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Abstract

Background: RNA-Seq has the potential to answer many diverse and interesting questions about the inner workings
of cells. Estimating changes in the overall transcription of a gene is not straightforward. Changes in overall gene
transcription can easily be confounded with changes in exon usage which alter the lengths of transcripts produced
by a gene. Measuring the expression of constitutive exons— exons which are consistently conserved after
splicing— offers an unbiased estimation of the overall transcription of a gene.

Results: We propose a clustering-based method, exClust, for estimating the exons that are consistently conserved
after splicing in a given data set. These are considered as the exons which are “constitutive” in this data. The method
utilises information from both annotation and the dataset of interest. The method is implemented in an openly
available R function package, sydSeq.

Conclusion: When used on two real datasets exClust includes more than three times as many reads as the standard
UI method, and improves concordance with qRT-PCR data. When compared to other methods, our method is shown
to produce robust estimates of overall gene transcription.

Background
The development of high throughput sequencing tech-
nologies has made it possible to sequence the transcrip-
tome at a much higher resolution and coverage than was
previously available. Sequencing of cDNA samples (RNA-
Seq) has a dynamic range larger than that of microarrays
[1]. This, combined with its high level of reproducibility
[2] and falling cost, makes high throughput sequencing
technologies an attractive alternative to microarrays for
transcriptome analysis.

Alternative splicing
A gene is commonly seen as a fundamental unit in mRNA
biology. While the term gene is commonly used, its
usage and meaning has changed over time as our knowl-
edge of the genome, its transcription and regulation has
increased. We see it appropriate to use the definition that
a gene is a union of genomic sequences encoding a coher-
ent set of potentially overlapping functional products [3].
This definition allows for a gene to be translated intomany

*Correspondence: jean.yang@sydney.edu.au
1School of Mathematics and Statistics, University of Sydney, Sydney NSW
2006, Australia
Full list of author information is available at the end of the article

products that may have different or even contrary func-
tions [4]. This definition could in itself steer the direction
of an analysis as one must decide whether the activity of a
genomic region or of its products is of primary interest.
Alternative splicing is a biological mechanism to expand

the protein diversity from the limited gene pool [5]. A
gene generally consists of many sub-components such
as exons and introns. For a given gene, different exons
may be spliced from pre-mRNA to give different mature
mRNA transcripts. Other alternative splicing events may
include intron retention or alternative usage of 3’ or 5’
splice sites. These changes often lead to modifications in
the encoded proteins and have been shown to play a crit-
ical role in development and disease [6-8]. For simplicity,
in this paper we consider alternative splicing to be all
mechanisms by which multiple and distinct mRNAs can
be created from a single gene region including both alter-
native transcription start and alternative polyadenylation.
The term isoform is used to refer to the blue-print of a
distinct mRNA created from a particular gene region and
transcript to refer to an actual mRNA molecule within a
cell.
Alternative splicing needs to be be taken into con-

sideration when analysing RNA-Seq data as it occurs
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ubiquitously within mammalian transcriptomes [9]. It is
estimated in early studies that 50–80% of the approxi-
mately 25,000 human protein-coding genes are subject to
alternative splicing [10-12]. This is further highlighted in
a recent RNA-seq study, where it is estimated that 86% of
genes were found to be alternately spliced with a minor
isoform frequency greater than 15% [13].

Next generation sequencing
In the last decade, many studies of mRNA expression
studies have been completed using microarray technol-
ogy. Now there are many sequencing platforms including
those of 454 Life Sciences, Illumina, Applied Biosys-
tems SOLiD and Helicos Biosciences. There are many
uses of these technologies, addressing various types of
problems such as de novo genome sequencing, tran-
scriptome sequencing, sequencing of microRNAs, chro-
matin immunoprecipitation sequencing [1]. While there
are many sequencing platforms that differ in their chem-
istry and protocols, their processed outputs are generally
similar. Most sequencing platforms take a sample of frag-
mented RNA as input and then read off 25–400 base pair
regions at the ends of these fragments. The output of these
sequenced regions, sequences of base pairs, are referred to
as reads.
A typical RNA-seq data analysis workflow consists of

