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Abstract

Background: Microarrays have been a popular tool for gene expression profiling at genome-scale for over a decade
due to the low cost, short turn-around time, excellent quantitative accuracy and ease of data generation. The
Bioconductor package puma incorporates a suite of analysis methods for determining uncertainties from Affymetrix
GeneChip data and propagating these uncertainties to downstream analysis. As isoform level expression profiling
receives more and more interest within genomics in recent years, exon microarray technology offers an important
tool to quantify expression level of the majority of exons and enables the possibility of measuring isoform level
expression. However, puma does not include methods for the analysis of exon array data. Moreover, the current
expression summarisation method for Affymetrix 3’ GeneChip data suffers from instability for low expression genes.
For the downstream analysis, the method for differential expression detection is computationally intensive and the
original expression clustering method does not consider the variance across the replicated technical and biological
measurements. It is therefore necessary to develop improved uncertainty propagation methods for gene and
transcript expression analysis.

Results: We extend the previously developed Bioconductor package puma with a new method especially designed
for GeneChip Exon arrays and a set of improved downstream approaches. The improvements include: (i) a new
gamma model for exon arrays which calculates isoform and gene expression measurements and a level of uncertainty
associated with the estimates, using the multi-mappings between probes, isoforms and genes, (i) a variant of the
existing approach for the probe-level analysis of Affymetrix 3" GeneChip data to produce more stable gene expression
estimates, (iii) an improved method for detecting differential expression which is computationally more efficient than
the existing approach in the package and (iv) an improved method for robust model-based clustering of gene
expression, which takes technical and biological replicate information into consideration.

Conclusions: With the extensions and improvements, the puma package is now applicable to the analysis of both
Affymetrix 3" GeneChips and Exon arrays for gene and isoform expression estimation. It propagates the uncertainty of
expression measurements into more efficient and comprehensive downstream analysis at both gene and isoform
level. Downstream methods are also applicable to other expression quantification platforms, such as RNA-Seq, when
uncertainty information is available from expression measurements. puma is available through Bioconductor and can
be found at http://www.bioconductor.org.
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Background

Microarrays have been applied to high-throughput gene
expression profiling for over a decade due to several
advantages, e.g. high coverage, low cost, short turn-
around time, excellent quantitative accuracy and ease of
data generation. It has been shown recently that microar-
rays still remain an efficient and reliable tool for expres-
sion quantification especially for low-abundance targets
[1]. We previously developed the Bioconductor package
puma [2] for Affymetrix GeneChip data analysis. In the
initial probe-level analysis, puma uses the multi-mgMOS
method [3] to obtain an expression estimate for each
gene and a level of uncertainty associated with this esti-
mate. In the downstream analysis, puma propagates these
uncertainties to principal component analysis, differen-
tial expression detection and gene expression clustering
using methods NPPCA [4], PPLR [5] and PUMA-CLUST
[6], respectively, and obtains improved analysis results.
In addition to expression measurements obtained from
microarrays, these downstream methods are also appli-
cable to other expression quantification platforms, e.g.
RNA-Seq based on high throughput sequencing technol-
ogy, providing a level of uncertainty is associated with
each measurement.

As the analysis of alternative splicing gains more and
more interest in recent years, exon microarray technol-
ogy, such as Affymetrix GeneChip Exon arrays, provides
an option for measuring isoform level expression. It is
therefore necessary for puma to include methods for
propagating isoform expression uncertainty in the anal-
ysis of exon array data. Furthermore, the current probe-
level analysis method, multi-mgMOS, obtains unstable
expression estimates for low expression genes which can
adversely affect the downstream analysis results. For the
downstream analysis, the PPLR method for differential
expression detection is computationally expensive and the
PUMA-CLUST method for expression clustering does
not consider the variance across the replicated techni-
cal and biological measurements. For all these reasons,
we present here a new version of the puma package
which incorporates a suite of improved probe-level anal-
ysis methods for gene and transcript expression sum-
marisation and uncertainty propagation methods for the
downstream analysis. The new version of the package cov-
ers the wide range of quantitative expression analysis of
microarray at both gene and isoform level with the great
benefit from propagating uncertainty associated with
expression estimates into various advanced downstream
analyses.

Affymetrix microarrays use 25-base long probes to mea-
sure transcript abundance. Traditional 3" GeneChips use
two types of probes, perfect match (PM) and mismatch
(MM) probes. A PM probe matches the target sequence
exactly, whereas the corresponding MM probe differs
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from the PM probe in the middle base which is changed
to the complementary one. MM probes are introduced to
act as a control for cross hybridisation and other types of
background signal. The GeneChip Exon arrays use only
PM probes to obtain higher density of coverage and make
exon, isoform and gene level profiling possible. Many
probe-level analysis methods for 3’ arrays such as PLIER
[7] and RMA [8] which do not use MM probe inten-
sities, can be applied to exon arrays directly for exon
or gene level expression calculation by using probe-to-
exon or probe-to-gene mappings, respectively. With the
estimated exon and gene expression, it is possible to
perform alternative splicing detection by measuring exon-
gene expression ratios [9-11]. In addition to calculating
exon and gene expression ratios, isoform expression lev-
els can also be quantified for a more refined downstream
analysis.

