PSORT
[11], SignalP [29], TargetP [10], TMHMM [13], Phobius
[12] and IEDB peptide-MHC I and II binding predictors
[30,31]). These programs have several features in common:
applicable to eukaryotes, can be freely downloaded, run in a
standalone mode, allow high-throughput processing, and
execute in a Linux environment. The emphasis here is on
high-throughput. An in-house Perl script selected values
(potential evidence) from the program outputs and com-
piled them into one file to construct the evidence profiles.

Machine learning algorithms
Seven supervised machine learning algorithms were exe-
cuted within R (a free software environment for statistical
computing and graphics – http://www.r-project.org/) via R
functions from packages that can be downloaded from the
Comprehensive R Archive Network (CRAN): 1) decision
tree, also referred to as classification and regression trees
(CART) [32] via the rpart R function (implemented in the
rpart package); 2) adaptive boosting [33] via the ada R
function [34]; 3) random forest algorithm via the random-
Forest R function [35]; 4) k-nearest neighbour classifier
(k-NN) via a knn R function [36,37] contained in the
Class package; 5) naive Bayes classifier via a naiveBayes
R function contained in the e1071 package; 6) neural net-
work (single hidden layer multilayer perceptrons) via the
nnet R function contained in the nnet package [36,37];
and 7) support vector machines via the ksvm R function
[38], which is contained in the kernlab package.
The algorithms were chosen because there is a wealth

of literature on their successful application to a wide
range of problems in multiple fields. The focus here is
therefore on the application of the algorithms to solving
a specific biological problem and not an evaluation or
judgement of their design and logic. The application of
each algorithm to building a classification model is simi-
lar in the sense that algorithm-specific R functions are
used with the same training datasets. All seven machine
learning R functions required at least two arguments: a
data frame of categorical and/or numeric input variables
(i.e. the training dataset consisting of the evidence pro-
files) and a class vector of ‘YES’ or ‘NO’ classification for
each evidence profile i.e. target variable.
Cross-validation was performed to evaluate each train-

ing dataset and the resultant model built by each algo-
rithm. That is, an in-house R function was used to
execute the machine learning R functions multiple times
(e.g. 100 runs). For each run the function randomly se-
lected 70% of the training set to build a model. The
remaining 30% of the training set was used as test data
for classification. An R function called predict [39] was
used as a generic function for predictions. An in-house Perl
script summarised the multiple runs and the prediction
outcomes were averaged to calculate sensitivity and specifi-
city performance measures.

Benchmark dataset
The benchmark dataset consisted of a collection of evi-
dence profiles derived from T. gondii and Neospora cani-
num (an apicomplexan pathogen that is morphologically
and developmentally similar to T. gondii [40]). In a similar
fashion to creating the evidence profiles for the training
datasets, protein sequences (140 in total) downloaded from
UniProtKB were input into the seven prediction programs
and an in-house Perl script compiled the evidence profiles.
It is well acknowledged in the literature that the de-

velopment of vaccines directed against T. gondii and N.
caninum should focus on selecting proteins that are
capable of eliciting mainly a cell-mediated immune
(CMI) response involving CD4 + ve T cells, Type 1
helper T cells (Th1) and Interferon-gamma (IFN-γ) in
addition to a humoral response [19,41-43]. Seventy of
the evidence profiles are for proteins from published stud-
ies. Twenty-two of these proteins have been observed to
induce cell-mediated immune (CMI) responses and the
remaining 48 have been experimentally shown to be
membrane-associated or secreted. Eleven of the proteins
have epitopes identified experimentally and some of these
epitopes have been shown to elicit significant humoral
and cellular immune responses in vaccinated mice
when used in combination with other epitopes [44-47].
Additional file 1: Table S1 lists the benchmark proteins
along with a publication reference to the relevant study. A
brief description of the vaccine significance for some of
these proteins and an entire list of evidence profiles for the
benchmark dataset are also provided in Additional file 1.
A further 70 evidence profiles for proteins that have been
experimentally shown to be neither membrane-associated
nor secreted were added to the benchmark dataset.

Additional file

Additional file 1: Includes typical outputs from prediction
programs used for the in silico vaccine discovery pipeline, a list of
the benchmark test proteins along with a publication reference to
relevant studies, and a brief description of the vaccine significance
for some of these proteins.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SG conceived and designed the experiments, performed the experiments,
and analysed the data. All authors contributed to the writing of the
manuscript and read and approved the final version.

Acknowledgements
SJG gratefully acknowledges receipt of a PhD scholarship from Zoetis (Pfizer)
Animal Health.

http://www.r-project.org/
http://www.biomedcentral.com/content/supplementary/1471-2105-14-315-S1.pdf


Goodswen et al. BMC Bioinformatics 2013, 14:315 Page 13 of 13
http://www.biomedcentral.com/1471-2105/14/315
Author details
1School of Medical and Molecular Biosciences, ithree institute at the
University of Technology Sydney (UTS), Sydney, Australia. 2School of
Software, Faculty of Engineering and Information Technology and the Centre
for Quantum Computation and Intelligent Systems at the University of
Technology Sydney (UTS), Sydney, Australia.

