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Abstract

COG, PFAM and TIGRFAM databases.

Fantom.

Background: Interpretation of quantitative metagenomics data is important for our understanding of ecosystem
functioning and assessing differences between various environmental samples. There is a need for an easy to use
tool to explore the often complex metagenomics data in taxonomic and functional context.

Results: Here we introduce FANTOM, a tool that allows for exploratory and comparative analysis of metagenomics
abundance data integrated with metadata information and biological databases. Importantly, FANTOM can make
use of any hierarchical database and it comes supplied with NCBI taxonomic hierarchies as well as KEGG Orthology,

Conclusions: The software is implemented in Python, is platform independent, and is available at www.sysbio.se/
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Background

Metagenomics [1] is the culture independent study of an
environmental sample by sequencing of the recovered
genetic materials of targeted ribosomal RNAs (16S)
through amplicon sequencing or whole genomic DNA.
This allows for determining the ecosystems taxonomic
diversity, functional capacity, dynamics and comparison
with other environments. Typically for whole genome
based metagenomics, extracted DNA from an environ-
mental sample is a starting material to generate short
reads of DNA through next generation sequencing
(NGS) technologies that represent the microbiota of the
sample. The generated raw sequence reads data typically
contain errors that need to be eliminated before further
steps using trimming and filtering processes based on a
base calling quality score (Phred) [2,3]. The high quality
reads can be annotated to reference taxonomic and
functional features using sequence similarity based align-
ment methods i.e. BLAST [4], HMMER [5], etc. against
reference databases. Another approach is based on map-
ping high quality reads on reference genomes or well
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annotated genes by short read aligners [6]. There are
web services such as CAMERA [7], IMG/M [8] and
MG-RAST [9], available for performing the above men-
tioned pipeline of NGS processing and annotation in an
automated fashion. Depending on user-given parameters
such as percentage similarity or e-value thresholds, each
of these individual software tools or web services are
able to report the annotated sequences in terms of abun-
dance data for each feature in the subjected database.
Further analysis of the hereby obtained quantitative
abundance data of metagenomics features, in particular
together with sample meta data is important for bio-
logical interpretation [10,11].

Although, the above mentioned web-services can to
some extent provide both analysis tools for the compara-
tive analysis of metagenomes, these methods have some
limitations; 1) statistical and visual analysis capabilities
are limited, 2) functional annotation sources might not
satisfy user’s demand, and 3) users may simply not want
to upload their sequencing data to an online service.
There are several standalone software tools available for
statistical analysis and visualization of annotated metage-
nomics data, e.g. MEGAN [12], SmashCommunity [13],
STAMP [14], shotgunFunctionalizeR [15], VEGAN [16],
QIIME [17] and Mothur [18].
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We identified the requirement for a user-friendly com-
parative analysis and data visualization tool where annotated
metagenomics data can meet sample metadata and be ana-
lyzed at different hierarchy levels using a built-in or user
provided biological database. This tool, FANTOM for Func-
tional ANnotation and Taxonomic analysis Of Metagen-
omes, is an easy installed, standalone software tool that is
accessed through a graphical user interface to analyze abun-
dance of metagenomics features that are easily integrated
with NCBI taxonomy, KEGG [19], COG [20] and protein
family databases PFAM [21] and TIGRFAM [22] with hier-
archy information. We believe that this tool will be highly
useful for a broad community of scientists desiring to
analyze metagenomics data.

Implementation

The software installer, user manual and demonstration
videos can be found and downloaded at the website
www.sysbio.se/Fantom

FANTOM was implemented in Python allowing it to
operate platform independent in addition to the
utilization of core scientific packages including numpy,
scipy and matplotlib to implement statistical functions
and various plotting options. wxPython was incorpo-
rated to provide graphical user interface components
and storm package was used for object relational map-
ping of data from the local SQLite database. The soft-
ware was tested successfully on Windows, Linux and
OSX operating systems and the installers are provided
for the different platforms.

FANTOM requires two input files; a metagenomics
abundance file, which could be derived from annotation
of metagenomics data, including either taxonomic or
functional annotations and another file containing the
samples’ metadata (see user manual and demonstration
videos). Besides, there are web services such as CAM-
ERA [7], IMG/M [8] and MG-RAST [9] that allow the
users to easily obtain metagenomics abundance from
their metagenome data. Metadata can either be numer-
ical or categorical and the software will automatically
recognize the format and display options for selecting
and filtering samples. Functional hierarchy information
was downloaded from KEGG Orthology, COG, PFAM
and TIGRFAM databases and taxonomic lineage infor-
mation was downloaded from the NCBI taxonomy data-
base and constitute the standards feature databases in
the software package. Moreover, FANTOM provides the
option that allows the user to create and use a custom
made hierarchical database. The custom database can be
easily imported as a tabular input file to analyze the
abundances of corresponding database levels.

In FANTOM, the abundance can be specified at differ-
ent levels in hierarchical databases, which are called
nodes (e.g. pathways or Genera), the abundance of a
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higher node in the hiearchy is calculated by summing
the abundance of all member nodes further down in the
hierarchy structure (e.g. orthologs or species). The abun-
dance of nodes that are members of more than one
higher level nodes are split equally between higher
nodes.

The metadata file can include both categorical and nu-
merical properties of each sample, which can then be
used in FANTOM to filter and select sample groups of
interest for comparative analysis. Numerical variables
can further be used for correlation analysis with the
annotated features. Taxonomic or functional feature
abundances can be displayed and processed either as ab-
solute counts or as normalized relative values. After
selecting relevant subsets of metagenomics data, princi-
pal component analysis can be applied to reduce the
dimensionality. Furthermore, hierarchical clustering, an-
other multivariate analysis method is implemented to
evaluate high dimensional metagenomics data by draw-
ing dendograms for features and samples as well as a
heatmap with 2-dimensional clustering, reflecting abun-
dance values.