The expression calculation at isoform level is non-trivial
since one probe can be mapped to multiple transcripts
or gene loci [12]. Also, an important characteristic of
Affymetrix microarray probes is that they have differ-
ent sensitivity to transcript abundance according to their
sequence content. Many probe-level analysis approaches
for 3’ arrays account for these probe-specific effects and
have obtained improved results [3,13]. Moreover, a level of
uncertainty associated with estimated isoform expression
would help downstream analyses to obtain more bio-
logically relevant results. With available multi-mappings
between probes and Ensembl transcripts, some methods
have recently been proposed to address the expression cal-
culation for known isoforms, such as MMBGX [14] and
MEAP [15]. MMBGX uses a hierarchical Bayesian model
to calculates the expression level of target transcripts
and results in a posterior distribution of each isoform
expression. MMBGX is solved by MCMC method and
is therefore computationally intensive. After background
removal, MEAP adopts a non-negative matrix factori-
sation approach to summarise isoform expression as a
point estimate and does not provide a level of uncertainty
associated with this estimate. MMBGX and MEAP per-
form cross-hybridisation correction according to different
GC content for probes, removing probe-specific effects
to a certain extent. However, it has been shown that spe-
cific hybridisation also presents probe-specific variations
[8,16]. We developed a new gamma model for exon array
data (GME), which accounts for probe-effects in spe-
cific hybridisation and multi-mappings between probes,
transcripts and genes. The GME model parameters are
estimated by Maximum a Posteriori (MAP) optimisation
to give isoform and gene level expression measurements
with a level of uncertainty of these estimates, provided by
a MAP-Laplace approximation [17]. The new method has
been implemented as an R function in the new version of
the puma package.
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For traditional 3° GeneChips, PM probes are thought
to mainly measure specific hybridisation and MM probes
measure non-specific hybridisation and other back-
ground. However, probes for low expression genes often
obtain higher background than true signal. When com-
bining PM and the corresponding MM probe intensities
to calculate gene expression, the resulting gene expres-
sion measurements can be unstable for low expression
genes, especially on a log scale. For this reason, most pop-
ular methods provide an option of using PM probes only
in order to obtain more stable expression values on the
log scale, such as PLIER [7], dCHIP [16] and RMA [8].
The previous method for 3° GeneChips in puma, multi-
mgMOS [3], combines both PM and MM probe intensities
to calculate gene expression values and provide a level of
uncertainty associated with the measurements. For low
expression genes the estimated logarithmic expression
values are usually negative and the associated variance
is typically large. These expression measurements with
large error can further affect downstream analyses and
may lead to incorrect biological conclusions. This is espe-
cially the case when the mean expression estimates are
processed by methods outside of the puma package which
do not account for measurement uncertainty. To alleviate
this problem, we propose PM-only multi-mgMOS for 3’
arrays, which uses only PM probe intensities and obtains
more stable gene expression estimates for low expression
genes.

For the downstream analyses of gene expression, the
new version of puma includes two newly improved
approaches for finding differentially expressed (DE) genes
and gene expression clustering. The previous method
PPLR for finding DE genes considers the probe-level mea-
surement error, which can improve results when there are
few replicates available [5,18]. PPLR uses an importance
sampling procedure in the variational EM solver which
leads to computational inefficiency since the number of
samples needs to be increased to gain better accuracy.
By adding a layer of hidden variables to the hierarchical
Bayesian model, inference in the PPLR model is faster due
to the elimination of this inefficient importance sampling
step [19]. The PUMA-CLUST method provided by the
previous version of puma propagates probe-level uncer-
tainty to improve results of standard Gaussian mixture
clustering of gene expression [6]. The recently proposed
PUMA-CLUSTII [20] approach improves PUMA-CLUST
in several aspects. First, variance across the replicated
technical and biological measurements for the same
experimental condition is considered. Second, a Student’s
t-distribution is adopted as the clustering components to
improve the robustness of the method. Finally, the opti-
mal number of components can be automatically found,
and this is especially important for the clustering when the
ground truth in the data is unknown.
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Implementation

Extended and improved function components in puma
puma includes two levels of analyses for expression data,
expression summarisation and downstream analyses. At
the summarisation level of analysis, the previous version
of puma as described in [2] can only processe 3’ GeneChip
data using mainly multi-mgMOS. With the obtained gene
expression measurements and the associated measure-
ment uncertainty from microarrays or other platforms,
puma propagates uncertainty into the downstream analy-
ses, including PPLR for finding DE genes, PUMA-CLUST
for gene expression clustering and NPPCA [4] for princi-
pal component analysis of gene expression. The diagram
of function components for the previous puma is shown
in the upper part of Figure 1. After the extension and
improvement in this paper, the functions of the new ver-
sion of puma are illustrated in the lower part of Figure 1.
The new version provides the following contributions:

e GME - In addition to traditional 3" GeneChip data,
the new version is capable of processing Exon array
data using a new model GME at the summarisation
level of analysis. From the Exon array data analysis,
both gene and isoform expression can be computed.

e PM-only multi-mgMOS - PM-only multi-mgMOS is
included to improve the stability of multi-mgMOS
for gene expression estimation.

e [PPLR - At the downstream analyses, the new version
of the package contains IPPLR as an improvement to
speed up PPLR for detecting differential expression.

e PUMA-CLUSTII - For expression clustering,
PUMA-CLUSTII is introduced to consider the
technical and biological variance across experimental
replicates. The new clustering method increases the
robustness of clustering and automatically selects the
optimal number of clusters by model selection.

With these contributions, methods in puma can process
both gene and isoform expression, making puma useful in
the analysis of alternative splicing. See Methods for more
details on these algorithms.

