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Abstract

structures and functional gene interactions.

chance.

Background: Genes located in the same chromosome region share common evolutionary events more often than
other genes (e.g. a segmental duplication of this region). Their evolution may also be related if they are involved in the
same protein complex or biological process. Identifying co-evolving genes can thus shed light on ancestral genome

Results: We devise a simple, fast and accurate probability method based on species tree-gene tree reconciliations to
detect when two gene families have co-evolved. Our method observes the number and location of predicted
macro-evolutionary events, and estimates the probability of having the observed number of common events by

Conclusions: Simulation studies confirm that our method effectively identifies co-evolving families. This opens
numerous perspectives on genome-scale analysis where this method could be used to pinpoint co-evolving gene
families and thus help to unravel ancestral genome arrangements or undocumented gene interactions.

Background
Species from the same ecosystem may share common
environmental factors (e.g. related to the local climate
or to the arrival of new species in the ecosystem) or be
interdependent, and their evolution can be related. In the
vast majority of cases, the footprint of this dependence is
minimal, but in some cases, such as predator-prey, host-
parasite or symbiotic relationships, species influence each
other so much that their co-evolution can be detected
[1-3]. Similarly, nucleotides and amino acids that are
located close to one another on the genome share com-
mon local factors (e.g. specific nucleotide composition
bias or underlying mutation rates due to the functional
importance of the locus) and influence each other (e.g.
because they are in the same codon, part of the same active
site of a protein or because one is part of a transcription
factor controlling the transcription level of the other).
The problem of detecting co-evolution at the amino acid
level has been extensively studied recently ([4,5]; among
others). However, at a broader level, neighbouring genes
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can also co-evolve, sharing common evolutionary events
such as segmental duplications [6] and local evolutionary
factors such as the proximity of recombination hotspots
or centromeres [7]. Protein interactions, e.g. being part
of the same protein complex or biological pathway, can
also induce co-evolution at the gene level. Relatively little
work has been done on detecting co-evolution at the gene
level [8-12].

To detect gene co-evolution, one has to observe it in
a significant number of species. As more and more full
genomes/transcriptomes are sequenced, more raw data
needed to detect co-evolving genes becomes available.
Being able to accurately detect co-evolving genes would,
among other things, help to (a) pinpoint possible func-
tional interdependence, allowing us to annotate genomes
from non-model species; (b) infer ancestral proximity
among genes, allowing us to reconstruct ancestral genome
arrangements [11]; or (c) cluster genes to reconstruct the
Tree of Life in a divide-and-conquer framework [13,14].

In [12], Cohen et al. proposed a probabilistic method
to detect co-evolutionary interactions from phylogenetic
profiles, using gain and loss events. They used their
method to study a group of 4593 prokaryotic gene fam-
ilies and construct a co-evolution network. This yielded
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several clusters of genes which corresponded to identifi-
able functional pathways.

In this paper, we propose a novel probabilistic method
to detect co-evolution. Our method differs from that of
[12] in that it is based on species tree-gene tree rec-
onciliations. Reconciliation methods construct a map-
ping between a gene tree and a species tree to explain
their incongruence by macro-evolutionary events such
as speciations, gene duplications, horizontal gene trans-
fers etc. Several reconciliation methods have recently
been developed following parsimonious or probabilistic
paradigms (see [15] for a review). By using reconcilia-
tions, we are able to distinguish between different types
of events and take into account uncertainties on such
events [16,17].

Our method has advantages over that of [12] in that (a)
it can measure co-evolution between genes with small or
different numbers of events; (b) it can take into account
several possible evolutionary scenarios for each gene,
reflecting inference uncertainties; and (c) it uses a theo-
retical model-based framework to compute p-values for
the co-evolution score, rather than bootstrapped simula-
tions as done in [12]. Simulations show that our method
is effective in detecting co-evolution between genes, even
when it is relatively weak. It is also time-efficient, which
allows us to conduct genome scale analysis to search for
undocumented co-evolution among thousands of gene
families.

Preliminaries

Let T = (V(T),E(T)) be a (rooted) tree with labelled
leaf vertices. We denote the leaves of T by L(T) and the
(multi)set of all labels of those leaves by £(T). Given a ver-
tex x € V(T), we denote by x, its parent and by y < x the
fact that a vertex y is a descendant of x.

