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Abstract

Background: Sample size calculation is an important issue in the experimental design of biomedical research. For
RNA-seq experiments, the sample size calculation method based on the Poisson model has been proposed; however,
when there are biological replicates, RNA-seq data could exhibit variation significantly greater than the mean (i.e.
over-dispersion). The Poisson model cannot appropriately model the over-dispersion, and in such cases, the negative
binomial model has been used as a natural extension of the Poisson model. Because the field currently lacks a sample
size calculation method based on the negative binomial model for assessing differential expression analysis of
RNA-seq data, we propose a method to calculate the sample size.

Results: We propose a sample size calculation method based on the exact test for assessing differential expression
analysis of RNA-seq data.

Conclusions: The proposed sample size calculation method is straightforward and not computationally intensive.
Simulation studies to evaluate the performance of the proposed sample size method are presented; the results
indicate our method works well, with achievement of desired power.

Background
Next generation sequencing (NGS) technology has revo-
lutionized genetic analysis; RNA-seq is a powerful NGS
method that enables researchers to discover, profile, and
quantify RNA transcripts across the entire transcriptome.
In addition, unlike the microarray chip, which offers only
quantification of gene expression level, RNA-seq pro-
vides expression level data as well as differentially spliced
variants, gene fusion, and mutation profile data. Such
advantages have gradually elevated RNA-seq as the tech-
nology of choice among researchers. Nevertheless, the
advantages of RNA-seq are not without computational
cost; as compared to microarray analysis, RNA-seq data
analysis is much more complicated and difficult. In the
past several years, the published literature has addressed
the application of RNA-seq to multiple research ques-
tions, including abundance estimation [1-3], detection of
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alternative splicing [4-6], detection of novel transcripts
[6,7], and the biology associated with gene expression pro-
file differences between samples [8-10]. With this rapid
growth of RNA-seq applications, discussion of experi-
mental design issues has lagged behind, though more
recent literature has begun to address some of the rel-
evant principles (e.g., randomization, replication, and
blocking) to guide decisions in the RNA-seq framework
[11,12].
One of the principal questions in designing an RNA-

seq experiment is: What is the optimal number of bio-
logical replicates to achieve desired statistical power?
(Note: In this article, the term “sample size” is used
to refer to the number of biological replicates or num-
ber of subjects.) Because RNA-seq data are counts, the
Poisson distribution has been widely used to model the
number of reads obtained for each gene to identify dif-
ferential gene expression [8,13]. Further, [12] used a
Poisson distribution to model RNA-seq data and derive
a sample size calculation formula based on the Wald
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test for single-gene differential expression analysis. It is
worth noting that a critical assumption of the Poisson
model is that the mean and variance are equal. This
assumption may not hold, however, as read counts could
exhibit variation significantly greater than the mean
[14]. That is, the data are over-dispersed relative to the
Poisson model. In such cases, one natural alternative to
Poisson is the negative binomial model. Based on the
negative binomial model, [14,15] proposed a quantile-
adjusted conditional maximum likelihood procedure to
create a pseudocount which lead to the development
of an exact test for assessing the differential expres-
sion analysis of RNA-seq data. Furthermore, [16] pro-
vided a Bioconductor package, edgeR, based on the exact
test.
Sample size determination based on the exact test has

not yet been studied, however. Therefore, the first goal of
this paper is to propose a sample size calculation method
based on the exact test.
In reality, thousands of genes are examined in an

RNA-seq experiment; differential expression among those
genes is tested simultaneously, requiring the correc-
tion of error rates for multiple comparisons. For the
high-dimensional multiple testing problem, several such
corrected measures have been proposed, such as family-
wise error rate (FWER) and false discovery rate (FDR).
In high-dimensional multiple testing circumstances, con-
trolling FDR is preferable [17] because the Bonferroni
correction for FWER is often too conservative [18].
Many methods have been proposed to control FDR in
the analysis of high-dimensional data [17,19,20]. Those
concepts have been extended to calculate sample size
for microarray studies [21-25]. To our knowledge, how-
ever, the literature does not address determination of
sample size while controlling FDR in RNA-seq data.
Therefore, the second purpose of this paper is to pro-
pose a procedure to calculate sample size while control-
ling FDR for differential expression analysis of RNA-seq
data.
In sum, in this article, we address the following two

questions: (i) For a single-gene comparison, what is
the minimum number of biological replicates needed
to achieve a specified power for identifying differential
gene expression between two groups? (ii) For multi-
ple gene comparisons, what is the suitable sample size
while controlling FDR? The article is organized as fol-
lows. In the Method section, a sample size calculation
method is proposed for a single-gene comparison. We
then extend the method to address the multiple compar-
ison test issue. Performance comparisons via numerical
studies are described in the Results section. Two real
RNA-seq data sets are used to illustrate sample size cal-
culation. Finally, discussion follows in the Conclusions
section.