Multi-mappings between probes and isoforms

The increasing availability of mappings of microarray
probes to isoforms in the Ensembl database can be used
to perform isoform expression estimation. In particular,
multi-mappings between probes and isoforms are help-
ful in separating the intensity contributions from probes
shared by multiple isoforms. Transcript expression esti-
mation may benefit from this intensity separation. The
database GATExplorer [12] integrates information from
multiple biological sources (including Ensembl database
and probe sequences of Affymetrix microarrays) to pro-
vide the mappings between microarray probes and the
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Figure 1 Function components of the previous and new version of puma. The upper part of the figure shows the function components of the
previous version of puma package and the lower part shows the new version. After the extension and improvement, the new version covers
expression analysis for 3' GeneChip and Exon array data at both gene and isoform level.

functional transcriptional entities, i.e. gene loci, tran-
scripts, exons and ncRNAs. We include the multi-
mappings between Exon array probes, isoforms and genes
obtained from GATExplorer into the separate Biocon-
ductor data package pumadata which contains example
and annotation data used by puma. Mappings for human,
mouse and rat exon arrays are included and this makes
puma applicable to all types of Affymetrix Exon arrays.

Using the extended functions in puma

The new version of puma and the related pumadata pack-
age can be found at http://www.bioconductor.org. The
GEM model is implemented in the function gmoExon
to calculate gene and isoform level expression for Exon
arrays. The PM-only multi-mgMOS method is imple-
mented in the function PMmmgmos to estimate stable
gene expression for Affymetrix GeneChips. The improved
PPLR for detecting DE genes is implemented in the
function pumaCombImproved. The PUMA-CLUSTII
is implemented in the function pumaclustii for

robust expression clustering. To use these functions,
type library (puma) and library (pumadata) atR
prompt to load puma package and the data package. A
quick start of each of these functions is described below.
For detailed use of these functions, please refer to the user
manual of the puma package.

Gamma model for Exon arrays

The expression summarisation method for Exon arrays is
GME. The method makes use of multi-mappings between
probes, isoforms and genes obtained from GATExplorer
to aid the calculation of gene and isoform expression. The
mappings are included in the individual package puma-
data. The following code shows a quick start of this
method.

> library (pumadata)

> affybatch.exon<-ReadAffy ()

> eset<-gmoExon (affybatch.exon,
exontype="Human", GT="gene",
gsnorm="mean")
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The above code loads exon array data (CEL files) in
the working directory as an AffyBatch object and
processes it using GME method. Among the parameters,
exontype can be one of “Human’, “Mouse” and “Rat’,
indicating the exon chip type. GT can be one of “gene”
and “transcript’, specifying the expression estimated at
gene and isoform level, respectively. gsnorm specifies the
algorithm used by the global scaling normalisation and
can be one of “mean’;, “median’, “meanlog” and “none”
“mean” and “meanlog” are mean-centered normalisa-
tion on raw and the log scale, respectively, “median” is
median-centered normalisation and “none” means no
global scaling normalisation. The value of gmoExon is an
object of class exprReslt which stores the estimated
expression and a level of uncertainty associated with this
measurement.

PM-only multi-mgMOS for Affymetrix GeneChips

PM-only multi-mgMOS increases the stability of the
original multi-mgMOS method, especially for weakly
expressed genes. We use an example dataset included in
the pumadata package to demonstrate the use of this
method.

> library (pumadata)

> data(affybatch.estrogen)

> eset_estrogen_pmmmgmos<-PMmmgmos
(affybatch.estrogen, gsnorm="none")

The first parameter of the function PMmmgmos is an
AffyBatch object containing the raw probe intensities.
The parameter gsnorm has the same meaning as that
in the function gmoExon. The value of PMmmgmos is
an object of class exprReslt which contains the esti-
mated gene expression and the corresponding estimation
uncertainty.

Improved PPLR for finding DE genes

IPPLR is designed to improve the computational effi-
ciency of the original PPLR for finding differential
expression. Similar to PPLR, it includes two steps
to detect DE genes. At the first step, the function
pumaCombImproved is used to combine expression
from replicates to give a single measurement for the
related condition. At the second step, the existing func-
tion pumaDE is used to calculate the PPLR (probability of
positive log-ratio) values to identify DE genes. We use an
example dataset in the puma package to demonstrate the
use of this method as below.

> data (eset_mmgmos)

> pumaComb_Improved <-
pumaCombImproved (eset_mmgmos)
> pumaDERes_Improved <-
pumaDE (pumaComb_Improved)

The parameter of pumaCombImproved is an object of
class ExpressionSet and can also be the outputs from
GME, PM-only multi-mgMOS or multi-mgMOS. The
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function pumaDE generates lists of genes ranked by the
PPLR values which indicate the significance of differential
expression.

PUMA-CLUSTII for robust clustering

The existing clustering method PUMA-CLUST in puma
considers uncertainty of gene expression but does not take
into account the technical and biological variance when
replicates are available. PUMA-CLUSTII is proposed to
address this problem. It also adopts more robust compo-
nents by using a Student’s ¢ distribution instead of the
Gaussian components used by PUMA-CLUST. We use an
example dataset in the puma package to show the use of
this method.

data (Clustii.exampleE)

(
data (Clustii.exampleStd)
for (i in c(1:20))
for (j in c(1:4))

r<-c(r,1i)

cl<-pumaClustii (Clustii.exampleE,
Clustii.exampleStd,mincls=2,maxcls=10,
conds=20, reps=r)

V V. V V V V

The first two parameters of pumaClustii are data
frames containing the expression measurements and the
associated uncertainty respectively. The minimum and
maximum numbers of clusters are specified by the param-
eters mincls and maxcls, respectively. The parameter
conds indicates the number of conditions involved in
the data and reps is a vector specifying which condi-
tion each column of the input data frame belongs to. The
result is a list containing the center of clustering com-
ponents, the membership of components for each data
point, the optional number of clusters and other auxiliary
information.