many steps [14]. These steps generally consist of map-
ping, summarisation, normalisation, differential expres-
sion analysis and systems biology. A particular issue
within the summarisation step is summarising read counts
to give an estimate of the overall rate of transcription of
particular genes.
Sequencing technologies produce reads of limited

length, so each read is of a limited interval of a frag-
mented transcript. Sequencing only fragments of tran-
scripts creates a significant bioinformatics burden in both
the mapping and summarisation steps of the data anal-
ysis workflow. The longer an observed read, the higher
the likelihood that it will span a splice junction. Identify-
ing and aligning such reads is both computationally and
statistically difficult as the number of possible splice junc-
tions is large [15-18]. Identifying the presence of a splice
junction is only the first challenge; many of these tran-
script fragments are present in multiple isoforms and it
is a statistically challenging problem to estimate isoform-
specific expression [19-21].
There are many biological questions that may be

addressed with RNA-seq data. A typical focus of RNA-seq
analysis is to identify differential expressed transcripts or
isoforms [19-21]. However, there is still interest in study-
ing RNA-seq data at a gene level. That is, rather than
estimating the abundance of each different isoform of a
gene, it may be preferable instead to estimate the over-
all or total abundance of all the different isoforms of a

gene. This may be of interest in itself, may be needed
in cross-species or cross-platform comparison and stud-
ies [22], when there may be a lack of confidence in the
quality of the organism’s annotation, or where sequencing
depth may not be sufficient to make inferences about the
abundance of different isoforms within a gene.Many path-
way annotations such as KEGG [23] are still annotated
at gene level. Furthermore, such analyses avoid inferring
transcript-specific expression, as the key focus is to count
the number of reads that lie within either the region of
exons or of genes.
Gene expression levels in RNA-seq experiments reflect

the number of (or the amount) of mRNA that is within the
samples. In a typical RNA-Seq experiment we can count
the number of reads that map back to any given gene and
associate this count with the amount of mRNA that gene
produced. For a given gene, this read count is a function of
the abundance of its transcripts in the cell and the length
of those transcripts. Our main interest is in the abundance
of transcripts created from a gene not the number of reads
produced by gene. This subtle difference is driven by the
fact that a longer isoform will produce more reads than a
shorter isoform if both are expressed at the same abun-
dance. Due to alternative splicing, a gene can produce
isoforms of different lengths. Thus if the overall transcrip-
tion of a gene does not change between conditions but
the splicing does, this can result in a change of count (see
Figure 1 for a toy example). Accounting for this change
in length using a method such as FPKM (the number of
fragments per kilobase of exon per million fragments that

Figure 1 Effect of differential alternative splicing on gene
counts. In this toy example a gene with two isoforms is considered.
Observing only the exon counts it may be reasonable to assume that
sample one and two only contain transcripts from isoform one, while
sample three only contains transcripts from isoform two. If the
expression of a gene is measured as the sum of its exon counts then
here sample three would generally be considered as differentially
expressed from sample one or two. However, if this gene’s expression
were measured only using the counts from the first exon, this gene
would not be considered differentially expressed. It would be
reasonable to assume that samples one, two and three all contain a
similar number of transcripts for this gene.
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were mapped) [21] would be appropriate if isoforms were
mutually exclusive. Unfortunately there is often evidence
of multiple isoforms for a gene being present. If the abun-
dance of these isoforms could be accurately estimated [21]
it may be possible to estimate the rate of transcription
by summing the FPKM of all isoforms of a gene. How-
ever if only regions of the gene that were conserved across
isoforms were considered, the changing lengths of tran-
scripts would have no effect on the summarised count.
These exons that are present in all isoforms within a gene
are referred to as constitutive exons as they are common
to all isoforms of a gene.

Estimation of constitutive exons
In order to focus on the overall expression of a gene, rather
than isoform-specific expression, the Union-Intersection
(UI) [24] method is commonly used to define a set of con-
stitutive exons for each annotated gene (Figure 2). The
UI method produces a gene region consisting of all exons
which are common to all known isoforms of the gene,
excluding the regions which overlap with other genes [24].
The UI definition is simple and conceptually relevant, but
it is derived entirely from the collection of known isoforms
which are present in the chosen annotation database. In
general there will be differences between this collection of
annotated isoforms and the collection of isoforms actu-
ally present in the samples in the current experiment. In
particular, for any given gene,

• the annotation may include isoforms which are not
present in the current samples, and

• the current samples may include isoforms which are
not present in the annotation.