We define a gene tree G as a tree where each leaf
represents an extant gene. Likewise, we define a species
tree S as a tree in which each leaf represents a dis-
tinct extant species. The labels of the leaves of S are
unique since they are the identifiers of these species. In
gene trees, internal vertices may represent various evolu-
tionary events (e.g. speciation, duplication), while in the
species tree they all represent speciation events. In this
paper, we suppose that gene and species trees are rooted
and binary. Finally, we assume that the genes of G come
from the genomes of species present in S, in particu-
lar that each label of £(G) appears in £(S) (denoted by
L(G) E L(9)).

A species tree S is said to be dated if it is associated to a
function 65 which represents the time separating a vertex
from the current time, i.e. s : V(S) — R™ such thatify <
x then Os5(y) < 6s(x) and if x € L(S) then Os5(x) = 0. Using
a subdivision of S rather than S itself when computing rec-
onciliations has been proven to ensure time-consistency
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of gene transfers in polynomial time [18]. The subdivi-
sion S’ of S together with an associated time function
Os is constructed as follows: firstly, for each node x €
V(S) \ L(S) and each edge (y,,y) € E(S) s.t. Os(yp) >
Os(x) > Os(y), an artificial node w is inserted along the
edge (yp,¥), with 0y (w) = 6s(x); secondly, for nodes x €
V(S') corresponding to nodes already present in S, we set
Os (x) = Os(x).

In this paper, we use the combinatorial reconciliation
model of Doyon et al. [18], called the DT model. We refer
the reader to this paper for a formal definition of recon-
ciliations. This model considers (as possible macro-events
that shape the genome) speciations, duplications, trans-
fers and losses of genes. For algorithmic reasons losses
are never considered alone, so the atomic events of this
model are: a speciation (S), a duplication (D), a trans-
fer (T), a transfer followed immediately by the loss of
the non-transferred child (TL), a speciation followed by
the loss of one of the two resulting children (SL), a no
event (@) that only reflects the fact that a gene lineage
has crossed a time boundary, and a contemporary event
(C) that associates an extant gene to its corresponding
species.

The method of [18] calculates the most parsimonious
reconciliation under this model. However, there often
exist several most parsimonious reconciliations. Those
reconciliations constitute what we call a reconciliation
space, which can be efficiently stored in the reconciliation
graph introduced by Scornavacca et al. [16].

Methods
In this section we present our new methodology to detect
whether or not two gene familes have co-evolved. We take
as input two gene trees G; and Gy and a dated tree S such
that £(G1) E L(S) and L(G2) E L(S).

Our co-evolution detection method consists of three
main steps:

1. We reconcile each of the two gene trees to S’ (the
subdivision of S) to produce two corresponding
reconciliation spaces. Event sets are then extracted
from these two spaces. Details are given in the
“Computing the weighted event sets” section.

2. We calculate a co-evolution score which quantifies
the similarity between the two event sets. Details are
given in the “Computing the co-evolution score”
section.

3. We calculate the p-value of the calculated score
under a model of independent evolution. If this
p-value is less than an appropriate threshold
(reflecting the acceptable error rate for false positive
co-evolution detection) we consider that G; and G,
co-evolved. Details are given in the “Computing the
p-value” section.
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Computing the weighted event sets

We use the method of [16] to reconcile each of the two
gene trees to the subdivided species tree, using equal
costs for D, T and L events. This yields two reconciliation
spaces RC; and RCy which contain all of the most parsi-
monious reconciliations between G; (respectively G2) and
S. By taking the multiple reconciliations of RCy and RC,
into account, we can explore a broad set of possible events,
assess their reliability and remove the danger of artifacts
arising in a single reconciliation.

Each reconciliation, according to the DT model, yields
a set of events with types from {S,D, T, TL,SL, @, C}.
However, S and C events are determined by the species
tree, and @ events are artifacts due to the use of sub-
division. Therefore, coincident events of these types are
not an indication of co-evolution, and we discard them.
Likewise, we consider SL events only as L events. Further-
more, TLL events are considered as two separate T and L
events.

We are now left with only D, T and L events which
we extract from the reconciliation spaces. These events
are characterised by their type and their position in the
considered gene and species trees. Here, we “undo” the
subdivision and consider the position of the event in
the original species tree S rather than the subdivided
tree S'.

For each branch b € E(S), gene u € V(G;) and event
type E € {D,T,L}, we define w1 (b, u)g to be the frac-
tion of reconciliations of RCj in which u is mapped to
an event of type E on branch b. Note that this means
that transfers departing from the same branch of S but
reaching different branches are considered identical, for
simplicity (otherwise there are too many possible transfers
to be time-efficient in later computation). Then we define
the set

Wibe = ) twibwg),
ueV(G)

which contains the weights of all events of type E on
branch b.