Results and discussion

Datasets

MAQC dataset

We use the well studied Microarray Quality Control
(MAQC) dataset [21] to evaluate most of the extensions of
the new version of puma at gene expression level. MAQC
project measured gene expression levels from high-quality
RNA samples to assess the comparability across multi-
ple platforms. We select two RNA samples, the universal
human reference RNA (UHRR) and the human brain ref-
erence RNA (HBRR), from Affymetrix Exon array and
Affymetrix U133 GeneChip platforms. Each sample type
has five replicates for both platforms. Experiments of
Exon arrays were carried out in two independent labs:
McGill University (MU) and Virginia Tech (VT). We
randomly selected data from MU for the evaluation of
GME. For U133 GeneChips, we use data AFX_1_[A-B]
[1-5] from GSE5350. Apart from microarray experiments,
MAQC project also conducted qRT-PCR experiments for
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around one thousand genes which can be served as a gold-
standard to benchmark gene expression values estimated
from other platforms [22,23].

Among the qRT-PCR data, we use the method similar to
[23] to filter out DE and non-DE genes with high certainty.
Firstly, we select genes which were found to be “present”
for atleast three qRT-PCR replicate assays. Secondly, aver-
age gene expression over replicates is calculated for each
sample. Genes with absolute log-ratio between the UHRR
and HBRR samples less than 0.2 are taken as “non-DE”
genes. Those with log-ratio greater than 2.0 are “DE+”
genes which are up-regulated in UHRR sample and those
with log-ratio less than -2.0 are “DE-” genes being down-
regulated in UHRR sample. Finally, we map these non-DE
and DE genes to Exon array and U133 GeneChip plat-
forms and obtain the corresponding mapped genes and
probe-sets for each platform as shown in Table 1. Using
these qRT-PCR validated data, we produce receiver oper-
ator characteristic (ROC) curves for various combina-
tions of gene expression estimation methods and DE gene
detection methods with the consideration of the direction
sign of regulation.

HNSCC dataset

The qRT-PCR validated head and neck squamous cell
carcinoma (HNSCC) dataset [15] is used to verify the iso-
form expression calculated by GME. In HNSCC dataset,
15 cell lines from tongue and larynx were cultured and
samples were assayed using Affymetrix Human Exon 1.0
ST microarrays. Amplification of the chromosome region
11q13 is a common genomic alteration in HNSCC. The
15 cell lines are divided into two sample groups, with
11q13 amplification (11q13+) and without 11q13 ampli-
fication (11q13-). 11q13+ group contains seven cell lines
and 11q13- group contains eight. qRT-PCR experiments
were performed for four alternatively spliced variants of
two genes (ORAOV1 and NEO1) located in the 11q13
amplified region and associated with HNSCC. We use
GME to calculate the expression levels for the four iso-
forms in all 15 cell lines and then apply PPLR to identify
the differential expressed transcripts (DETs). The detected
DETs are compared with qRT-PCR findings to verify the
performance of GME.

Table 1 Number of qRT-PCR validated non-DE and DE
genes and probe-sets for Exon arrays and H133 GeneChips

non-DE DE
DE+ DE-
Exon arrays 87 116 102
U133 GeneChips 204 185 267

Non-DE and DE genes obtained from qRT-PCR data with high certainty are
mapped to Exon arrays and Affymetrix U133 GeneChips. Exon arrays obtain 305
corresponding genes and U133 GeneChips contain 656 related probe-sets. The
symbols “+"” and “-” stand for up- and down-regulation in UHRR, respectively.
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Accuracy of gene expression estimation for Exon array data
To evaluate the accuracy of GME for gene expression esti-
mation from exon array data, we compare GME with the
other two traditional methods RMA and PLIER. The func-
tions implemented in Bioconductor package affy for RMA
and PLIER methods are used to produce gene expression.
We combine the different expression estimation methods
with three DE detection methods, ¢-test, PPLR and IPPLR,
to find DE genes on the MAQC dataset. ¢-test is applied to
point estimates of gene expression from the three expres-
sion estimation methods. PPLR and IPPLR require a level
of uncertainty associated with expression estimates, and
they are therefore applied to GME and RMA which are
able to provide expression measurement error. In addi-
tion to process all five replicates for each sample, we
also randomly select two replicates to show the perfor-
mance of each method with fewer number of replicates
available. we repeat five runs for the processing of the
2-replicate case. Figure 2 shows the average ROC curves
of the comparison for 2-replicate case and Figure 3 shows
the results for 5-replicate case. GME combined with PPLR
obtains lower true positive rate (TPR) at the top of rank-
ing list of DE genes. However, by increasing the number
of sample in the importance sampling of PPLR, TPR gets
obviously improved. The area under ROC curve (AUC)
for the different expression estimation methods combined
with various DE detection methods are shown in Table 2.
We can see from Table 2 that GME outperforms the other
alternatives at most cases, especially when combined with
t-test and IPPLR. The comparison results show that GME
is a competitive approach in gene expression calculation
from Exon array data.

