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Abstract

Background: Hidden Markov models are widely used for genome analysis as they combine ease of modelling with
efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time
complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome
analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood
hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an
efficient hidden Markov model library.

Results: We have built a software library for efficiently computing the likelihood of a hidden Markov model. The
library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a
pre-processing step our library identifies common substrings and builds a structure over the computations in the
forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of
concrete hidden Markov models so one preprocessing can be used to run a number of different models.
Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real
and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8
minutes compared to 9.6 hours for the previously fastest library.

Conclusions: We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM,
with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/.

Background
Hidden Markov models (HMMs) are a class of statisti-
cal models for sequential data with an underlying hidden
structure. They were first introduced to bioinformatics
in the late 1980s [1] and have since then been used in a
wide variety of applications, for example for gene find-
ing [2], modelling of protein structures [3,4], sequence
alignment [5] and phylogenetic analysis [6-9]. Because of
their computational efficiency HMMs are one of the few
widely used statistical methodologies that are feasible for
genome wide analysis where sequences often are several
hundred million characters long. With data sets of this
size, however, analysis time is still oftenmeasured in hours
and days. Improving on the performance of HMManalysis
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is therefore important to keep up with the quickly growing
amount of biological sequence data to be analysed, and to
make more complex analyses feasible.
The most time consuming part of using hidden Markov

models is often parameter fitting, since the likelihood of
a model needs to be computed repeatedly when opti-
mising the parameters. Depending on the optimisation
strategy, this means that the forward algorithm (or both
the forward and the backward algorithm) will be evalu-
ated in potentially hundreds of points in parameter space.
Optimising the forward algorithm is therefore the most
effective strategy for efficient HMM implementations.
The forward algorithm can be seen as a sequence of

vector-matrix operations along an input sequence. This,
however, can be rewritten as a sequence of matrix-matrix
operations. This replaces an O(n2) time vector-matrix
operation with an O(n3) time matrix-matrix operation
but opens up possibilities for changing the evaluation
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order since different parts of the computation now can
be handled independently. This then makes it possible to
reuse computations whenever the input contains repeated
substrings [10] or to parallelise the algorithm across a
number of independent threads [11].
The main contribution of this paper is a software

library that uses both of these ideas to greatly speed
up the forward algorithm. We present a preprocessing
of the observed sequence that finds common substrings
and constructs a data structure that makes the eval-
uation of the likelihood close to two orders of mag-
nitude faster (not including the preprocessing time).
The preprocessing of a specific sequence can be saved
and later reused in the analysis of a different HMM
topology. The algorithms have been implemented in a
C++ library, zipHMMlib, available at http://birc.au.dk/
software/ziphmm/. The library also provides an interface
to the Python programming language.
Much of the theory used in zipHMMlib was also devel-

oped by Lifshits et al. [10], but while they developed the
theory in the context of the Viterbi algorithm, where the
preprocessing cannot be reused, we concentrate on the
forward algorithm and introduce a data structure to save
the preprocessing for later reuse. We furthermore extend
the theory to make the computations numerically stable
and introduce practical measures to make the algorithm
run fast in practice and make the library accessible.
Our implementation is tested on simulated data and

on alignments of chromosomes from humans with chim-
panzees, gorillas and orangutans analysed with the
CoalHMM framework [7,8,12], a framework which uses
changes in coalescence trees along a sequence align-
ment to make inference in population genetics and
phylogenetics and which has been used in a number of
whole-genome analyses [13-16]. Using an “isolation-with-
migration” CoalHMM [17], we train the model using the
Nelder-Mead-simplex algorithm and measure the prepro-
cessing time and total optimisation time. Looking at the
time required to perform the entire training procedure, we
achieve up to 78 times shorter wall-clock time compared
to the previously fastest implementation of the forward
algorithm. Even for data of high complexity and with few
repetitions we achive a speedup of a factor 4.4.