Received: 20 June 2013 Accepted: 28 October 2013
Published: 2 November 2013
References
1. Goodswen SJ, Kennedy PJ, Ellis JT: A guide to in silico vaccine discovery

for eukaryotic pathogens. Brief Bioinform 2012: [Epub ahead of print].
2. Mora M, Donati C, Medini D, Covacci A, Rappuoli R: Microbial genomes

and vaccine design: refinements to the classical reverse vaccinology
approach. Current Opinion in Microbiology 2006, 9(5):532–536.

3. Rappuoli R: Bridging the knowledge gaps in vaccine design. Nat Biotech
2007, 25(12):1361–1366.

4. He Y, Xiang Z, Mobley HLT: Vaxign: The First Web-Based Vaccine Design
Program for Reverse Vaccinology and Applications for Vaccine Development.
Journal of Biomedicine and Biotechnology 2010, 2010:297505.

5. Vivona S, Bernante F, Filippini F: NERVE: new enhanced reverse
vaccinology environment. BMC Biotechnol 2006, 6(1):35.

6. Leuzzi R, Savino S, Pizza M, Rappuoli R: Genome Mining and Reverse
Vaccinology, Handbook of Meningococcal Disease. Wiley-VCH Verlag GmbH
& Co. KGaA; 2006:391–402.

7. Serino L, Pizza M, Rappuoli R: Reverse Vaccinology: Revolutionizing the
Approach to Vaccine Design, Pathogenomics. Wiley-VCH Verlag GmbH & Co.
KGaA; 2006:533–554.

8. Vivona S, Gardy JL, Ramachandran S, Brinkman FSL, Raghava GPS, Flower
DR, Filippini F: Computer-aided biotechnology: from immuno-informatics
to reverse vaccinology. Trends in biotechnology 2008, 26(4):190–200.

9. Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S: Improved prediction
of signal peptides: signalP 3.0. J Mol Biol 2004, 340(4):783–795.

10. Emanuelsson O, Brunak S, von Heijne G, Nielsen H: Locating proteins in the
cell using targetP, signalP and related tools. Nat Protocols 2007, 2(4):953–971.

11. Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K:
WoLF PSORT: protein localization predictor. Nucleic Acids Res 2007,
35(suppl 2):W585–W587.

12. Kall L, Krogh A, Sonnhammer ELL: A combined transmembrane topology
and signal peptide prediction method. J Mol Biol 2004, 338(5):1027–1036.

13. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL: Predicting
transmembrane protein topology with a hidden markov model:
application to complete genomes. J Mol Biol 2001, 305(3):567–580.

14. Peters B, Bui H-H, Frankild S, Nielsen M, Lundegaard C, Kostem E, Basch D,
Lamberth K, Harndahl M, Fleri W, et al: A community resource benchmarking
predictions of peptide binding to MHC-I molecules. PLoS Comput Biol 2006,
2(6):574–584.

15. Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B: A systematic
assessment of MHC class II peptide binding predictions and evaluation
of a consensus approach. PLoS Comput Biol 2008, 4(4):e1000048.

16. Bhasin M, Raghava GPS: Prediction of CTL epitopes using QM, SVM and
ANN techniques. Vaccine 2004, 22(23–24):3195–3204.

17. Bowman BN, McAdam PR, Vivona S, Zhang J, Luong T, Belew RK, Sahota H,
Guiney D, Valafar F, Fierer J, et al: Improving reverse vaccinology with a
machine learning approach. Vaccine 2011 . In Press, Uncorrected Proof.

18. Sollner J, Mayer B: Machine learning approaches for prediction of linear
B-cell epitopes on proteins. J Mol Recognit 2006, 19(3):200–208.

19. Rocchi MS, Bartley PM, Inglis NF, Collantes-Fernandez E, Entrican G, Katzer F,
Innes EA: Selection of Neospora caninum antigens stimulating bovine
CD4(+ve) T cell responses through immuno-potency screening and
proteomic approaches. Veterinary Research 2011, 42:1–91.

20. Montoya JG, Liesenfeld O: Toxoplasmosis. Lancet 2004, 363(9425):1965–1976.
21. Che F-Y, Madrid-Aliste C, Burd B, Zhang H, Nieves E, Kim K, Fiser A, Angeletti

RH, Weiss LM: Comprehensive proteomic analysis of membrane proteins
in toxoplasma gondii. Mol Cell Proteomics 2010, 10(1):M110 000745.

22. Kim K, Weiss LM: Toxoplasma gondii: the model apicomplexan.
Int J Parasitol 2004, 34(3):423–432.

23. Roos DS: Themes and variations in apicomplexan parasite biology.
Science 2005, 309(5731):72–73.
24. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI: The global distribution
of clinical episodes of plasmodium falciparum malaria. Nature 2005,
434(7030):214–217.

25. Kurz CL, Ewbank JJ: Caenorhabditis elegans: an emerging genetic model
for the study of innate immunity. Nat Rev Genet 2003, 4(5):380–390.