Validation of isoform expression estimation

We use the qRT-PCR validated HNSCC data set to
verify the isoform expression calculated by GME. In
HNSCC dataset, two ORAOV1 alternative splice vari-
ants (ORAOV1-201 and ORAOV1-202) and two NEO1
alternative splice variants (NEO1-201 and NEO1-202) are
validated by qRT-PCR experiments. We apply GME to
this dataset and obtain the expression levels for the four
transcripts. For each transcript in every one of the 15
cell lines, GME produces the expression estimate and a
level of uncertainty associated with this estimate. Figures 4
and 5 show the distributions of isoform expression in
each cell line of ORAOV1 and NEOI, respectively. The
blue lines are for 11q13+ samples and the red lines for
11q13- samples. We can see from the figures that there
is considerable variability in the transcript expression for
the cell lines from each sample group. High expression is
generally associated with low variance while low expres-
sion with large variance. For the expression distribution of
NEO1-201 as shown in the upper plot of Figure 5, there
is extreme low expression for one cell line from each of
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Figure 2 ROC curves from different methods for 2-replicate Exon array data. The ROC curves are obtained from the average over the 5 runs
each of which randomly selects two replicates. Gene expression estimation methods RMA, PLIER and GMA, are combined with different
finding-DE-gene methods, t-test, PPLR and IPPLR. PLIER provides only a point estimate for gene expression and therefore is not applicable to PPLR
and IPPLR. The number after PPLR indicates the sample number used in the importance sampling of the algorithm.

the two sample groups. We then apply PPLR to the distri-
butions of isoform expression to obtain the distributions
of mean expression for each sample group, which are rep-
resented by the bold lines as shown in the figures. Note
that the effects of low expression outliers are reduced by
applying PPLR which accounts for technical and biological
components of variance.

According to the qRT-PCR results, the four transcripts
are overexpressed in 11q13+ sample with less significant
change for ORAOV1-202 (p < 0.0837). ORAOV1-201
presents higher expression levels than ORAOV1-202 in
both 11q13+ and 11q13- samples, while NEO1-202 is
expressed at higher levels than NEO1-201 in the two sam-
ples. Table 3 shows the directions of the relative expres-
sion change found by qRT-PCR and GME. The results “+”
and “-” stand for up- and down-regulation in the first com-
parison component, respectively. For GME, the result of
“+” indicates PPLR > 0.5 and the result of “-” indi-
cates PPLR < 0.5. We also show the probability of

differential expression as calculated by max(PPLR,1 —
PPLR), with numbers close to 1.0 indicating strong sup-
port. It can been seen from Table 3 that the relative
expression changes found by GME combined with PPLR
are consistent with qRT-PCR results for all comparisons.
The results show that GME produces reliable isoform
expression estimations for this specific dataset.

Improvements for detection of differential expression

IPPLR accelerates the computation of PPLR by elim-
inating the importance sampling stage of the algo-
rithm which significantly slows down PPLR computation.
Table 4 shows the CPU run time of PPLR and IPPLR on
2-replicate and 5-replicate exon array data. The run time
for 2-replicate data is the average processing time over the
5 runs. It can be seen from Table 4 that the computation
time of PPLR increases with the number of importance
samples and IPPLR is therefore much more computa-
tionally efficient. The accuracy of detecting DE genes
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Figure 3 ROC curves from different methods for 5-replicate Exon array data. Gene expression estimation methods are combined with
different finding-DE-gene methods. PLIER provides only a point estimate for gene expression and therefore is not applicable to PPLR and IPPLR. The
number after PPLR indicates the sample number used in the importance sampling of the algorithm.

Table 2 Area under ROC curves from different methods for Exon array data

Methods 2 replicates 5 replicates
1 2 3 4 5 Average
t-test RMA 0.8945 0.8909 0.9107 0.9346 09316 09118 0.9475
PLIER 0.8806 0.8852 0.9004 0.9084 0.9083 0.8937 0.9291
GME 0.9082 0.9044 0.9415 0.9544 0.9427 0.9287 0.9580
PPLR-1000 RMA 0.9243 0.9234 0.9385 0.9417 0.9387 0.9323 0.9489
GME 0.9208 0.9093 0.9365 0.9297 0.8969 0.9188 0.9447
*PPLR-10000 RMA 0.9227 0.9226 0.9419 0.9453 0.9432 0.9348 0.9492
GME 0.9353 09317 0.9474 0.9374 0.9324 0.9274 0.9503
IPPLR RMA 0.9246 0.9301 0.9464 0.9468 0.9463 0.9382 0.9493
GME 0.9379 0.9391 0.9457 0.9597 0.9549 0.9475 0.9589