Implementation
HiddenMarkov models
A Hidden Markov Model (HMM) describes a joint prob-
ability distribution over an observed sequence Y1:T =
y1y2 . . . yT ∈ O∗ and a hidden sequence X1:T =
x1x2 . . . xT ∈ H∗, where O and H are finite alphabets
of observables and hidden states, respectively. The hid-
den sequence is a realisation of a Markov process which
explains hidden properties of the observed data. We can
formally define an HMM [18] as consisting of:

• H = {h1, h2, . . . , hN }, a finite alphabet of hidden
states;

• O = {o1, o2, . . . , oM}, a finite alphabet of observables;
• a vector � = (πi)1≤i≤N , where πi = Pr (x1 = hi) is

the probability of the model starting in hidden state
hi;

• a matrix A = {aij}1≤i, j≤N , where
aij = Pr

(
xt = hj|xt−1 = hi

)
is the probability of a

transition from state hi to state hj;
• a matrix B = {bij}1≤j≤M

1≤i≤N , where
bij = Pr

(
yt = oj|xt = hi

)
is the probability of state hi

emitting oj.

An HMM is parameterised by π , A and B, which we will
denote by λ = (π ,A,B).

The classical forward algorithm
The forward algorithm [18] finds the probability of
observing a sequence Y1:T in a model λ by summing
the joint probability of the observed and hidden sequences
for all possible hidden sequences: Pr (Y1:T | λ) = ∑

x1:T
Pr (Y1:T ,X1:T = x1:T | λ). This sum is normally computed
by first filling out a table, α, with entries αt(xt) = Pr (Y1:t ,
Xt = xt | λ) = ∑

x1:t−1 Pr (Y1:t ,X1:t = x1:t | λ) column by
column from left to right, using the recursion

α1(x1) = πx1bx1,y1
αt(xt) = bxt ,yt

∑
xt−1

αt−1(xt−1) axt−1, xt . (1)

After filling out α, Pr (Y1:T | λ) can be computed as
Pr (Y1:T | λ) = ∑

xT αT (xT ).

The algorithm as linear algebra
In the classical forward algorithm, we compute the
columns of α from left to right by the recursion in
equation (1). If we can compute the last one of these
columns, αT , efficiently, we can compute Pr (Y1:T | λ) =∑

xT αT (xT ). Now let αt be the column vector containing
the αt(xt)’s:

αt =

⎡
⎢⎢⎣

αt(h1)
αt(h2)
...

αt(hN )

⎤
⎥⎥⎦ ,

let Boi be the diagonal matrix, having the emission proba-
bilities of oi on the diagonal:

Boi =

⎡
⎢⎢⎣
b1,oi

b2,oi
· · ·

bN ,oi

⎤
⎥⎥⎦ ,

and let
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Coi = BoiA∗ and C1 = By1π , (2)

where A∗ is the transpose of A. Then αt can be computed
using only Cyt and the previous column vector αt−1:

αt = Cytαt−1 = CytCyt−1 · · ·Cy2C1. (3)

Thus the classical forward algorithm can be described as
a series of matrix-vector multiplications of length T − 1
as illustrated in Figure 1. The classical forward algorithm
corresponds to computing this from right to left, but since
matrix-matrix multiplication is associative the product
can be computed in any order. Since repeated substrings
corresponds to repeated matrix-matrix multiplications,
running time can be improved by reusing shared expres-
sions [10,11]. In the following sections we will show how
we precompute a grouping of the terms based on Y1:T in
order to minimise the workload in the actual computation
of the likelihood.

Exploiting repetitions in the observed sequence
Let oioj ∈ O × O be the pair of symbols occurring most
often without overlap in Y1:T , and let noioj be the number
of occurrences.We can then reduce the length of Y1:T with
noioj characters by introducing a new symbol oM+1 and
replacing all occurrences of oioj by this symbol. To mimic
this in the computation described above, we introduce a
new C matrix:

CoM+1 = CoiCoj .