Since the frequency of an event over most parsi-
monious reconciliations has been shown to be a good
indicator of its reliability [17], we use wi(b,u)g as an
estimate of the probability that this event has really
occurred in G;. This provides us with a set of pos-
sible events together with their probabilities according
to Gi. Another set is obtained from RC; in a similar
way.

Note that these weighted event sets can be obtained
from any reconciliation method, for example by taking
into account the set of Near-optimal Parsimonious Rec-
onciliations (NPRs, see [17]), rather than focusing only
on most parsimonious reconciliations. Having a set of

Page 3 of 9

reconciliations is preferable, since it reflects the inherent
uncertainty of reconciliation inference and event predic-
tion. It also allows us to have probability values associated
to each event, whereas a single reconciliation only has
the presence or absence of events. If only given a sin-
gle reconciliation, one can also obtain a set of associated
(sub-)optimal reconciliations, e.g. reconciliations that are
reachable by a small number of the operators described
in (Chan, Ranwez, Scornavacca: Exploring the space of
gene/species reconciliations with transfers. Submitted to
J Math Biol).

In fact, we use reconciliations only as a tool to pro-
duce the weighted event sets, which are the input to
the remainder of the method. In theory, any method
which produces a weighted set of genetic events (even
if they are not DTL events) can replace this step. We
use reconciliations because they provide a straightforward
way to calculate the event sets, and there are already
efficient algorithms for computing the reconciliation
spaces.

Computing the co-evolution score

Events of the same type which occur at approximately the
same time in both G; and Gy support a hypothesis of co-
evolution. Therefore, we calculate a statistic which mea-
sures the amount of co-evolution based on the number of
such events which are inferred from the reconciliations.

Given two reconciliations — one for G; and one for
Gy — we could define the co-evolution score to be the
number of D, T or L events which occur in both reconcil-
iations on the same branch.

However, since we have computed a set of weighted
events for each gene resulting from several reconcili-
ations, the co-evolution score between G; and G is
computed as follows:

1. We consider the weight associated to each event
w1 (b, u)R to be the probability that this event has
occurred in Gi. We make the (strong) assumption
that any such event is independent from any other
event represented by w;(b', ') fori =1,2.

2. For all branches b € E(S) and element types E, we
calculate the probability of having 0, 1, ..., n events
of type E on b, where n = |W (b)g|. This is done via
recursion as follows: suppose Wi (b)g = {p1,...,Pu}-
Let X; be a variable representing the number of
actual events from the first i possible events
represented in this set. Then fori =1,...,n and
x=0,...,i, we have

P(X; =x) = piP(Xi-1 = x—1D+A—p)PXi—1 = %),

where the initial conditions are P(X; = —1) = 0 and
P(Xo = x) = I(x = 0).
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3. We do the same for Gy, using the notations Y and m
instead of X and n. The variables X, and Y,
represent the total number of actual events of type E
on this branch.

4. For all branches b of S and element types E, we
compute the expected number of events in common:

E(number of events in common)

=" min(x, )P(Xy = )PV = 3).

x=0 y=0

We define the co-evolution score between G; and Gy
given S as the sum of this value over all branches of S
and event types.

As an example, suppose that for a particular branch
b € E(S), we have Wi (b)p = {1,0.5,0.5} and Wh(b)p =
{0.6,0.2}. The distributions of X3 and Y for this combi-
nation (b,D) are calculated using the recursion formula
above as detailed in Tables 1 and 2.

The contribution of (b, D) to the co-evolution score is

contribution(b,D) = 0(0 x 0.32 + 0 x 0.56 + 0 x 0.12
+0.25 x 0.32 4+ 0.5 x 0.32 + 0.25
x 0.32) + 1(0.25 x 0.56 4 0.25
x0.12 + 0.5 x 0.56 4 0.25 x 0.56)
+2(0.5 x 0.12 4+ 0.25 x 0.12)

=0.77.

Computing the p-value

The co-evolution score measures the dependence bet-
ween two gene trees given a species tree. However, its dis-
tribution is highly dependent on the number of events in
each reconciliation space. In order to assess the signif-
icance of the score, we compute the p-value associated
to it.