In the first case, the UI definition selects exons which
are conserved across the isoforms present in the data but
may exclude some exons which are also conserved across
isoforms present in the data but not across all isoforms
in the annotation. This is an issue as the number of reads
summarised for a gene can affect the sensitivity of tests for
differential expression [25]. Excluding data then limits the
detection power if the expression of a gene changes. In the
second case, the UI definition may include an exon that is
not conserved across all isoforms of a gene present within
the current samples. The UI definition would then not
give an accurate representation of the overall transcrip-
tion of that gene. These two points not only highlight the
deficiencies in the UI method but also highlight the need
for an alternate concept of exon conservation. As more
transcripts are discovered and annotated, fewer exons
can then be considered as constitutive. While constitu-
tive exons may still have a nice interpretation with respect
to the importance of those exons for the function of the
gene, they will become less relevant when attempting to
measure the rate of gene transcription.
To address these issues we propose a new method,

exClust, inspired by work on exon arrays [26] to esti-
mate data-specific constitutive (DSC) exons using both
annotation and experimental data. We will show that this
new procedure retains two to three times more reads
than the very conservative UI method, and hence extracts
much more useful information from the data set. The

Figure 2 Processing exon annotation. A graphic describing how the annotation of two overlapping genes is processed into an exon annotation
appropriate for the use of exClust. The isoform annotation can be used to define a set of disjoint exon regions that could be rejoined to describe any
of the known isoforms of the gene. It is these disjoint exon regions that are used as the exon annotation in exClust. Exon regions which overlap
multiple genes are ignored. The set of UI exons are also shown for these two genes and are simply the exons that are present in all the annotated
isoforms.
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new procedure also generates estimates of gene transcrip-
tion which are independent of isoform composition, and
potentially gives insights into gene annotation.
This paper develops a methodology for identifying the

DSC exons within a gene between two ormore conditions.
These methods are then evaluated on two publicly avail-
able datasets [13,27]. The estimates of differential gene
expression produced by exClust are similar to that of the
UI method when there has been a change in isoform
composition. Our method performs consistently well on
both datasets including more genes and more reads in the
analysis than the UI method, and also offering improved
concordance with qRT-PCR data.

Methods
Processing exon annotation
We assume that, for the organism of interest, at least one
set of transcript annotation exists (it may be derived de
novo or a combination of multiple annotations) and that
annotation source has been selected for use in the analy-
sis. From this annotation, we define for each gene what we
call exon regions. These approximately correspond to the
exons of the gene, but are in fact something subtly differ-
ent: a set of disjoint exon regions that could be rejoined
to describe any of the known isoforms of the gene. Some
of the exon regions are whole exons; in other cases, exons
may be divided into two or more pieces. This process is
illustrated in Figure 2. In the remainder we will ignore
this distinction and use the term exon to refer to exon
regions. If we ignore the distinction between exons and
exon regions, or assume that all exon regions are whole
exons, we are effectively using only the exon definitions
from the annotation source, and not the isoform defini-
tions. This is a key distinction between our approach and
theUImethodwhich depends heavily on the known anno-
tated isoforms of each gene. The UI exons are those exons
which are present in all the annotated isoforms. In the
same way as the UI method, we also, as a final step, ignore
any exon regions that overlap with multiple genes.

Estimate data-specific constitutive exons
Let xij be the observed read count for the ith exon of the
jth sample in the experiment. Furthermore let the ith exon
come from gene g(i) and the jth sample be treated by treat-
ment condition t(j). Define mij = E(Xij) as the expected
count for exon i in sample j, and use a log-linear model for
mij. One appropriate model is

logmij = βG
g(i) + βGE

g(i)i + βTS
t(j)j + βGS

g(i)j + βGT
g(i)t(j) (1)

Here G stands for gene, E for exon, T for treatment
and S for sample. Exons are nested with genes, and sam-
ples within treatments. The variables βGS

g(i)j and βGT
g(i)t(j)

correspond to differential expression of gene j between

samples and treatments respectively. The variable βGS
g(i)j

makes global normalizations such as total counts and
TMM [28] irrelevant for this method. βG

g(i) and βGE
g(i)i cor-

respond to the average expression of each gene and each
exon within each gene whilst βTS

t(j)j reflects the library size
or sequencing depth of each sample. In our base model
there is no differential alternative splicing (DAS) between
samples or between treatments, βES

ij = 0 and βET
it(j) = 0.