Gene expression estimation methods are combined with different finding-DE-gene methods. PPLR and IPPLR require a level of uncertainty associated with expression
estimation, and they are therefore combined with GME and RMA since these two methods can provide variance of gene expression measurements. For t-test we use
only the point estimates of gene expression. PLIER provides only a point estimate for gene expression and we only evaluate it combining with t-test. The number after
PPLR indicates the sample number used in the importance sampling of the algorithm. The best result for each comparison is highlighted in bold.
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Figure 4 Distribution of isoform expression for gene ORAOV1. The distributions of the estimated isoform expression for the two alternatively
spliced transcripts of gene ORAOV1 in the 15 cell lines are calculated from GME. The blue lines are for 11q13+ group and red lines for 11g13- group.
The bold lines are the distributions of the mean expression for each group, obtained from PPLR. Expression is on the log scale.
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Figure 5 Distribution of isoform expression for gene NEO1. The distributions of the estimated isoform expression for the two alternatively
spliced transcripts of gene NEOT1 in the 15 cell lines are calculated from GME. The blue lines are for 11q13+ group and red lines for 11g13- group.
The bold lines are the distributions of the mean expression for each group, obtained from PPLR. Expression is on the log scale.
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Table 3 GME results for the qRT-PCR validated transcripts
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Comparisons qRT-PCR GME max(PPLR,1 — PPLR) Consistency
11913+ vs. 11913~ ORAOV1-201 + + 1.0000 Y
ORAQOV1-202 + + 0.9968 Y
NEO1-201 + + 0.8961 Y
NEO1-202 + + 09719 Y
ORAQV1-201 vs. 202 11913+ + + 09154 Y
11g13- + + 05782 Y
NEO1-201 vs. 202 11913+ - - 0.9999 Y
11913~ - - 1.0000 Y

The expression changes between groups 11q13+ and 11q13- for each transcript, and between two transcripts of the same gene for each group, are examined. The
results of qQRT-PCR and GME are “+" or “-" for up- and down-regulation in the first comparison component, respectively. Column of max(PPLR,1-PPLR) gives the
probability of differential expression. The concordances between gqRT-PCR validation and GME results are given in the right-most column.

for different methods is shown in Table 2. We can see
that with the same expression estimation method, IPPLR
obtains the best accuracy for most datasets. PPLR and
IPPLR outperform t-test. PPLR was compared with more
sophisticated moderated t-tests in the original publica-
tion [5]. These show the usefulness of measurement error
propagated into the downstream analysis. The improve-
ment is especially significant for the 2-replicate case
demonstrating that probe-level measurement error helps
to alleviate the need for experiment replicates. Note that
as the number of importance samples increases the accu-
rate of PPLR also gets improved. When the number of
importance samples used is 10,000 then the accuracy of
PPLR is close to that of IPPLR.

Accuracy of gene expression estimation for 3' GeneChips

Our previous study [3] shows that the original multi-
mgMOS presents good sensitivity to the concentration
change in samples due to the correction of non-specific
hybridisation by MM probe intensities. However, for
weakly expressed genes the resulting logarithmic expres-
sion estimates are usually associated with large variance
and this can cause instability in the downstream analy-
sis. We divide the experimental data of Affymetrix U133
GeneChips into three groups, with “low’, “medium” and
“high” expression respectively, to show this effect. Figure 6
shows the partition of the dataset with gene expres-
sion calculated from multi-mgMOS. Genes under line [;
belong to “low” expression group. Genes between line /;
and /; belong to “median” expression group. Genes above

Table 4 Run time of PPLR and IPPLR

Datasets PPLR_-1000 PPLR_10000 IPPLR
2 replicates 73.1 1330.8 27.5
5 replicates 1254 31274 159

The run time (CPU seconds) for 2-replicate dataset is the average processing
time over the 5 runs. The number after PPLR indicates the sample number used
in the importance sampling of the algorithm. The program runs on the machine
with Intel Pentium Dual-core 2.6GHz CPU and 8.0G RAM.

line /; belong to “high” expression group. The group of
all genes is denoted as “all” For each gene group, we
plot ROC curves individually with the calculation from
different expression methods combined with PPLR, as
shown in Figure 7. The corresponding AUC values are
shown in Table 5. We compare three expression esti-
mation methods, PM-only multi-mgMOS, multi-mgMOS
and the popular RMA approach. We can see that PM-
only multi-mgMOS and multi-mgMOS outperform RMA
for all gene groups. PM-only multi-mgMOS obtains bet-
ter results than multi-mgMOS for “medium’, “low” and
“all” groups, but fails in “high” group compared with
multi-mgMOS. This shows PM-only multi-mgMOS per-
forms better for relatively low expression genes while
multi-mgMOS works well for high expression genes.

We randomly select two probe-sets, 220818 s_at
and 203073_at, out of probe-sets whose PPLR values
are significantly different between multi-mgMOS and
PM-only multi-mgMOS. Probe-set 220818_s_at is related
to a low expression DE gene and 203073_at related to a
high expression non-DE gene. The distributions of the
expression difference between two conditions for the two
probe-sets are shown in Figure 8. For the DE probe-set in
the left plot, the two methods obtain similar mean values
of the expression difference, but obviously different mea-
surement error. The variance of the expression difference
calculated from multi-mgMOS is much larger than PM-
only multi-mgMOS and this results in lower PPLR value,
0.747, compared with 1.000 from PM-only multi-mgMOS
(PPLR values close to 0 or 1 indicate significant DE).
Thus, this probe-set is correctly classified as significant
DE according to PM-only multi-mgMOS’s result while
misclassified as non-DE according to multi-mgMOS’s
computation. This shows that PM-only multi-mgMOS
increases the stability of multi-mgMOS for gene expres-
sion calculation for lower expression. For the non-DE
probe-set on the right plot of Figure 8, multi-mgMOS
correctly classifies this probe-set with PPLR value 0.467
while PM-only multi-mgMOS misclassifies it with PPLR
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value 0.997 showing that PM-only multi-mgMOS can be
less accurate in the high end.