To do so, we count the average number of events in
each event set, which we denote (rounded up) by N; and
Nj. For each branch b € E(S) and event type E, we
call the combination (b,E) a bin, and denote by B the

Table 1 Example probability calculation 1

Gy 0 1 2 3
Xi 0 1

X2 0 0.5 0.5

X3 0 0.25 0.5 0.25

Probabilities of having 0,1,2,3 duplications in Gy on a branch b € E(S) with
Wi (b)p=(1,0.5,0.5}.

Page 4 of 9
Table 2 Example probability calculation 2
G; 0 1 2
Vi 04 0.6
s 0.32 0.56 012

Probabilities of having 0,1,2 duplications in G, on a branch b € E(S) with
W, (b)p=1{0.6,0.2}.

(arbitrarily) ordered vector containing all possible bins,
over all branches b of the tree S and the 3 element types
of E. We denote the lengths (representing duration) of the
respective branches in S by /1, ..., Iy, where N = 3|E(S)|
is the number of bins. In this sequence, each branch length
will occur 3 times, once for each event type.

We compute the p-value under a model that assumes
that the genes do not co-evolve and all D, T and L
events are distributed at random among the elements of
B, with probabilities proportional to the branch lengths.
Using a theoretical model allows us to efficiently cal-
culate p-values without simulations which rely on boot-
strapped data (as was done in [12]). This increases the
reliability of the calculations and mitigates the influence
of the independence assumption made when computing
the co-evolution score (previous section, step 1 of the
procedure).

Definition 1. We define f (x; n1, ny, n) to be the proba-
bility that, if ny and ny events are randomly placed on the
first n bins of B, there will be at least x events in common
between the two event sets.

Given a co-evolution score of X, our p-value is there-
fore f(X;N1,Na, N). We again calculate this statistic by
recursion. Firstly, we define

" -1
n = (Z zi) In
i=1

to be the probability that an event is randomly assigned to
bin # out of the first # bins, and

BPr(x;m,n) = (n) a1 —m)"
x

to be the binomial probability mass function with param-
eters # and 7. Then we have the initial conditions

fsn,n,n) = 1ifx <0,

f(xesny,ny,n) = 0if x > min(ny, ny),

fxn1,m2,1) = I(x < min(ny, n)).
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The recurrence is

min(ny,12)

Y [BPr(i s, n)BPr(i; i o)
i=0

fxny,m,n) =

X fx—im —ing —i,n—1)

ni

+ Y BPr(j; my, n1)BPr(i; my, 1)
j=i+1

Xfx—in —jny—i,n—1)

n
+ Y BPr(i; iy, m)BPr(ji my, 1)
j=it1

x fx—ism —i,ny —jn—1)].
(1)

The variable i in the outside sum denotes the num-
ber of events in common between the two event sets
in bin n. The first term considers the case where there
are exactly i events in this bin in both sets. The second
term accounts for the case where the first set has j > i
events in this bin, but the second set only has i such
events — the number of events in common is still i. The
third term considers the mirrored version of the second
term.

To calculate f(X; N1, Ny, N), we calculate f(x; ny, np, n)
forall x < X,m; < Ni,ny < Np,m < N, in order
of increasing n. We can do this because (1) expresses
f(x;m1,n9,n) in terms of f values where the fourth
argument is # — 1 and the other arguments are not
increased. The lower f(X; N, Ny, N) is, the stronger the
evidence against the hypothesis that the genes did not
co-evolve. To test the co-evolution hypothesis, we com-
pare this number to a pre-defined threshold level, in
general 0.05.

Note that the function f itself depends only on the
species tree; only its arguments depend on the gene trees
and co-evolution score. Because of this, we only have to
perform the recursion once for every species tree, with
the arguments set to the maximal values encountered in
the set of genes. This allows us to quickly compute the
values of the function for many genes which belong to the
same species (which occurs, for example, in our simula-
tions), and so process whole genome analysis to scan for
undocumented gene family co-evolution.

Results and discussion

In this section, we first describe the simulation protocol
used to mimic gene family co-evolution along a species
tree. We then provide and discuss the results obtained by
our method on this dataset, which confirm its ability to
detect when two gene families co-evolve.
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Gene tree simulation

We start with a dated species tree S. Every branch of S
has an associated activity a — representing the overall
rate at which D/T/LL events occur on this branch — and
specific rates for each individual event type rp,rr, 7L,
with a = rp + rr + r. We simulate two gene trees
simultaneously, with a parameter ¢ €[ 0, 1] (which we call
the co-evolution parameter) representing the dependence
between the two genes. Informally, an event in one gene
tree has a probability ¢ of also occurring in the other
gene tree. For example, if ¢ = 1 then the two trees
must be identical, whereas if ¢ = 0 they are completely
independent.