Now notice that we only need to compute this matrix
once and substitute it for all occurrences of CoiCoj in
equation (3). Hence we can save noioj matrix-vector mul-
tiplications by introducing one matrix-matrix multiplica-
tion, potentially saving us a large amount of work.
These observations suggest that we can split the com-

putation of the likelihood of a given observed sequence
in a preprocessing of the sequence and in the actual com-
putation of the likelihood. In the preprocessing phase we
compress the observed sequence by repeatedly finding the
most frequent pair of symbols oioj in the current sequence
and replacing all occurrences of this pair by a new sym-
bol. This is repeated until noioj becomes too small to gain

a speedup (see next section). The result is a sequence
Y ′
1:T ′ over a new alphabet O′ = {o1, o2, . . . , oM, oM+1 =

(l1, r1), oM+2 = (l2, r2), . . . , oM′ = (lM′−M, rM′−M)}, where
li, ri ∈ {o1, o2, . . . oi−1}. This compression will be identi-
cal independent of the HMM, meaning that we can save
it along with the observed sequence and reuse it for any
HMM.
The actual computation of the likelihood is then split in

two stages. In the first stage we computeC1 andCoi for i =
1, . . . ,M using (2).We then computeCoi for increasing i =
M + 1, . . . ,M′ by Coi = CliCri . In the second stage, we
compute αT by

αT = Cy′T ′Cy′T ′−1
· · ·Cy′2C1.

This is illustrated in Figure 2 where the actual computa-
tion is drawn in solid black, while the saved work due to
redundancy is shown in gray.

Compression stopping criterion
While the first iterations of the preprocessing procedure
compress the sequence very effectively, the last iterations
do not decrease the sequence length by much, since most
pairs are uncommon when more characters are intro-
duced. This is illustrated in Figure 3, where we see that
the number of occurrences of the most frequent pair of
symbols decreases superexponentially as a function of the
number of iterations performed on an alignment of the
human and chimpanzee chromosome 1. This means that
we potentially save a lot of time on the likelihood compu-
tation by performing the first iterations, but as the slope of
the curve increases towards 0 we risk to spend a long time
on the preprocessing and save very little time on the actual
likelihood computation. To overcome this problem, we do
not compress the input sequence all the way down to a sin-
gle character. Assume we know that the preprocessing will
not be reused for an HMMwith less than Nmin states, and
let tmv be the time required for an (Nmin × Nmin) × Nmin
matrix-vector multiplication and tmm be the time required
for an (Nmin×Nmin)×(Nmin×Nmin)matrix-matrix multi-
plication. In iteration i of the preprocessing we replace the
most frequent pair of two symbols in the current sequence

1 0 0 1 1 0 0 1 0 0 0 1 0 1

Sequence

T

tim
e

Figure 1 Classical approach to the forward algorithm. The classical forward algorithm, as described by Rabiner [18]. The rectangles represent
matrices and vectors. The black lines denote matrix-vector multiplications. The top row is the Coi matrices. αi is obtained from αi−1 and Coi . Note
that the input sequence is inverted to illustrate that the series of matrix-vector multiplication should be carried out from right to left.
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Figure 2 Reusing common expressions to speed up the forward algorithm. The actual computation of the likelihood of the observed
sequence 10100010011001 given a specific HMM. The rectangles represent matrices and vectors and lines between them represent dependencies.
In stage 1 the Coi matrices are computed. The solid black lines show the amount of work performed, while the grey lines show the amount of work
saved due to redundancy. C2 is for example computed as the product C1C0, and this multiplication is saved three times. In the second stage αT is
computed from the compressed sequence and the Coi matrices. As in Figure 1 αi is computed from αi−1 and Coi .

and find the most frequent pair of two symbols in the
resulting sequence. Thus if pi is the number of occur-
rences of the pair found in iteration i, prei is the time
required for iteration i, and e is an estimate (given by the
user) of the number of times the preprocessing is going to
be reused (for example in a number of training procedures
each calling forward several times), then, assuming that
the matrix-vector multiplications and matrix-matrix mul-
tiplications dominate the runtime of the actual likelihood
computations, the amount of time that is saved by running
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Figure 3 Number of pattern occurrences against the number of
iterations performed. The number of occurrences of the most
frequent pair of symbols plotted on a log-scale against the number of
iterations performed of the preprocessing procedure on an
alignment of the human and chimpanzee chromosome 1 encoded
using the alphabet {0, 1, 2} for identical sites, differing sites or missing
data, respectively.