Assuming the count data, mij, follows a Poisson dis-
tribution then due to the nestedness of samples within
treatments and exons within genes and by conditioning on
N = ∑

ij mij, the maximum likelihood estimate ofmij can
be written as

log m̂ij =
∑ns

k=1 xik
∑

h|g(h)=g(i) xhj∑ns
k=1

∑
h|g(h)=g(i) xhk

,

where ns is the number of samples [29]. As we have
assumed that the count data is Poisson distributed then
the data could be standardised using the Anscombe trans-
form [30] as follows:

Zij = 2
(√

Xij + 3
8

−
√
m̂ij + 3

8

)
.

The Anscombe transform will stabilise the variances if
the data is Poisson and make Zij approximately standard
normal and is a slight extension on the usual square root
variance stabiliser. If there is evidence that the data is not
Poisson another variance stabiliser should be used. The
next step is to estimate the covariance matrix, �E

g , of the
exon counts within gene g. Let Zg be a subvector of Z
which contains only the exons from gene g then we can
estimate �E

g as

�̂
E
g = ZgZT

g

ns
.

We expect the diagonal elements of �̂
E
g to be close to

one and the off-diagonals to be close to zero if there is no
DAS.
Following a similar method described for exon arrays

[26] we define our method for identifying data-specific
constitutive (DSC) exons as follows for each gene g sepa-
rately:

1. Apply Ward’s linkage hierarchical clustering [31] to
the exons with gene g using 1 − �̂

E
g as a distance

metric.
2. Cut the clustering dendrogram, determining the

cut-off height as below.
3. Evaluate all the resulting clusters using a scoring

metric—again, see below.
4. Identify the cluster with the highest score. The exons

in this cluster are the DSC exons for gene g.
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This process is illustrated in Figure 3.
Deciding at what height to cut the clustering dendro-

gram is not a trivial choice. As we are analysing well
annotated organisms we would like our method to per-
form similarly to the UI definition. To this end we choose
to cut the dendrogram at a value that maximises the corre-
lation of the exClust log fold changes with the UI log fold
changes. A value of twomaximised this correlation for the
Bullard dataset following a grid search and may be a rea-
sonable choice for poorly annotated data where a similar
strategy would not be appropriate.
There are also many potential choices of scoring met-

ric that could be used to select the subcluster of DSC
exons. As DSC exons should be present in all isoforms
of a gene, the DSC exons of a gene should hence have
the highest number of reads mapping to them per base
pair relative to the non DSC exons. Choosing the sub-
cluster of exons with highest average coverage (the aver-
age number of reads mapped per base pair to each
exon) may then be an appealing scoring metric. How-
ever this scoring metric can be affected detrimentally
if a subcluster has a lowly expressed exon that was
included by chance. An alternative scoring metric may
then be to choose the subcluster that has the single
exon with the highest coverage. However the efficiency
of the sequencing and mapping process can be influ-
enced by artefacts such as exon length, GC content or
whether the exon is an initial, internal or terminal exon
[32]. As a compromise between these two metrics we

select the subcluster that has the largest average cov-
erage of the two exons in each subcluster with largest
coverage.

Detection of differential alternative splicing
For the purpose of evaluating our method it would be use-
ful to know if the relative abundances of gene isoforms has
changed in two conditions. It is in this situation that com-
paring the overall expression of a gene in two conditions
will be confounded by the changes in lengths of the iso-
forms. In comparisons across samples and/or conditions,
it is standard to test for changes between the samples
or conditions in total gene expression; that is, to test for
“differential expression” of each gene. When we consider
alternative splicing and the multiple isoforms this can
produce, it is also of interest to test a gene for changes
between the samples or conditions in the relative abun-
dances of its isoforms.Wewill adopt the terminology used
in [33] and call such tests, tests for differential alterna-
tive splicing. One such test is the Differential Alternative
uSage Index (DASI) described in [34] which equates to a
Fisher’s exact test. DASI takes as input the exon counts
for a gene and tests for independence between condition
and relative exon expression and is appropriate for Poisson
distributed data.