Method
Exact test
In an RNA-seq experiment, the total number of reads, also
referred to as library size, mapped to the genome are dif-
ferent among the samples. In such cases, the counts in
each group are not identically distributed, and it is diffi-
cult to develop an exact test for assessing the differential
expression analysis of RNA-seq data. To handle this issue,
[14,15] proposed a quantile-adjusted conditional maxi-
mum likelihood procedure to create pseudocounts which
are approximately identically distributed and which lead
to the development of an exact test. In the following,
the proposed sample size calculation method is based the
exact test for a single-gene comparison. Let Yij be the ran-
dom variable corresponding to the pseudocount, with yij
being the observed value of Yij, of the jth (j = 1, 2, . . . , ni)
sample of the ith (i = 0, 1) group where n0 and n1 are
the numbers of samples from the control and treatment
group, respectively. Assume pseudocount Yij can be mod-
eled as a negative binomial (NB) distribution, NB(dijγi,φ).
Here, γi represents the normalized gene expression level
of group i, dij represents a normalization factor for the
total number of reads mapped in the jth sample of the ith
group, and φ is the dispersion. We use the NB parame-
terization where the mean is μij = dijγi and variance is
μij(1 + μ2

ijφ). Because the question of interest is to iden-
tify the differential gene expression between two groups,
the corresponding testing hypothesis is

H0 : γ1 = γ0 vs. H1 : γ1 �= γ0. (1)

Because the pseudocounts in each group have an
approximately identical negative binomial distribution
[14,15], the sum of pseudocounts of each group,
Yi = ∑ni

j=1 Yij, has a negative binomial distribution
NB(nid∗

i γi,φ/ni) where d∗
i is the geometric mean of nor-

malization factors in group i. Under the null hypothesis
(1), the sum of the total pseudocount, Y1 + Y0, follows
a negative binomial distribution. In analogy with Fisher’s
exact test, [14,15] proposed an exact test for replac-
ing the hypergeometric probabilities with negative bino-
mial probabilities. Because [16] developed a Bioconductor
software package edgeR which is an implementation of
methodology developed by [14,15], the p-value can be
easily calculated for conducting the exact test.
In the following simulation and application sections, we

used edgeR version 3.0.6 for estimating model parameters
and performing the exact test.

Sample size calculation for controlling type I error rate
In this section, we focus on sample size calculation
based on the exact test for a single-gene comparison as
described in the test statistics section. For simplicity, we
assume the RNA-seq experiment uses a balanced design
(i.e., n0 = n1 = n), which is a special but common case.
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The following method could be easily extended to the
unbalanced case (i.e. let n0 = n and n1 = kn where k
is a predetermined ratio of the sample size of the control
group to the treatment group). In order to perform sample
size calculations, it is necessary to construct a power func-
tion for the testing described above. The power of a test
is the probability that the null hypothesis is rejected when
the alternative hypothesis is true. Since the distribution of
the exact test statistic under the alternative hypothesis is
unknown, however, it is difficult to derive a closed-form
expression of the power function. Instead of deriving the
distribution of test statistic under the alternative hypothe-
sis, [26] proposed a method to calculate the power for the
exact test based on a given p-value. Here, we borrow their
concept to calculate power. For a given p-value, p(y1, y0)
where y0 and y1 are the observed pseudo-sums, described
in the previous section, the power can be expressed as

ξ(n,ρ,μ0,φ,w,α) =
∞∑

y0=0

∞∑
y1=0

f
(
nwρμ0,

φ

n

)
f
(
nμ0,

φ

n

)
I( p( y1, y0) < α),

where w = d∗
1/d∗

0 is the ratio of the geometric means of
normalization factors between two groups, ρ = γ1/γ0 is
the fold change, μ0 = d∗

0γ0 is the average number of reads
in the control group, f (μ,φ) is the probability mass func-
tion of the negative binomial distribution with mean μ

as well as dispersion φ, α is the the level of significance,
and I(.) denotes the indicator function. For a given desired
power 1 − β , the power of the test can be represented as
the function of sample size in the form

1 − β = ξ(n,ρ,μ0,φ,w,α). (2)

Thus, the required sample size n to attain the given
power 1 − β at level of significance α can then be calcu-
lated by solving (2) through a numerical approach, such as
a gradient-search or bisection procedure.