iteration i is e(tmvpi−1 − tmm) − prei, as we save pi−1
matrix-vector multiplications in each likelihood computa-
tion, and we do this by introducing one newmatrix-matrix
multiplication. This means that the optimal time to stop
the preprocessing is before iteration j, where j is the mini-
mal value of imaking e(tmvpi−1 − tmm) − prei less than or
equal to 0. However, we do not know prei before iteration i
has been completed, but we can estimate it by prei−1. Thus
we stop the preprocessing just before iteration j, where j is
the minimal value of i making e(tmvpi−1 − tmm) − prei−1
less than or equal to 0.
The values tmv and tmm are measured prior to the pre-

processing, whereas the user has to supply an estimate, e,
of the number of reuses of the preprocessing and Nmin. If
a single value ofNmin can not be determined, we allow the
user to specify a list of state space sizes (N1

min,N
2
min, ...) for

which he wants the preprocessing to be saved. If no Nmin
values are provided, the compression is stopped whenever
pi = pi−1 for the first time.

Numerical stability
All our matrices contain probabilities, so all entries are
between 0 and 1. This means that their products will tend
towards 0 exponentially fast. The values of these products
will normally be stored in one of the IEEE 754 floating-
point formats. These formats have limited precision, and
if the above was implemented naïvely the results would
quickly underflow.
If we can make do with log (Pr (Y1:T | λ)), we can pre-

vent this underflow by repeatedly rescaling the matrices,
much in the same way as the columns are rescaled in
the numerically stable version of the classical forward
algorithm [18]. To make this work in our case, we will
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normalise the results of each matrix-matrix multiplica-
tion or matrix-vector multiplication we do throughout
the algorithm and work with the normalised matrices
instead. We first take care of the rounding errors that
can propagate through the first stage of the likelihood
computations (depicted in the top part of Figure 3) if
the dependency graph between the new symbols is deep.
Let

coi =
∑
j

∑
k

(Coi)jk , for i = 1, . . . ,M

be the sum of all entries in Coi for all symbols in the
original observed sequence, and let C̄oi = Coi/coi be
the corresponding normalised matrix. Now for each new
symbol oi = (li, ri) in the compressed sequence define

coi =
∑
j

∑
k

(C̄li C̄ri)jk , for i = M + 1, . . . ,M′,

and let

C̄oi = C̄li C̄ri
coi

, for i = M + 1, . . . ,M′.

Finally let

soi =
{
coi , , if i = 1, . . . ,M
coicli cri , , if i = M + 1, . . . ,M′.

Then

αT = Cy ′
T ′Cy ′

T ′−1
. . .Cy ′

2
C1

=
⎛
⎝ T ′∏

t=2
syt

⎞
⎠ C̄y ′

T ′ C̄y ′
T ′−1

. . . C̄y ′
2
C1

(4)

Thus to handle the underflow in the first stage, we com-
pute soi along with C̄oi for i = 1, . . .M′ (see Figure 4)
and compute the product above in the second stage of the
likelihood computation.
However, the C̄oi matrices still only contain values

between 0 and 1, and their product will therefore still tend
towards 0 exponentially fast, causing underflow. To pre-
vent this we introduce a scaling factor di for each of the
T ′ − 1 matrix-vector multiplications in (4), set to be the
sum of the entries in the resulting vector. Each di is used
two times: First we normalise the corresponding result-
ing vector by dividing each entry by di, and next we use
it to restore the correct result at the end of the computa-
tions. Assume that ᾱT is the result of theT ′−1 normalised
matrix-vector multiplications. Then

1 0 0

2

3

. . . . . .

s1 s0

s2

s0

s3

Sequence

Figure 4 Dependencies between scaling factors. Dependencies
between scaling factors. The square boxes are the C̄oi matrices and
s0, s1, s2 and s3 are scaling factors. The gray lines show the
dependencies between the C̄oi matrices, while the solid black arrows
show how the scaling factors are computed. For example, s0 is
computed directly from C̄0 as the sum of all its entries. s2 is the sum of
all entries in C̄2 times s1 and s0.