Data
We will evaluate our method for identifying constitu-
tive exons on two publicly available datasets (MAQC and

Figure 3 Identifying constitutive exons. Plot of exons selected by exClust for a particular gene. A clustering dedrogram of the exons is formed by
apply Ward’s linkage hierarchical clustering to the distance matrix 1 − �E

g . Cutting the dendrogram at the dashed red line results in the creation of
three subgroups of exons (each box here contains a subgroup). For each subgroup the average coverage of the two exons in that subgroup with
the highest coverage is calculated. The subgroup with the highest average coverage (the shaded subgroup) is selected to represent the DSC exons
for this gene.
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Wang Data). These were chosen as both were well stud-
ied and clearly annotated. Both datasets have a relatively
high amount of replication. The MAQC data also has
qRT-PCR for a selected set of genes which aids in our eval-
uation by providing an accurate alternate estimation of
gene expression.

MAQC data
The data consists of two mRNA-Seq datasets from the
MicroArray Quality Control Project [27]. In this project,
Illumina’s Genome Analyser II high-throughput sequenc-
ing system was used to generate 35 bp reads from two
cell line mRNA samples: Ambion’s human brain reference
RNA (Brain) and Stratagene’s human universal reference
RNA (UHR). Both Brain and UHR were assayed in seven
lanes which we treat here as technical replicates. Fastq
files were downloaded from the NCBI short read archive,
submission number SRA010153. All reads were mapped
to the human genome (GRCh37 assembly) using bowtie
[35] ignoring all splice junction and multi-mapping reads.
Using the Ensembl human exon annotation [36], we can
summarise how many reads lie within each exon of each
gene for each sample. We say a read lies within an exon
if its left most base pair lies within that exon. Processing
of the data results in a matrix of counts where each row
corresponds to an exon for a gene and each column cor-
responds to one of the 14 (7 replicates × 2 conditions)
samples. Accompanying this data set is qRT-PCR data
from MAQC-1 which consists of four observations for
both Brain and UHR over 1021 genes. For each gene these
values were logged, averaged over the four replicate obser-
vations, and then differenced to give a single qRT-PCR
log-fold-change value for each of the 1021 genes.

Wang data
The Wang data [13] consists of ten diverse human tis-
sues and five mammary epithelial or breast cancer cell
lines where 32 bp reads were obtained using Illumina’s
Genome Analyser. We analyse seven samples of heart
and seven samples of skeletal muscle tissue. All samples
originated from the same donor and are treated as tech-
nical replicates. Fastq files were downloaded from the
NCBI short read archive, submission number SRA008403.
All reads were mapped to the human genome (GRCh37
assembly) using bowtie [35] ignoring all splice junction
andmulti-mapping reads. Using the Ensembl human exon
annotation [36], we can summarise how many reads lie
within each exon of each gene for each sample. We say a
read lies within an exon if its left most base pair lies within
that exon. Processing of the data results in a matrix of
counts where each row corresponds to an exon for a gene
and each column corresponds to one of the 14 (7 replicates
× 2 conditions) samples.

Evaluation study
In the following study we will primarily use the MAQC
data to evaluate the effectiveness of our method for iden-
tifying constitutive exons. To do this, we will assess the
concordance between the qRT-PCR data and the RNA-
Seq data when summarising the RNA-Seq data using four
different methods:

Union the union of the exons,
UI the UI definition [24],
Cufflinks sum of the FPKM values of all isoforms
estimated by Cufflinks for each gene [21],
exClust the union of the exons selected by the
clustering method.