Robust clustering considering technical and biological
variance

PUMA-CLUSTII is a robust Student’s ¢ mixture model
and takes into accounts expression measurement error,
and technical and biological variance. Our work in [20]
has already demonstrated that PUMA-CLUSTII obtained
more accurate partitions compared with other alternatives
on synthetic data. Furthermore, the method was shown
to obtain numbers of clusters similar to the number of
underlying groups in realistic simulated data. Applications
of PUMA-CLUSTII on yeast metabolic cycle and cell cycle
datasets have already shown that the method led to more
biologically relevant clusters in terms of both GO category
and TF-gene interaction.

Conclusions
We have presented the extended and improved functions
of the new version of the puma package and demonstrated

the usefulness of these new functions on the well stud-
ied MAQC dataset and the qRT-PCR validated HNSCC
dataset. With these extensions and improvements, puma
is able to provide accurate expression estimates for both
Affymetrix 3’ GeneChips and Exon arrays. In addition
to gene expression measurements, the new puma can
also provide reliable estimation of isoform expression
from Exon array data. For 3° GeneChip data, the stabil-
ity of expression measurements for low expression genes
was improved. Furthermore, a level of uncertainty associ-
ated with these expression estimates can also be obtained
and this measurement error can be propagated into
our downstream analysis approaches to obtain improved
results. With the consideration of expression measure-
ment error in the downstream analyses, methods can be
computationally demanding. The new puma package sig-
nificantly improves the computational efficiency of the
previous method for finding DE genes and obtains even
better accuracy. As the final contribution, the new puma
provides a robust clustering method which considers the
within-chip measurement error and across-chip technical
and biological variance.
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Figure 7 ROC curves from different methods for U133 GeneChip data. ROC curves are calculated from different gene expression estimation
methods, RMA, multi-mgMOS and PM-only multi-mgMOS, combined with PPLR for “low”, “median”, “high” and “all” groups of U133 GeneChips data.

There are two main advantages of the new puma pack-
age. One is that the package processes Affymetrix 3’
GeneChips and Exon arrays to obtain accurate gene and
isoform expression estimates with a level of uncertainty
associated with these measurements. The other is that the
package offers various downstream analysis approaches
which make use of measurement error of expression
to produce improved results at both gene and isoform
level. Note that the data used for these downstream anal-
yses is not limited to expression measurements from

microarrays. The data can be expression measurement
obtained from any other platform so long as a reasonable
level of uncertainty can be associated with each measure-
ment. For example, RNA-Seq is increasingly applied for
transcript quantification [24]. Some methods proposed to
analyse RNA-Seq data are able to provide both expres-
sion estimates and measurement uncertainty [25,26]. The
transcript expression estimates and the related measure-
ment error output by these methods can be used directly
by the downstream analysis methods of puma. For all

Table 5 Area under ROC curves from different methods for U133 GeneChip data

Groups # of probe-sets PM-only multi-mgMOS multi-mgMOS RMA
non-DE DE+ DE-

High 65 21 14 0.9842 0.9952 0.9308

Medium 90 73 82 0.9062 0.8880 0.8827

Low 49 91 171 0.8363 0.8180 0.8147

All 204 185 267 0.8227 0.8130 0.7971

Genes are divided into three groups, labelled as “high”, “/medium” and “low”, according to the expression levels. The numbers of “non-DE”, “DE+" and “DE-" probe-sets
are shown. AUC is calculated individually for each of the three groups from PM-only multi-mgMOS, multi-mgMOS and RMA combined with PPLR. The overall AUC is
also shown in the bottom of the table. The winner is highlighted in bold for each group.
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these reasons, puma is very useful to a large number
of researchers who are interested in gene and transcript
expression analysis.

Methods

Gamma model for Affymetrix GeneChip Exon array data
Let ygjc represent the jth PM probe intensity for the gth
gene under the cth condition. Allowing any number of iso-
form contributions to Ygjcy We asSUMe Ygjc = LkeM(gj)Sgiker
where M(gj) is the set containing indices of isoforms
mapping to probe j of gene g, and sgj is the inten-
sity contribution from the kth mapping isoform. Similar
to the assumption of the multi-mgMOS method for 3’
array, we assume sgjx follow a gamma distribution, sgjx, ~
Ga(agke, Bgj), where B is a probe-specific latent variable
which models the probe effects and is shared across the
isoforms and experimental conditions of the same gene.
As the summation of independent gamma-distributed
variables, yg;c also follows a gamma distribution, yg. ~
Ga(ZkeM(g) ke Bg)- With a gamma prior for the latent
variable Bgj, i.e. Bgj ~ Gal(cg, dg), the likelihood of probe
intensities for a specific gene is

L ({ygjc} | {agkc}: Cgs dg)
=11 / PUgic| Zkemg) Agker Bg)P (Bgilcg: dg)d By
jc

1)

The integral in equation (1) can be computed analyti-
cally. The Maximum a Posteriori (MAP) solution of the
model can thus be found by efficient numerical optimisa-
tion. With the estimated parameters {&g.}, ¢g and 2Zg, the
distribution of the expression for each isoform is

Plsgie) = / Plsgicldgier Bo)pBolio dp)dby. ()

We assume the expression of gene g is the sum of sig-
nal from its isoforms, i.e. Xisgik.. Hence, the distribu-
tion of gene expression is also a gamma, 2k Sgjke
Ga(ZxAgkes Bgj)- Similarly, the posterior distribution of the
gene expression can be expressed as

p(zksgjkc) = /p(Ekngkc|2k&gkc; ,ng)p(ﬂgﬂag: ;ig)dﬁgﬁ
3)

The posterior distributions of the logged gene/isoform
expression can be estimated from equation (2) and (3),
respectively. The expectation of the logged expression
level is then computed and approximated by a Gaussian.
The Gaussian approximation to the posterior distribution
is useful for propagating the probe-level measurement
error in subsequent downstream analyses of both gene
and isoform expression.