αT =
⎛
⎝ T ′∏

t=2
syt

⎞
⎠

⎛
⎝T ′−1∏

j
dj

⎞
⎠ ᾱT ,

and we can compute the final likelihood as

Pr (Y1:T | λ) =
∑
i

αT (i)

=
∑
i

⎛
⎝ T ′∏

t=2
syt

⎞
⎠

⎛
⎝T ′−1∏

j
dj

⎞
⎠ ᾱT (i)

=
⎛
⎝ T ′∏

t=2
syt

⎞
⎠

⎛
⎝T ′−1∏

j
dj

⎞
⎠ ∑

i
ᾱT (i)

=
⎛
⎝ T ′∏

t=2
syt

⎞
⎠

⎛
⎝T ′−1∏

j
dj

⎞
⎠ .

Notice, however, that we now risk getting an underflow
when computing these products if T ′ is big. We handle
this by working in log-space. Define

s̃oi =
{
log(coi) , if i = 1, . . . ,M
log(coi) + s̃li + s̃ri , if i = M + 1, . . . ,M′

and

d̃i = log(di) , for i = 1, . . . ,T ′ − 1.
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Then

log (Pr (Y1:T | λ)) =
⎛
⎝ T ′∑

t=2
s̃yt

⎞
⎠

⎛
⎝T ′−1∑

j
d̃j

⎞
⎠ .

Practical implementation details
In our implementation of the preprocessing phase
described above, we simply build a map symbol2pair,
mapping each new alphabet symbol oi to its two con-
stituents (li, ri). In each scan every pair of symbols is
counted, and the most frequent pair in the previous round
is replaced by a new symbol. The data structure being
saved in the end is symbol2pair along with two other
maps: nstates2alphabetsize and nstates2seq.
The map nstates2alphabetsizemaps each Ni

min to
the size of the alphabet M′

j after j iterations, where j is
the number of iterations determined by the stopping crite-
rion. The map nstates2seqmaps Ni

min to the resulting
sequence after j rounds of compression. These maps can
be saved to disk for later use along with the original
observed sequence.
Given a specific HMM with N states, the first stage

of the actual computation of the likelihood builds a
list, symbol2matrix, containing the C̄oi matrices,
and a list of scaling values, symbol2scale, contain-
ing the s̃i values. These are computed in O

(
M′N3)

time in an iteration over the first M′ symbols in the
symbol2pair map, where M′ is the alphabet size saved
in nstates2alphabetsize in the preprocessing pro-
cedure. In the second stage log (Pr (Y1:T | λ)) is computed
inO

(
T ′N2) time by

log (Pr (Y1:T | λ))

=
⎛
⎝ T ′∑

t=2
s̃yt

⎞
⎠

⎛
⎝T ′−1∑

j
d̃j

⎞
⎠ C̄y′T ′ C̄y′T ′−1

. . . C̄y′2C1,
(5)

using the two maps created in the first stage. To obtain
maximal performance, we use a BLAS implementation for
C++ to perform the series of matrix multiplication.
Our implementation uses O(Tk) space in the prepro-

cessing phase and O
(
N2(T ′ + M′)