To simulate the gene trees, we use a modified birth-and-
death process which explicitly controls the co-evolution
between the two genes. At the beginning of the process,
the two genes are located at the root of S and paired
(identified) to each other. At any time, the time £, of
the next D/T/L event in every existing unpaired gene
is calculated by simulating an exponential variable with
parameter equal to the activity of the branch (x,y) con-
taining that gene. For gene pairs, this activity must be
multiplied by a factor of l%c for reasons that will be
explained shortly. Then, if £, < 05(y), the next event
is determined to be a C event if y is a leaf, and an S
event otherwise. If £, > 0s(y), the next event is a
D/T/L event and we rely on the relative rates rp, rr, rL
to determine its type. If this event affects a gene pair,
then:

e Ifitisan S, both genes in the pair must speciate. The
left (respectively right) child of one resulting gene is
then paired to the left (resp. right) child of the other.

e IfitisalD, the event will occur in one gene of the pair
with probability 1, and in the other with probability c.
If it occurs in both genes, the children are paired to
each other as in the S case. If it occurs in only one
gene, one of the resulting children is paired to the
other gene (it does not matter which child).

e Ifitisa T, we treat it the same as for a D event, with
the added conditions that if it occurs in both genes,
the transfer targets must be the same, and if it occurs
in only one gene, the child which remains in the
originating branch is paired to the other gene.

e Ifitisan L, the event will occur in one gene of the
pair with probability 1, and in the other with
probability c. If it occurs in only one gene, the other
gene is now unpaired.

It is now clear why the activity of a gene pair above is
multiplied by I%C: each D/T/L event in a pair results in
1+ c actual gene events on average between the two trees.
To achieve the correct marginal activity in each gene tree,
we must multiply by the correcting factor.
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We repeat this process until we reach the time of the
extant species. This produces two (correlated) gene trees.
An example of this process is given in Figure 1.

Simulation results

We ran simulations using a phylogeny of 37 proteobacte-
ria over a period of 500 million years as a species tree. We
generated duplication, transfer and loss rates for each sim-
ulated gene independently, using the same scheme as [19]:
the loss rate was randomly chosen in the interval [0.001,
0.0018], where the units are events per gene per million
years; the ratio between the “birth” rate (sum of the dupli-
cation and transfer rates) and the loss rate was randomly
chosen in the interval [0.5,1.1]; finally the proportion of
the duplication rate to the birth rate was randomly cho-
sen in the interval [0.7,1]. Both the species tree and the
event rates were chosen in accordance with real dataset
observations [20].

We simulated 10000 pairs of gene trees for each of the
values of the co-evolution parameter ¢ € {0,0.1,...,1}.
We then applied the procedure described in the
“Methods” section to calculate the p-values for the co-
evolution score. The results for ¢ = 0,0.2,0.5,0.7 are
shown in Figure 2.

We observe that the p-value 1 is over-represented in all
plots. This arises from the granularity of the simulations.
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More specifically, the p-value does not come from a con-
tinuous distribution, but from a variety of discrete distri-
butions depending on N; and N3, each with a moderate
number of possible values. 1 is always one of these val-
ues (for when X = 0, i.e. there are no events in common),
and so it is over-represented. This effect is more notice-
able as ¢ becomes smaller, because the likelihood of having
no event in common grows larger.

It is apparent from Figure 2 that the p-value statistic is
effective in distinguishing between co-evolving gene fam-
ilies and independent gene families. Even with quite low
values of ¢ such as 0.2, the distribution of the p-values is
noticeably skewed towards 0. At higher levels of ¢, almost
all the p-values are very close to 0.