Sample size calculation for controlling false discovery rate
In reality, thousands of genes are examined in an RNA-
seq experiment, and those genes are tested simultaneously
for significance of differential expression. In such cases,
the sample size calculation for a single-gene comparison
discussed above cannot be applied directly. Jung, 2005
[23] incorporated FDR controlling based on a two-sample
t-test under the Gaussian distribution assumption. In this
section, we borrowed their concept to incorporate FDR
controlling based on the test statistics described in the test
statistics section.
For the multiple testing problem, [19] suggested the

use of false discovery rate (FDR) which is defined as the
expected proportion of false discoveries among rejected

null hypotheses. Storey, 2002 [17] further proposed an
improvement to FDR to achieve higher power, in the form

FDR = E
(
R0
R

∣∣∣∣ R > 0
)
,

where R0 is the number of false discoveries and R is the
number of results declared significant (i.e., rejections of
the null hypothesis).
To calculate the sample size formicroarray data analysis,

[23] proposed an FDR-controlled method which is based
on the expression of FDR under independence (or weak
dependence) among test statistics, as

FDR = m0α

m0α + E(R1)
,

[17,27], where m0 is the number of true null hypotheses
and E(R1) is the expected number of true rejections. By
borrowing their concepts, the expected number of true
rejections for RNA-seq data can be calculated as

E(R1) =
∑
g∈M1

ξ(n, ρg ,μ0g ,φg ,w,α),

where ρg is the fold change, φg is the dispersion, and μ0g
is the average read count in the control group for gene
g ∈ M1 (the set of prognostic genes), respectively. Thus,
to guarantee an expected number of true rejections, say
r1, and control FDR at a specified level f, we have

f = m0α

m0α + r1
(3)

and

r1 =
∑
g∈M1

ξ(n, ρg ,μ0g ,φg ,w,α). (4)

By solving equation (3) with respect to α, we have

α∗ = r1 f
m0(1 − f )

,

where α∗ is the marginal type I error level for the expected
number of true rejections r1 at a given FDR f. Replacing α

with α∗ in (4), we have the function with respect to n as

g1(n) =
∑
g∈M1

ξ(n, ρg ,μ0g ,φg ,w,α∗) − r1.

Then, by solving g1(n) = 0 via a numerical approach,
the required sample size for controlling FDR at level f can
be obtained.
To calculate the sample size, we have to estimate all

of the fold changes ρg , dispersions φg , and average read
countsμ0g of gene g for the set of prognostic genes g ∈ M1
prior to the RNA-seq experiment. However, we may not
have enough information to estimate all of those param-
eters in practice. To address this issue, we propose the
following method to obtain a conservative estimate of
the required sample size. Because the power increases as
| log2(ρg)| or μ0g increases and φg decreases, we suggest
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using a common ρ∗ = argming∈M1{| log2(ρg)|} minimum
fold change, μ∗

0 = ming∈M1{μ0g} minimum average read
count, and φ∗ = maxg∈M1{φg} maximum dispersion to
estimate each ρg ,μ0g , and φg , respectively. In such cases, it
gives a more conservative estimate of the required sample
size.
When we use ρ∗, μ∗

0, and φ∗ to estimate each ρg , μ0g ,
and φg , g ∈ M1, in the multiple testing context, α∗ and β∗
can be calculated as r1f /(m0(1−f )) and 1−r1/m1, respec-
tively, where m1 is the number of prognostic genes. In
other words, the power function (2) can be applied in the
case of multiple gene comparison, with the replacement of
α and β with α∗ and β∗.
The procedures for sample size calculation detailed in

this section can be summarized as follows:

1. Specify the following parameters:

m : total number genes for testing;
m1 : number of prognostic genes;
r1 : number of true rejections;
f : FDR level;
w : ratio of normalization factors between two
groups;
{μ0g , g ∈ M1} : average read counts for prognostic
gene g in control group;
{ρg , g ∈ M1} : fold changes for prognostic genes g in
control group;
{φg , g ∈ M1} : dispersion for prognostic genes g in
control group;

2. Calculate sample size:

(a) If all the parameters μ0g , ρg , and φg for each
prognostic gene g are known, use a
numerical approach to solve the equation
below with respect to n.

r1 =
∑
g∈M1

ξ(n, ρg ,μ0g ,φg ,w,α∗),

where α∗ = r1 f /(m0(1 − f )) and
m0 = m − m1;

(b) Otherwise,

(I) specify a desired minimum fold change
ρ∗, a minimum average read count μ∗

0,
and a maximum dispersion φ∗;

(II) replace ρ = ρ∗, μ0 = μ∗
0, φ = φ∗,

α = r1f /(m0(1 − f )), and
β = 1 − r1/m1 in equation (2) and
solve it with respect to n.