)
space in the actual

computation, where k is the number of Nmin values sup-
plied by the user, N is the number of states in the HMM
used in the actual computation, and M′ is the number
of symbols in the extended alphabet corresponding to N
in nstates2alphabetsize. If the preprocessed data
structure is saved to disk, it will take upO(Tk) space.
We have also implemented the algorithm in a paral-

lelised version. In this version, stage 2 is parallelised much
like the implementation in parredHMMlib [11], where the
series of matrixmultiplications in (5) is split into a number

of blocks which are then processed in parallel. Stage 1 can
clearly also be parallelised by computing independent C̄oi
matrices in parallel. However, we found that this does not
work well in practice, as the workload in stage 1 is not big
enough to justify the parallelization. Stage 1 is therefore
not parallelised in the library. The parallelisation of stage
2 gives the greatest speedup for long sequences that are
not very compressible. This is because the parallelisation
in general works best for long sequences [11], and if the
input sequence is very compressible then the compressed
sequence will be short and more work will be done in the
non-parallelised stage 1. The experiments presented in the
next section have all been run single-threaded to get a
clearer picture of how the runtime of the basic algorithm
is influenced by the characteristica of the input sequence
and model. But in general a slightly faster running time
can be expected if parallelisation is enabled, especially for
long sequences of high complexity.

Results and discussion
We have implemented the above algorithms in a C++
library named zipHMM. The code provides both a C++
and a Python interface to the functionality of reading and
writing HMMs to files, preprocessing input sequences
and saving the results, and computing the likelihood of a
model using the forward algorithm described in the pre-
vious section. The library uses BLAS for linear algebra
operations and pthreads for multi-threaded parallelisa-
tion.

Using the library
The library can be used directly in C++ programs or
through Python wrappers in scripts.

Using zipHMM fromC++
When using the library in C++ themost important objects
are from the Forwarder class, which is responsible for
both preprocessing sequences, reading and writing the
preprocessed data structure, and for computing the like-
lihood of a hidden Markov model. The code snippet in
Figure 5(a) shows a complete C++ program that reads in
an input sequence, f.read_seq(...), preprocess it (as
part of reading in the sequence), stores the preprocessed
structure to disk, f.write_to_directory(...),
reads in anHMM from disk, read_HMM(...), and com-
putes the likelihood of the HMM, f.forward(...).
The sequence reader takes the alphabet size as parame-

ter. This is because we cannot necessarily assume that the
observed symbols in the input sequence are all the possi-
ble symbols the HMM can emit, so we need to know the
alphabet size explicitly. It furthermore takes an optional
parameter in which the user can specify an estimate, e, of
the number of times the preprocessing will be reused. The
default value of this parameter is 1.



Sand et al. BMC Bioinformatics 2013, 14:339 Page 7 of 10
http://www.biomedcentral.com/1471-2105/14/339

Figure 5 Using the library in C++ (a) and Python (b).

If the preprocessed sequence is already stored on disk,
we can simply read that instead like this:

Forwarder f;
number_of_states = 4;
f.read_from_directory(“example_
preprocessed”, number_of_states);

This will cause the saved sequence matching Nmin ≤ 4
to be read from the directory example_preprocessed

together with additional information on the extended
alphabet used in this sequence.
In the library, HMMs are implicitly represented simply

by a vector and two matrices, the π vector of initial state
probabilities and the transition, A, and emission, B, matri-
ces as described in the Implementation section. These are
all represented in a Matrix class, and in the program
in Figure 5(a) these are read in from disk. They can also
be directly constructed and manipulated in a program. In
our own programs we use this, together with a numerical
optimisation library, to fit parameters by maximising the
likelihood.

The f.forward(...) method computes the likeli-
hood sequentially using the preprocessed structure. To
use the multi-threaded parallelisation instead, one simply
uses the f.pthread_forward(...) function, with
the same parameters, instead.
For completeness the library also offers implementa-

tions of the Viterbi and posterior decoding algorithms.
To use these in C++ the headers viterbi.hpp and
posterior_decoding.hpp should be included and
the functions viterbi(...) and posterior_deco
ding(...) should be called as described in the
README file in the library.

Using zipHMM from Python
All the C++ classes in the library are wrapped in a Python
module so the full functionality of the zipHMM is avail-
able for Python scripting using essentially the same API,
except with a more Python flavour where appropriate, e.g.
reading in data is handled by returning multiple values
from function calls instead of pass-by-reference func-
tion arguments and with a more typical Python naming
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convention. Figure 5(b) shows the equivalent of the C++
code in Figure 5(a) in Python.