By defining groups of samples based on metadata, statis-
tical hypothesis tests can be performed to compare meta-
genomics features between groups. FANTOM, currently
supports two sample comparisons. Non-parametric Mann-
Whitney U test was implemented in FANTOM and is
encouraged because of the typically non-normally distribu-
tion of metagenomics data. Shapiro Wilk’s normalty test,
Bartlett’s test and Levene’s test for equality of variances
and Student’s t-test were also implemented as parametric
hypothesis tests. Obtained p-values of these tests can be
adjusted for multiple testing using either Bonferroni or
Benjamini-Hochberg false discovery rate (fdr). Results can
finally be filtered according to p-values, absolute fold
change and mean relative abundance. The multivariate and
statistical methods that are provided in FANTOM are
summarized in Figure 1.

FANTOM provides several options for graphical rep-
resentation of the data and comparative analysis. After
hypothesis testing, significant results can be displayed by
bar charts, boxplots, pie charts and area plots. Plotting
options make use of the hierarchies in NCBI taxanomy,
KEGG and COG, groups of metagenomics data accord-
ing to the specified level and added filtering options.
The software provides means to save the figures in high
quality formats that can be used directly for publication.
An example of a screen shot of FANTOM is shown in
Figure 2.

Results and discussion

The software was evaluated using metagenomics data
from the gut microbiome of 124 subjects in the Meta-
HIT [23] project. Sequences were quality trimmed
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Figure 1 Statistical analyses provided in FANTOM.
-

(SolexaQA —p 0.05) and sequences shorter than 35 bp
were filtered out. High quality reads were aligned to a
reference catalogue of 440 genomes to obtain taxonomic
abundance. Moreover, the reads were aligned to the
MetaHIT gene catalogue of 3.3 million genes to get the
abundance of genes. The genes were annotated to the
KEGG and COG database and this information was used
to transform gene abundance to KEGG KO and COG
abundances. This data are available as example files

together with metadata included bundled with the
software.

The MetaHIT study focused on two human diseases,
obesity and inflammatory bowel disease (Crohn’s disease
and ulcerative colitis), which we make use of here as ex-
ample capabilities of FANTOM.

Differences based on Mann-Whitney U test (FDR < 0.2)
were observed for lean (BMI < 25) and obese (BMI > 30)
individuals in species and genus level taxonomy terms. At
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Figure 2 Graphical user interface of FANTOM and examples of plots that can be generated. A) FANTOM data manipulation panel B) Bar
graph comparing two types of patients by KEGG pathway level abundances C) Area plot showing two sets of samples and individual profiles of
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Figure 3 Comparison of healthy lean subject with obese subjects. A) Genera with a FDR < 0.2 that are differentially abundant between lean

the genus level, particularily Prevotella was enriched in
obese individuals whereas Bacteroides, Bifidobacterium,
Alistipes and unclassified Clostridiales were enriched in
normal weight subjects (Figure 3A). Previous reports have
discussed the association between the ratio of Firmicutes
to Bacteroidetes with obesity and came to different con-
clusions [24-26]. Here we observed changes within the
Bacteroidetes phyla by an increase of Prevotella and a de-
crease in Bacteroides in obese subjects. To get an

appreciation of the variability and profiles in the micro-
biota across individuals, the relative abundance profiles
were plotted in area plots (Figure 3B).

Comparisons between Spanish Crohn’s disease (CD)
patients and healthy individuals in taxonomical terms are
illustrated in Figure 4A. Based on Mann-Whitney U test
(p-value < 0.05), it is clearly seen that there was a decrease
in CD patients of several common Firmicutes species
commonly known to be present in a healthy gut such as
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species between CD and healthy subjects. B) Differentially abundant KEGG pathways between CD and healthy subjects.
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Ruminococcus sp, Faecalibacterium sp., Clostridium sp.,
Alistripes sp., Coprocouccus sp., Methanobrevibacter sp.,
Eubacterium sp. Dorea sp. and butyrate producing bac-
teria. The loss of Firmicutes and Faecalibacterium praus-
nitzii in particular has been observed previously [27] and
is confirmed here. Subsequently, an increase of several
Bacteroides sp. was observed in CD patients. By using the
functional information and testing for differential abun-
dance of KEGG pathways between CD patients and
healthy subjects specific metabolic pathways could be
identified as seen in Figure 4B. The results are consistent
with the taxonomical changes as the enrichment of the
Gram negative Bacteroides sp. are consistent with the
decreased number of genes for peptidoglycan biosynthesis
as well as ABC transporter but an increase in membrane
structure and transport as well as ion channels in CD
patients.

Conclusion

We provide an open source standalone user-friendly soft-
ware tool, FANTOM, for data analyses and data mining of
read counts from whole shotgun metagenomics or ampli-
con sequencing studies. FANTOM allows the user to inte-
grate sample metadata, taxonomy and gene functional
profiling in the analysis, and FANTOM is supplied with
access to biological databases as well as the possibility to
upload custom made databases.

Availability and requirements

Project name: FANTOM : Functional and taxonomic
analysis of metagenomes

Project home page: www.sysbio.se/Fantom

Operating system(s): Windows, Linux, Mac OSX
Programming language: python

Other requirements: -

License: GNU-GPL version 3 software license

Any restrictions to use by non-academics: No
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