Results
Numerical studies
In this section, we conducted simulation studies to eval-
uate the accuracy of the proposed sample size formula.
The parameter settings in simulation studies are based on
empirical data sets.
We set the total number of genes for testing to be m =

10000 and the number of statistically significant prognos-
tic genes m1 = 100. We wanted to detect the expected
number of true rejections r1 = 80, which corresponds to
a power of 80% (i.e. β∗ = 0.2). All parameters μ0g , ρg ,
and φg ( g = 1, . . . , 10000) were assumed to be unknown.
Thus, we used a minimum fold change ρ∗ and a mini-
mum average read count μ∗

0 and a maximum dispersion
φ∗ to estimate each ρg , μ0g , and φg , g = 1 . . . , 10000.
We varied μ∗

0 = 1 or 5; log2-fold changes log2(ρ∗) =
0.5, 1.0, 1.5, 2.0 or 2.5; and φ∗ = 0.1, or 0.5. With these set-
tings, α∗ = 8.162× 10−5, 4.253× 10−4, and 8.979× 10−4,
which correspond to controlling FDR at level 1%, 5%, and
10%, respectively.
Then, we substituted α∗ and β∗ into the formulas (2)

and calculated sample size by solving this equation. In
addition, for each design setting, we generated 5000 sam-
ples from independent negative binomial distributions
based on the calculated sample size n; for the control
group, the count of each gene is generated by R program
from a negative binomial distribution with mean μ∗

0 and
dispersion φ∗; for the treatment group, the count of each
gene is generated from a negative binomial distribution
with mean ρ∗μ∗

0 and dispersion φ∗. Then, edgeR is used
to estimate model parameters and perform the exact test.
The number of true rejections was counted using the q-
value procedure proposed by [20]. The expected number
of true rejections was estimated as the sample mean of the
number of rejections of the 5000 simulation samples (r̂1).
In Table 1, we showed the calculated sample size with

corresponding r̂1 in parentheses under the case w = 1.
For a fixed log2-fold change, dispersion, and FDR, sam-
ple size increases when μ0 decreases. This result is as
expected; a small average read count provides less infor-
mation, such that a larger sample size is required to detect
the difference. For a fixed μ∗

0, φ∗, and FDR, sample size
increases when log2(ρ∗) decreases (i.e. the smaller log2-
fold changes requires greater sample sizes with all else
being equal). This result is as expected; a larger sample
size is required for detecting a smaller difference. For a
fixed μ∗

0, log2(ρ∗), and FDR, sample size increases when
φ∗ increases. This result, also, is as expected; the variation
increases when dispersion increases, such that a larger
sample size is required to detect the difference. Note that
all r̂1 in Table 1 are close to the pre-specified number of
true rejections (r1 = 80); thus, the proposed method esti-
mated a sample size that achieves correct power at the
specified FDR level.
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Table 1 Sample size calculation for simulation study
(and r̂1) with r1= 80 at FDR= 1%, 5% and 10%when
w= 1,m= 10000,m1 = 100

μ∗
0 = 1 μ∗

0 = 5

FDR FDR

log2( ρ∗) φ∗ 1% 5% 10% 1% 5% 10%

0.5 0.1 365 (81) 305 (84) 278 (88) 104 (81) 87 (84) 79 (88)

0.5 518 (81) 433 (84) 394 (88) 257 (81) 215 (84) 196 (89)

1.0 0.1 79 (81) 67 (84) 61 (87) 24 (82) 20 (84) 19 (91)

0.5 119 (81) 99 (83) 91 (88) 63 (82) 53 (85) 48 (89)

1.5 0.1 31 (82) 26 (83) 24 (86) 10 (83) 9 (90) 8 (91)

0.5 49 (81) 41 (83) 38 (88) 28 (83) 23 (84) 21 (86)

2.0 0.1 16 (85) 13 (84) 12 (86) 6 (90) 5 (92) 4 (86)