If our underlying model is correct, then the case ¢ = 0
in Figure 2 should have a uniform distribution. Even if
we ignore the p-values of 1, our sample distribution is
clearly not uniform (a x? goodness-of-fit test to a uniform
distribution rejects this hypothesis with a p-value of less
than 1071°). This is almost certainly due to the fact that
our model assumptions are not an exact match for reality
(or, indeed, our simulation protocol). However, the distri-
bution is close enough to uniform that our assumptions
appear to be reasonable. In fact the false positive rate for
a threshold of 0.05 is only 0.024, less than expected under
the underlying model.

o, 2
(a) > \

N

0@ 0@
B

AR AL
AR A A

Figure 1 Example simulation. Example of simulating a pair of correlated gene trees, with 0 < ¢ < 1. (@) The dated species tree. (b) The first
speciation happens at date 2. (c) A duplication occurs at date 1.42. This duplication only occurs in the left gene tree; the right child of the
duplication is paired to the original branch in the right gene tree. (d) Another speciation happens at date 1. (e) A transfer occurs in both trees at
date 0.55. (f) There are no further events and we reach the time of the leaves (date 0). (g) The resulting gene trees.
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Figure 2 p-value distributions. Sample distributions of the p-value forc =0, 0.2,0.5,0.7.
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In Figure 3, we plot the power of the test (the true posi-
tive rate) for various values of the co-evolution parameter.
As expected the power rises with ¢; it is greater than 0.8
(a standard threshold value for power measurement) for
approximately ¢ > 0.52.

Further simulations (which we do not show the results
of here) indicate that varying the event costs used in
the reconciliation algorithm does not significantly impact
these results.

Comparison with the method of Cohen et al.

For a complete assessment of the effectiveness of our
co-evolution detection algorithm, we compare it to the
method of Cohen et al. [12] (henceforth referred to as
Cohen’s method) on our simulated data.

We must stress that the two methods accept differ-
ent input formats; while our algorithm takes gene trees
as input, Cohen’s method only uses phyletic patterns of
gene presence/absence in extant species, which can be
extracted from the gene trees but do not contain all of
their information. As such, we should expect our method
to outperform Cohen’s method as it uses more informa-
tion. On the other hand, the fact that our method requires
more information as input is not a huge drawback, as

full gene tree information is becoming more and more
available in recent times.

We ran Cohen’s method on smaller test sets (1000
gene tree pairs) of simulated data for the co-evolution
parameter values ¢ = 0,0.2,0.5,0.7; the smaller size was

o | 60
- —
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O/
©
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© O/
—_ o. T
[}
g /
o
o
< o}
S 7 ////
e
Y]
o | ////
o
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0.0 0.2 0.4 0.6 0.8 1.0
c
Figure 3 Test power. Power of the test for various values of c.
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for efficiency reasons and is not expected to skew the
results. Firstly, because Cohen’s method only compares
genes with “exchangeability” (number of inferred gain/loss
events) greater than some minimum value, only a small
proportion (less than 15%) of the gene families were actu-
ally compared. Our method, which can compare any two
gene trees, is clearly superior in this respect.

Even considering only those families which are com-
pared by Cohen’s method, our method is still more sensi-
tive. In Table 3 we show the proportion of gene tree pairs
which were detected to have co-evolved, for each value of
c¢. While we do have a slightly higher false positive rate, our
method detects existing co-evolution more often for every
value of c. We feel confident in asserting that if gene trees
are available, our method performs better than Cohen’s
method.

Conclusion

In this paper, we have devised an algorithm to detect and
measure the strength of co-evolution between two gene
families. It takes two gene trees as input, and uses their
reconciliations to a common species tree to assess the co-
evolution of the gene families. Simulation studies, and a
comparison with the method of Cohen et al. [12], show
that this test is an effective way of detecting co-evolution.

The detection of strong co-evolution among gene fam-
ilies can signal either a proximity or a functional rela-
tionship between the families. If working on a fully
sequenced genome, the identification of co-evolution
signals between distant genes could pinpoint ancestral
genome rearrangements and/or strong functional links
between those genes. If the genome is not fully sequenced,
further study may be required to investigate the reason
for co-evolution and to distinguish between proximity and
functional relationships.

Further work includes the design of a clustering method
based on co-evolution scores to provide biologists with
clusters of co-evolving gene families rather than just pair-
wise co-evolution information. Another possible avenue
for exploration includes extending the current method to
include 3 or more gene families. We also plan, in col-
laboration with experts in bacterial evolution, to apply
this method to the bacterial gene trees available in

Table 3 Comparison with the method of Cohen et al. [12]

c Number of pairs
compared by
Cohen’s method

Proportion of
pairs with p-value
< 0.05 (Cohen’s

Proportion of pairs
with p-value < 0.05
(our method)

(out of 1000) method)
0 68 0 0.024
02 80 0.08 0.247
0.5 133 0.56 0.762
0.7 144 0.92 0.930
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the HOGENOM database [21] to detect existing co-
evolution among distant genes and to use this informa-
tion to provide functional insights on un-annotated gene
families.
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