The Union and exClust methods always select at least
one exon for each gene. The UImethod can fail to produce
any exons, we refer to these genes as empty. In these cases
no summarisation is possible. Log fold change values are
calculated as follows. For each gene and summarisation
method, when at least one exon is deemed to be consti-
tutive, counts are summed over the set of selected exons
and over replicates to produce a total count for each of the
two tissue types. The log ratio between the totals for each
tissue type is then used as the log fold change estimate for
each gene and method. Any gene with a log fold change
of positive or negative infinity for any method is ignored.
Cufflinks was implemented following a standard pipeline
[37] and setting the segment length flag in Tophat to 18
for the MAQC data and 16 for the Wang data. Log fold
changes for each gene were estimated for Cufflinks using
the difference of the log sum of the isoform FPKM values
of each condition.
QRT-PCR is often considered a gold standard for gene

expression measurement, even though it is highly reliant
on primer choice. If the primer probes for the qRT-
PCR data were generally chosen in DSC regions of the
genes, we expect that a better summarisation method will
show higher concordance with the qRT-PCR results. In
particular, as the quantification of the qRT-PCR is inde-
pendent of transcript lengths, a summarisation method
that removes the bias of differing transcript lengths should
offer improved concordance with the qRT-PCR data. We
will use two criteria to assess this concordance. Both
methods rely on the detection of differential alternatively
spliced (DAS) genes. A gene will be called DAS if it has
a Bonferroni corrected DASI p-value less than 0.05 [34].
The two criteria are:

Criterion 1: Log fold change values from the given
method are regressed against corresponding
qRT-PCR values. Residuals for all genes against this
fitted line are then computed. The top 20 DAS genes
are ordered by log qRT-PCR fold change, and their
residuals are plotted. An effective summarisation
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method should be unaffected by the length bias
produced from differential alternative splicing and
hence changes in residuals should be seen with the
Union summarisation for these DAS genes but not
the UI and exClust summarisations.
Criterion 2: In this second criterion we compute the
Pearson correlations between log fold change values
from the Union, UI and exClust summarisations, the
sum of the isoform FPKM of Cufflinks and the
qRT-PCR value. This is done separately for

• the DAS genes, and
• the non-DAS genes,

where only genes with a non-empty UI definition are
used. An effective method will produce a high
Pearson correlation score in all cases.

For theWang dataset, qRT-PCR data is not available. For
this data set we computed Pearson correlations between
the three summarisation methods.

Results and discussion
We developed a novel clusting algorithm, exClust, for
the estimatation of data-specific constitutive exons and
implement it in R language [38] in the package sydSeq
(can be found on http://www.maths.usyd.edu.au/u/jeany/
software.htm). We applied exClust on two publicly avail-
able RNA-Seq datasets together with Cufflinks and two
commonly used summarisation methods; Union and UI
and evaluate their performance. In summary, based on
two criteria exClust appears reliable in selecting sets of
exons that behave in a similar fashion to annotated con-
stitutive exons. However it typically includes three times
more reads than a method based purely on annotation.
This provides a large increase in statistical power.
We begin by examining the MAQC data. The Pois-

son assumption appears to hold for the data as seen in
Additional file 1: Figure S1. Of the 1021 genes which
had matched qRT-PCR data all 1021 genes had a non-
empty Union and exClust summarisation and 635 genes
had a non-empty UI summarisation. For all 635 genes with
non-empty UI, applying all the procedures resulted in the
use of

• 62,850,300 reads for the Union summarisation,
• 49,191,469 for the exClust summarisation, and
• 15,249,893 for the UI summarisation.

There is a successive loss of reads as eachmethodmakes
increasingly stricter assumptions.
Before we evaluate the effectiveness of these different

summarisation methods, we examine the conceptual links
between differential alternative splicing and differential
expression. In Figure 4 we plot the log fold changes of

the RNA-Seq data (y-axis) against the log fold changes
given by qRT-PCR (x-axis). There is a strong relationship
between the log fold changes of the RNA-Seq data and
those of the qRT-PCR data; this has been seen in previ-
ous analysis [24]. Highlighted are the 127 genes that DASI
suggests as being differentially alternatively spliced and
the genes whose UI definition is empty. Of the 127 DAS
genes, 42 had a non-empty UI definition. Of the genes
that were identified as being differentially spliced, around
one fifth of these (26 out of 127) had an absolute log fold
change greater two (up or down regulated by a fold change
of four). For these genes, if summarising using the Union
method these fold changes may be driven by a change in
the lengths of the transcripts due to splicing rather than a
change in the overall transcription rate of the gene. Rep-
resented by triangles, there are a large number of genes
whose UI definition is empty, with a reasonable propor-
tion of these potentially being differentially expressed as
well. Many of the these have not been identified as being
DAS and are potentially being excluded by the UI method
unnecessarily. The omission of such a large amount of
genes could potentially lead to the omission of relevant
biological signal.
In Figure 5 we explore Criterion 1. When we focus on