0.5 26 (82) 22 (84) 20 (86) 16 (84) 13 (85) 12 (89)

2.5 0.1 8 (85) 7 (89) 6 (87) 3 (78) 3 (81) 3 (98)

0.5 14 (83) 12 (87) 11 (84) 10 (82) 9 (90) 8 (91)

Applications
Liver and kidney RNA-seq data set
To identify differentially expressed genes between human
liver and kidney RNA samples, [8] explored an RNA-seq
data set containing 5 human kidney samples and 5 human
liver samples. In the following, we used this data set as
pilot data for designing a new study with the same study
objective. For the purpose of demonstration, we assumed
that the human kidney is the control group. After filtering
genes with no more than 5 total reads in liver samples or
kidney samples, there were 17306 genes left. We assumed
that the top 175 ( ≈ 1% of 17306) genes are prognostic.
From the pilot data, the minimum average read counts
among the prognostic genes in the control group were
estimated as μ∗

0 = 5, the maximum dispersion was esti-
mated as φ∗ = 0.0029, and the ratio of the geometric
mean of normalization factors between the two groups
was estimated as w = 0.9 using edgeR. Suppose we want
to identify 80% of the prognostic genes (i.e. r1 = 0.8 ×
175 = 140), while controlling FDR at 1% (i.e. f = 0.01).
Based on the pilot data, we set m = 17306, m1 = 175,
m0 = 17131, r1 = 140, and f = 0.01. In this case,
we have

α∗ = r1 f
m0(1 − f )

= 8.2549 × 10−5

and

β∗ = 1 − r1
m1

= 0.2.

After substituting those parameters into equation (2)
and solving it with respect to n, the required sample
size can be obtained. In the second column from the left

of Table 2, we report the sample size while controlling
FDR at 1% under various desired minimum fold changes
ρ∗ = 0.10, 0.25, 0.50, 0.75, 1.25, 1.50, 2.00, 2.50, and 3.0.
From Table 2, we found that the original RNA-seq experi-
ment described in [8] with sample size 5 in each group can
identify 80% of the prognostic genes at FDR= 1% if the
desired minimum fold change ρ∗ is 3.0.
Li, 2013 [28] proposed several sample size calculation

methods for RNA-seq data under the Poisson model. To
compare the difference in sample size calculation between
the negative binomial method and Poisson method, in the
last six right columns of Table 2 we report the sample
size calculation based on Poisson model (i.e. the sam-
ple size based on the Wald test nw, score test ns, log
transformation of Wald statistic nlw, log transformation
of score statistic nls, transformation of Poisson ntp, and
likelihood ratio test nlr) with the same settings as the neg-
ative binomial method. As we can see, the sample size
calculation based on the negative binomial and Poisson
methods are similar. This result is as expected since the
data set explored by [8] has technical and not biological
replicates (i.e. the maximum dispersion estimated from
the liver and kidney RNA-seq data set is close to zero).
Thus, it is not surprising that the results of the negative
binomial and Poisson methods are similar when the dis-
persion parameter is close to zero. Moreover, in Table 2,
the estimated sample size is about the same size for very
small fold changes (ρ∗ = 0.10) and very large fold changes
(ρ∗ = 3.0). This result is expected since it tends to the same
conclusion no matter what statistical model is used when
the treatment effect is very large (i.e. the fold change is
very large or small).

Transcript regulation data set
Blekhman, 2010 [29] used RNA-seq to study transcript
regulation in humans, chimpanzees, and rhesus macaques

Table 2 Sample size calculation for liver and kidney
RNA-seq data set under various desiredminimum fold
changes ( ρ∗) for r1= 140 at FDR= 1%whenm= 17360
andm1= 175

NB Poisson

ρ∗ n nw ns nlw nls ntp nlr

0.10 7 7 7 11 5 5 7

0.25 11 11 11 13 9 9 10

0.50 30 29 30 31 28 27 29

0.75 139 134 136 137 133 132 135

1.25 178 175 173 174 174 177 181

1.50 50 49 48 49 48 50 50

2.00 15 15 15 15 14 16 15

2.50 8 8 8 8 7 8 8

3.00 5 5 5 6 5 6 5
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using liver RNA samples from three males and three
females from each species. For the purpose of demon-
stration, we assumed that the goal of the study is
to identify differential gene expression between male
and female in humans and that the female is consid-
ered the control group. There were 13267 genes in
the data set after performing quality control analyses.
Suppose that the top 133 ( ≈ 1% of 13267) genes are prog-
nostic. After filtering genes with no more than 5 total
reads in male samples or female samples, there were 7658
genes left. Those genes are considered pilot data, and
we assessed the differential expression by using edgeR.
From the pilot data, the minimum average read counts
among the prognostic genes in the control group were
estimated as μ∗