26. Flower DR, Macdonald IK, Ramakrishnan K, Davies MN, Doytchinova IA:
Computer aided selection of candidate vaccine antigens. Immunome
Research 2010, 6(Suppl 2):S1.

27. Kaech SM, Wherry EJ, Ahmed R: Effector and memory T-cell differentiation:
implications for vaccine development. Nat Rev Immunol 2002, 2(4):251–262.

28. Sette A, Fikes J: Epitope-based vaccines: an update on epitope
identification, vaccine design and delivery. Curr Opin Immunol 2003,
15(4):461–470.

29. Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal
peptides from transmembrane regions. Nat Methods 2011, 8(10):785–786.

30. Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J,
Lundegaard C, Sette A, Lund O, Bourne PE, et al: Immune epitope
database analysis resource. Nucleic Acids Res 2012, 40(W1):W525–W530.

31. Kim Y, Sette A, Peters B: Applications for T-cell epitope queries and tools
in the immune epitope database and analysis resource. J Immunol
Methods 2011, 374(1–2):62–69.

32. Breiman L, Friedman JH, Olshen RA, Stone CJ: Classification and Regression
Trees. Wadsworth International Group; 1984.

33. Freund Y, Schapire RE: A decision-theoretic generalization of on-line learning
and an application to boosting. J Comput Syst Sci 1997, 55(1):119–139.

34. Friedman J, Hastie T, Tibshirani R: Additive logistic regression: a statistical
view of boosting. Ann Stat 2000, 28(2):337–374.

35. Breiman L: Random forests. Mach Learn 2001, 45(1):5–32.
36. Ripley BD: Pattern Recognition and Neural Networks. 1st edition. Cambridge

University Press; 1996.
37. Venables WN, Ripley BD: Modern Applied Statistics with S. 4th edition.

Springer; 2002.
38. Platt J: Probabilistic outputs for support vector machines and

comparisons to regularized likelihood methods. Advances in large margin
classifiers 1999, 1999:61–74.

39. Chambers JM, Hastie TJ: Statistical Models in S. Wadsworth and Books/Cole
Computer Science Series, Chapman and Hall; 1992.

40. Dubey JP, Carpenter JL, Speer CA, Topper MJ, Uggla A: Newly recognized
fatal protozoan disease of dogs. J Am Vet Med Assoc 1988,
192(9):1269–1285.

41. Andrianarivo AG, Anderson ML, Rowe JD, Gardner IA, Reynolds JP,
Choromanski L, Conrad PA: Immune responses during pregnancy in
heifers naturally infected with neospora caninum with and without
immunization. Parasitol Res 2005, 96(1):24–31.

42. Reichel MP, Ellis JT: Neospora caninum - how close are we to development
of an efficacious vaccine that prevents abortion in cattle?
Int J Parasitol 2009, 39(11):1173–1187.

43. Tuo WB, Fetterer R, Jenkins M, Dubey JP: Identification and
characterization of neospora caninum cyclophilin that elicits gamma
interferon production. Infect Immun 2005, 73(8):5093–5100.

44. Cong H, Gu QM, Yin HE, Wang JW, Zhao QL, Zhou HY, Li Y, Zhang JQ:
Multi-epitope DNA vaccine linked to the A(2)/B subunit of cholera toxin
protect mice against toxoplasma gondii. Vaccine 2008, 26(31):3913–3921.

45. Maksimov P, Zerweck J, Maksimov A, Hotop A, Gross U, Pleyer U, Spekker K,
Daeubener W, Werdermann S, Niederstrasser O, et al: Peptide microarray
analysis of in silico-predicted epitopes for serological diagnosis of toxoplasma
gondii infection in humans. Clin Vaccine Immunol 2012, 19(6):865–874.

46. Nielsen HV, Lauemoller SL, Christiansen L, Buus S, Fomsgaard A, Petersen E:
Complete protection against lethal toxoplasma gondii infection in mice
immunized with a plasmid encoding the SAG1 gene. Infect Immun 1999,
67(12):6358–6363.

47. Wang Y, Wang M, Wang G, Pang A, Fu B, Yin H, Zhang D: Increased
survival time in mice vaccinated with a branched lysine multiple
antigenic peptide containing B- and T-cell epitopes from T. gondii anti-
gens. Vaccine 2011, 29(47):8619–8623.

doi:10.1186/1471-2105-14-315
Cite this article as: Goodswen et al.: A novel strategy for classifying the
output from an in silico vaccine discovery pipeline for eukaryotic
pathogens using machine learning algorithms. BMC Bioinformatics
2013 14:315.


	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Contents of evidence profiles
	Classifying with one individual piece of evidence
	Classifying with a rule-based approach
	Classifying with machine learning algorithms
	Factors affecting performance of machine learning algorithms
	A proposed classification system
	Future developments

	Conclusion
	Methods
	Eukaryotic pathogens used in study
	Training data for machine learning algorithms
	Bioinformatics prediction programs
	Machine learning algorithms
	Benchmark dataset

	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