the top 20 differentially alternatively spliced genes we see
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Figure 4 Concordance plot. Concordance plot with the RNA-Seq
log fold changes on the y-axis and qRT-PCR log fold changes on the
x-axis. For the RNA-Seq data we use the union of all exons within a
gene to summarise our counts where a value of one is added to the
count of every gene. The black circles are those genes for which the
UI definition is non-empty. The blue triangles are the 386 genes for
which the UI definition is empty. The red dots are those genes that
our method identified as having a change in isoforms and had a
non-empty UI definition.
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Figure 5 Residual plot. After fitting a straight line through the plot
in Figure 4, this figure plots on the y-axis the residuals for the genes
identified as having a change in isoforms for three different
annotations, union of all exons (black dots), UI definition (blue
triangles) and exClust (red circles), and cufflinks (purple cross) ordered
by qRT-PCR fold change.

that whenever there is a large change in residuals of the
UI summarisation compared to the Union summarisa-
tion, this change is also seen with exClust and Cufflinks.
Due to this similarity in behaviour exClust appears to be
selecting a similar set of exons as those selected by UI
for these genes. These 20 genes demonstrate the impact
of summarising using the UI or exClust summarisations
as opposed to simply using the Union. Assuming all tran-
scripts are annotated, the UI method should always select
a set of constitutive exons for a gene if that gene has
exons that are conserved across all transcripts. While
exClust seems to behave reasonably consistently with the
UI method, exClust is defined for all of the genes while
this is far from true for UI.
We now consider Criterion 2. As quantification by

qRT-PCR is independent of transcript lengths, a sum-
marisation method that removes the bias due differing
transcript lengths should offer improved correlation with
the qRT-PCR data. A numerical summary of these corre-
lations is presented in Table 1. As we would expect, cor-
relations with qRT-PCR are higher for non differentially
alternatively spliced (non-DAS) genes than for differen-
tially alternatively spliced (DAS) genes for all methods.
For the DAS genes the Union summarisation appears to
be affected adversely by the change in transcript lengths
in comparison to the UI, Cufflinks and exClust summari-
sations. When there are differential alternative splicing
events, exClust performs in a similar way to UI though
in the absence of these events, exClust is similar to the

Table 1 MAQC correlations

DAS qRT-PCR Union UI exClust Cufflinks

qRT-PCR 1.0000 0.8292 0.8462 0.8651 0.8578

Union 1.0000 0.9373 0.9208 0.9322

UI 1.0000 0.9868 0.9764

exClust 1.0000 0.9777

Cufflinks 1.0000

non-DAS qRT-PCR Union UI exClust Cufflinks

qRT-PCR 1.0000 0.9435 0.9416 0.9442 0.9360

Union 1.0000 0.9917 0.9995 0.9868

UI 1.0000 0.9917 0.9806

exClust 1.0000 0.9869

Cufflinks 1.0000

A table showing two subsets of genes from the MAQC data: differential
alternatively spliced genes (DAS) and not differentially alternatively spliced
genes (non-DAS). For each set of genes the correlations between Union, UI,
exClust and Cufflinks log fold changes are given. The given correlations are only
calculated on the subset of genes for which the UI definition is non-empty and
have finite log fold change.

Union summarisation. This makes the performance of the
exClust summarisation more robust, performing well on
all tested sets of genes. Cufflinks performs worst when
compared to qRT-PCR for the non-DAS genes. While
this is probably not helped by our unconventional imple-
mentation of Cufflinks, this lack of performance is driven
mostly by genes with low counts in one condition. This
puts Cufflinks at a disadvantage on two fronts; estimation
of transcripts is difficult in these situations of low expres-
sion and due to the low expression the log fold changes
for the isoforms of these genes are unstable and hence the
aggregation of them is unstable too.
Additional file 1: Figures S3 and S4 provide examples of

genes for which the UI summarisation appears to not be
selecting DSC exons.While neither of these genes provide
conclusive evidence against the UI summarisation, the log
fold changes of the exClust summarisation are closer to
both the qRT-PCR and Cufflinks log fold changes than the
log fold changes of UI are.
Similar outcomes were found with the Wang dataset.