0 = 1.67, φ∗ = 0.6513, and the ratio
of the geometric mean of normalization factors between
the two groups was estimated as w = 1.08. Suppose we
want to identify 80% of the prognostic genes (i.e. r1 =
0.8 × 133 = 107), while controlling the FDR at 10%.
Based on the pilot data, we set m = 13267, m1 = 133,
m0 = 13134, r1 = 107 and f = 0.1. In this case, we
have α∗ = 9.0512 × 10−4 and β∗ = 0.2. In the second
column from the left of Table 3, we report the required
sample sizes under various desired minimum fold changes
while controlling the FDR at 10% under the negative bino-
mial distribution. We also report the required sample
size based on the Poisson model proposed by [28] under
the same settings in the last six columns on the right of
Table 3. As we can see, the required sample size based on
the negative binomial method is greater than the Poisson
method. In the transcript regulation data set, the max-
imum dispersion was estimated as φ∗ = 0.6513 > 0.
This indicates that the read counts in this data set exhibit
over-dispersion. In such a situation, it is inappropriate
to model this data set based on the Poisson, and the
sample size calculation based on the Poisson model will

Table 3 Sample size calculation for transcript regulation
data set under various desiredminimum fold changes (ρ∗)
for r1 = 107 at FDR= 10%whenm= 13267 andm1=133

NB Poisson

ρ∗ n nw ns nlw nls ntp nlr

0.10 19 15 14 21 10 10 14

0.25 35 23 23 26 19 19 21

0.50 109 62 60 62 58 56 59

0.75 558 284 281 282 280 273 281

1.25 821 316 363 366 360 371 381

1.50 240 100 102 103 99 105 105

2.00 79 30 31 32 29 32 32

2.50 44 16 16 18 15 17 16

3.00 30 10 11 12 9 11 10

be underestimated due to underestimation of variance
(i.e. the study based on the corresponding sample size will
be underpowered).

Discussion
In this research, we assume independent gene expression
levels; however, this assumption may not hold in reality.
For correlated RNA-seq gene expression data, evaluation
of the accuracy of our method is an important future
research question; however, generating a negative bino-
mial distribution for correlated high-dimensional data will
be a challenge. Moreover, most of the major R pack-
ages dedicated to RNA-seq differential analyses (edgeR,
DESeq, etc.) are now starting to enable multi-group com-
parisons. However, the proposed method is developed for
comparing two-group means. Thus, the sample size cal-
culation for multi-group comparisons would be an inter-
esting research topic for us in the future. In addition,
it has already been noted that typical RNA-seq differ-
ential analyses have very low power; see for example
the simulation studies in [30], where power for edgeR
was always less than 60%, or [31], where power ranged
from about 45% to 55% (both with 10 samples per con-
dition). In our simulation and application sections, the
minimum sample sizes required to achieve 80% power
would be prohibitively large for RNA-seq experiments
in practice, given their current cost. In such situations,
the findings in [30,31] can provide useful information
for specifying achievable power. It is well known that
low study power will decrease the reproducibility of
scientific research. We hope that this paper can benefit
researchers by allowing them to understand their study
power.

Conclusions
In recent years, RNA-seq technology has emerged as
an attractive alternative to microarray studies, due to
its ability to produce digital signals (counts) rather than
analog signals (intensities), and to produce more highly
reproducible results with relatively little technical vari-
ation [32,33]. With a large sample size, RNA-seq can
become costly; on the other hand, insufficient sam-
ple size may lead to unreliable answers to the research
question of interest. To manage the trade-off between
cost and accuracy, sample size determination is a crit-
ical issue for RNA-seq experimental design. For com-
paring the differential expression of a single gene, we
have proposed a sample size calculation method based
on an exact test proposed by [14,15]. To address mul-
tiple testing (i.e., multiple genes), we further extended
our proposed method to incorporate FDR control. Our
methods are not computationally intensive for pilot data
or other relevant data with a specified desired minimum
fold change, minimum average read count, and maximum
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dispersion. To facilitate implementation of the sample size
calculation, R code is available from the corresponding
author.
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