Performance
To evaluate the performance of zipHMM we performed
a number of experiments using a hidden Markov model
previously developed to infer population genetics param-
eters of a speciation model. All experiments were run on
a machine with two Intel Sandy Bridge E5-2670 CPUs,
each with 8 cores running at 2.67GHz and having access
to a 64Gb main memory. We compare the performance of
our forward algorithm to the performance of the imple-
mentations of the forward algorithm in HMMlib [19]
and in parredHMMlib [11] and to a simple implemen-
tation of equation (3) using BLAS to perform the series
of matrix-vector multiplications. HMMlib is an imple-
mentation that takes advantage of all the features of a
modern computer, such as SSE instructions and multiple
cores. The individual features of HMMlib can be turned
on or off by the user, and we recommend only enabling
these features for HMMs with large state spaces. In all
our experiments we enabled the SSE parallelisation but
used only a single thread. The parredHMM library imple-
ments equation (3) as a parallel reduction, splitting the
series of matrix multiplications into a number of blocks
and processing the blocks in parallel. The parredForward
algorithm was calibrated to use the optimal number of
threads.
For performance evaluation we wanted to evaluate how

well the new algorithm compares to other optimised for-
ward implementations, evaluate the trade-off between
preprocessing and computing the likelihood, and explore
how the complexity of the input string affects the running
time.
Our new implementation of the forward algorithm is

expected to perform best on strings of low complex-
ity because they are more compressible. To investigate
this we measured the per-iteration running time of the
forward algorithm for parredHMMlib, HMMlib and the
simple implementation of equation (3) on random binary
sequences (over the alphabet {0, 1}) of length L = 107
with the frequency of 1s varying from 0.0001 to 0.05,
and divided it by the per-iteration running time for
zipHMMlib (excluding the preprocessing time) to obtain
the speedup factor. This experiment is summarised in
Figure 6, where we note that the speedup factor decreases
linearly with the complexity of the input sequence; how-
ever, speedup factors of more than two orders of magni-
tude are obtained for less complex sequences, and even
for sequences of low complexity a (modest) speedup is
obtained.
In the rest of our experiments, we used a coalescent

hidden Markov model (CoalHMM) from [17] together
with real genomic data for the experiments. A CoalHMM
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Figure 6 Speedup vs. sequence complexity. The speedup factor
decreases linearly with the sequence complexity.

[7,8,12] exploits changing gene-trees along a genomic
alignment to infer population genetics parameters. The
“Isolation-with-Migration” CoalHMM from [17] consid-
ers a pairwise alignment as its observed sequence and
a discretisation of the time to the most recent common
ancestor, or “coalescence time”, of the aligned sequences
as its hidden states. The coalescence time can change
from any point to another, so the transition matrix of the
CoalHMM is fully connected, and the number of hidden
states can be varied depending on how fine-grained we
want to model time. Varying the number of states lets us
explore the performance as a function of the number of
states. The performance as a function of the length of the
input was explored by using alignments of varying length.
Finally, to explore how the complexity of the string affects
the performance we used alignments of sequences at vary-
ing evolutionary distance, since closer related genomes
have fewer variable sites and thus the alignments have
lower complexity. The CoalHMM model uses a Jukes-
Cantor model in its emission probabilities and thus only
distinguishes between if a specific site has two identical
nucleotides or two different nucleotides in the alignment.
We therefore also varied the complexity of the strings by
compressing either the actual sequence alignment or sum-
marising it as an alphabet of size three, {0, 1, 2}, for identi-
cal sites, differing sites, or missing data/gaps. This way we
obtain sequences with alphabets of size M = 3 ({0, 1, 2}),
M = 16 (full alignments over {A,C,G,T} × {A,C,G,T},
where columns with missing data or gaps were deleted)
and M = 25 (full alignments over {A,C,G,T ,N} × {A,C,
G,T ,N}, where N is either missing data or a gap).
For all experiments we trained the model using the