First there are large differences between the number of
reads summarised by each method:

• 13,949,371 reads for Union summarisation,
• 10,892,133 for exClust summarisation, and
• 4,138,796 for UI summarisation.

Correlations for the three summarisation methods and
Cufflinks can be found in Table 2. For the differen-
tially alternatively spliced genes the correlation between
exClust and the Union summarisation decreases to 0.968
from 0.999 for the non-DAS genes. Suggesting that the
Union summarisation is affected by differing transcript
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Table 2 Wang correlations

DAS Union UI exClust Cufflinks

Union 1.0000 0.9488 0.9684 0.9884

UI 1.0000 0.9252 0.9488

exClust 1.0000 0.9675

Cufflinks 1.0000

non-DAS Union UI exClust Cufflinks

Union 1.0000 0.9522 0.9992 0.8990

UI 1.0000 0.9520 0.8753

exClust 1.0000 0.8986

Cufflinks 1.0000

A table showing two subsets of genes from the Wang data: differential
alternatively spliced genes (DAS) and not differentially alternatively spliced
genes (non-DAS). For each set of genes the correlations between Union, UI,
exClust and Cufflinks log fold changes are given. The given correlations are only
calculated on the subset of genes for which the UI definition is non-empty and
have finite log fold change.

lengths. The correlation between the Union and UI sum-
marisations is 0.952 for the non-DAS genes which sug-
gests that either there are still a large number of DAS
gene in this set which were not detected or that the log
fold changes of the UI summarisation have become less
stable due to the large reduction in included reads. Cuf-
flinks is less concordant with the Union summarisation in
the set of non-DAS genes, 0.8990, than the DAS genes,
0.9884. Again, while this is probably not helped by our
unconventional implementation of Cufflinks, this lack of
concordance in the non-DAS genes appears to be driven
mostly by genes with low counts in one condition.
We have implemented the exclust method in the R

language [38], in the package sydSeq. This can be found
at http://www.maths.usyd.edu.au/u/jeany/software.htm.
ExClust takes a matrix of exon counts as input and hence
does not require large amounts of memory for operation.
It does however perform clustering on each gene sepa-
rately which, in an unparallised code, does take awhile.
The Wang dataset took approximately three hours to
process on a standard laptop and the R session did not
require more than a gigabyte of memory.

Conclusions
When working at a gene level, between-treatment dif-
ferential alternative splicing could cause problems with
an expression analysis. The concept of constitutive exons
helps to resolve these problems by finding exons which
are common to all isoforms of a gene. We have proposed
a novel approach to estimating the constitutive exons in
a gene, using both empirical and annotated data. Impor-
tantly, we allow constitutive exons to be data-specific.
That is, we define data-specific constitutive exons as exons
which are common to all the isoforms of a gene which are

present (in significant abundance) in the current exper-
imental samples. This new approach will facilitate the
study of novel gene models and improve expression anal-
ysis.
For simplicity, in the development of these methods we

have modelled the read count data using standard Pois-
son assumptions. While the technical variability between
samples should be Poisson, most experiments have an ele-
ment of biological variability as well and hence RNA-Seq
data is often modelled as an overdispersed Poisson. Mod-
elling this overdispersion is beyond the scope of this paper.
A more sophisticated methodology would model this
overdispersion and standardise accordingly [39,40]. How-
ever, as our model does fit an interaction term between
gene count and sample, a large amount of the biologi-
cal variability observed in a typical RNA-Seq differential
expression analysis may be accounted for.
Our approach for empirically estimating the data-

specific constitutive exons within a gene can be seen
to perform favourably when compared with the current
alternative. Our method provides the performance bene-
fits of the UI definition without the dramatic decrease in
total read count.

Additional file

Additional file 1: Includes additional figures demonstrating the
validity of the Poisson assumption and the performance of UI and
exClust on two genes.
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