PM-only multi-mgMOS for Affymetrix 3’ GeneChip data
Affymetrix 3° GeneChips group probes into probe-sets.
Most genes are covered by one probe-set and gene expres-
sion level can be presented by the expression estimated
from the grouped probe intensities. To improve the sta-
bility of gene expression measurements for the original
multi-mgMOS [3], we ignore the MM probe signal and
assume PM probes measure specific hybridisation in a
probe-specific way. The intensities of PM probes within
a probe-set are assumed to follow a gamma distribution.
Let yj;c represent the jth PM intensity for the ith probe-set
under the cth condition. The model is defined by

Yie ~ Galae, byj) (4)

by ~ Ga(ci, dy), (5)
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where b;; is a latent variable which models probe-specific
effects for the same type of chip.

The MAP solution of this model can be easily found
by efficient numerical optimisation. With the estimated
parameters &, ¢; and cAii, the posterior distribution of PM
intensities is

Plye) = / Pyjeléie, by Pbylés di)db. 6)

We use a Gaussian with a mean [i;. and a variance 6;,
to approximate the posterior distribution of the expec-
tation of log(y;c). The mean of the Gaussian is taken as
the estimated gene expression and the variance shows the
measurement error associated with this estimate.

Improved PPLR for finding differential expressed genes

In order to overcome the computation limitation of the
original PPLR model, we propose an improved PPLR
model (IPPLR) to detect DE genes. Similar to PPLR,
IPPLR also considers both expression estimates and
measurement uncertainty to obtain high accuracy in
finding DE genes. We add a hidden variable x; to the
original PPLR model, representing the true gene expres-
sion. We assume that the variable is Gaussian distributed
Xij ~ N(/Lj,k_l), where u; is the mean logged expres-
sion level under condition j and A is the inverse of the
between-replicate variance and is shared across different
conditions. The measured expression level %; can be
expressed as,

xij~N (xij,SiZ,'), (7)

where siz« is the probe-level measurement error, which
can be obtained from multi-mgMOS or PM-only
multi-mgMOS.

We make a prior assumption that u; and A~ are inde-
pendent and put a Gaussian prior on f;,

1 ~ N (o, g h), (8)

where o and no are hyperparameters, on which we
adopt noninformative hyperpriors. We assume a conju-
gate gamma prior on A,

r ~ Ga(a, B). )

We use the EM algorithm combined with a variational
method to work out the model. In the E-step of PPLR,
the variational distribution of A is obtained by impor-
tance sampling which slows down the computation of the
method. In contrast, the computation in the E-step of
IPPLR is analytical due to the introduction of the latent
variable x;;. IPPLR is therefore more computationally effi-
cient than PPLR.
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Once the posterior distribution of u; is obtained, the
probability of positive log-ratio (PPLR) between a treat-
ment s and a control x. can be calculated by

+00 .
PPLR = fo d(pe — me)P(ue — pelD, @), (10)

where D is the observed dataset and ¢ is the set of ML
estimates of hyperparameters. The examined transcript is
up-regulated in the treatment when PPLR > 0.5 while
down-regulated when PPLR < 0.5.

PUMA-CLUSTII for clustering of replicated gene expression
For the cases where technical or biological replicates are
available, we propose a robust Student’s £-mixture model
to deal with the technical and biological variability. Sup-
pose the expression estimate for gene » under condition
j is xuji, and the corresponding true expression and the
known probe-level measurement error are f; and sy
respectively, where i = 1,...,R; and R; is the number of
replicates under condition j. The expression estimate x,;;
is assumed to be generated from the following Gaussian
distribution,
Xnji ~ N (tuji Snji)- (11)
The true gene expression ;s for the replicates under
the same condition is also assumed to be drawn from a
Gaussian distribution,

1
t}’l]’l’ ~ N (an1 ) )
Nn

with the mean expression w;; for condition j and the pre-
cision 1,,. By introducing a latent variable u, for each gene,
the t-distribution can be written as a convolution of a
Gaussian with a Gamma placed on its precisions,

(12)

oo
St Ol B =[N (w2 ) Ga 5, )
0 Uy 22

(13)
where u; and X denote the mean and covariance matrix,
respectively, and v is degrees of freedom, for component
k. The mean expression vector w,, is modelled as a robust
mixture of Student’s ¢-distributions.

K

pwn) = Y T StWal ik, T, vi)-
k=1

(14)

We share 1, across all conditions for each gene and
assume that it captures the biological gene-specific vari-
ability. The precision 7, is assumed to come from a
Gamma distribution

Mnlznk = 1 ~ Gala, Bi)- (15)
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Inference can be carried out using the variational EM
algorithm. Specifying the maximum and minimum num-
bers of components, the algorithm automatically con-
verged to the optimal number of mixture components by
employing the minimum message length (MML) principle
[27] for model selection.

Availability and requirements
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