Nelder-Mead-simplex algorithm and measured the pre-
processing time and total optimisation time, and the
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expected number of likelihood computations was set to
e = 500.
Figure 7(a) shows how the performance of zipForward

changes, when the size of the model is increased. We note
that the total time, as expected, depends very heavily on
the number of states (the time complexities of stage 1
and 2 are qubic and quadratic in the number of states,
respectively), while the time used on preprocessing, also
as expected, varies very little and shows no clear pattern
as the number of states is increased.
Figure 7(b) shows how the runtime for training the

CoalHMM with zipForward changes when the sequence
length is varied.We expected the runtime to increase with
the sequence length, however this is not what the results
show for the shorter sequences. This is due to the opti-
misation procedure, which required more iterations of the
likelihood computation for the shorter sequences than for
the longer sequences. For the longest sequences the run-
time grows sublinearly, which was expected, since longer
sequences often compress relatively more than shorter
sequences.
We expected alignments of sequences at short evolu-

tionary distance to be more compressible than alignments
of sequences at longer evolutionary distance, and there-
fore expected the training procedure to be faster for
alignments of sequences at short evolutionary distance.

We recognise this in Figure 7(c) except for the sequences
withM = 16, where the human-orangutan alignment was
processed faster than the human-gorilla alignment. How-
ever, this was caused by the trade-off between the time
for the preprocessing and the time for the actual train-
ing procedure: the preprocessing procedure took sig-
nificantly longer time for the human-gorilla alignment
(because it was more compressible) than for the human-
orangutan alignment, but this extra time was not all
gained back in the training procedure, although the com-
pressed sequence indeed was shorter (the per-iteration
running time for the human-gorilla alignment was 7.913s
and 8.488s for the human-orangutan alignment).
We also expected the total time of the training proce-

dure to increase as the number of symbols in the initial
alphabet was increased, because sequences with small ini-
tial alphabets are expected to be more compressible than
sequences with larger initial alphabets. But as Figure 7(c)
shows, the sequences with an initial alphabet of size M =
25 were processed faster than the sequences with an ini-
tial alphabet of size M = 16. This is again caused by the
optimisation procedure, which converges faster for the
sequences withM = 25 than for the sequences withM =
16 (e.g. for the human-gorilla alignments, the number of
evaluations of the likelihood were 860 and 1160 for M =
25 and M = 16, respectively). This may be a result of
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the sequences with M = 25 containing more information
than the sequences withM = 16. The lengths of the com-
pressed sequences and the per-iteration running times
match our expectations, and for the sequences with M =
3 andM = 25, which contain the same data, the algorithm
behaves as expected.
Figure 7(d) shows the performance of the four differ-

ent implementations of the forward algorithm. Each of
the four algorithms was used to train the CoalHMM on
an alignment of the entire human and chimpanzee chro-
mosome 1, using an HMM with 16 states and an initial
alphabet of size 3. The training procedure was finished in
7.4 minutes (446 seconds) using zipForward and includ-
ing the preprocessing time. This gives a speedup factor
of 77.7 compared to the previously fastest implementa-
tion using parredHMMlib, which used 9.6 hours (34, 657
seconds). It is therefore evident that zipForward is clearly
superior to the three other implementations on this kind
of input. The time used per iteration of the likelihood
computation was 0.5042 seconds for zipHMMlib, while
it was 46.772 seconds for parredHMMlib, leading to a
speedup of a factor 92.8 on the actual optimization proce-
dure (excluding preprocessing time). Repeating the same
experiment on full alignments over alphabets of size 16
and 25 (not shown here), where zipForward clearly per-
forms worse than for sequences with alphabets of size 3
(see Figure 7(c)), we still obtained total speedup factors of
4.4 for both experiments.

Conclusions
We have engineered a variant of the HMM forward
algorithm to exploit repetitions in strings to reduce the
total amount of computation, by exploring shared sub-
expressions. We have implemented this in an easy to use
C++ library, with a Python interface for use in script-
ing, and we have demonstrated that our library can be
used to achieve speedups of 4 - 78 factors for realistic
whole-genome analysis with a reasonably complex hidden
Markov model.
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