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Abstract

Background: Biomarkers and target-specific phenotypes are important to targeted drug design and individualized
medicine, thus constituting an important aspect of modern pharmaceutical research and development. More and
more, the discovery of relevant biomarkers is aided by in silico techniques based on applying data mining and
computational chemistry on large molecular databases. However, there is an even larger source of valuable
information available that can potentially be tapped for such discoveries: repositories constituted by research
documents.

Results: This paper reports on a pilot experiment to discover potential novel biomarkers and phenotypes for
diabetes and obesity by self-organized text mining of about 120,000 PubMed abstracts, public clinical trial
summaries, and internal Merck research documents. These documents were directly analyzed by the InfoCodex
semantic engine, without prior human manipulations such as parsing. Recall and precision against established, but
different benchmarks lie in ranges up to 30% and 50% respectively. Retrieval of known entities missed by other
traditional approaches could be demonstrated. Finally, the InfoCodex semantic engine was shown to discover new
diabetes and obesity biomarkers and phenotypes. Amongst these were many interesting candidates with a high
potential, although noticeable noise (uninteresting or obvious terms) was generated.

Conclusions: The reported approach of employing autonomous self-organising semantic engines to aid biomarker
discovery, supplemented by appropriate manual curation processes, shows promise and has potential to impact,
conservatively, a faster alternative to vocabulary processes dependent on humans having to read and analyze all
the texts. More optimistically, it could impact pharmaceutical research, for example to shorten time-to-market of
novel drugs, or speed up early recognition of dead ends and adverse reactions.

Keywords: In silico drug research, Semantic technologies, Text mining, Biomedical ontologies, Discovery of novel
relationships
Background
New frontiers for in silico drug research
Pharmaceutical research is undergoing a profound
change. Over the last 10 years productivity has been
steadily declining despite rising R&D budgets. Pipelines
are drying up and there has been much talk of the end
of the “blockbuster era” [1]. Recent trends by the largest
companies in the pharmaceutical industry to outsource
science are leading to contract research organizations
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(CRO) controlling significant processes and thusly,
information.
Traditionally, drugs are discovered in natural products

by happenstance or, more recently, by synthesizing and
screening large libraries of small molecule compounds
(combinatorial chemistry). Both cases involve time-
consuming multi-step processes to identify potential
candidates according to their pharmacokinetic properties,
metabolism and potential toxicity. The advent of more
computational approaches such as genomics, proteomics
and structure-based design has revolutionized this
process. Today, computational methods permeate many
aspects of drug discovery. High-performance computers
and data management and analysis software are being
applied to the transformation of complex biomedical data
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into workable knowledge driving the drug discovery
process [1,2].
On this stage, data come in two types: structured,

identifiable data organized in a well-defined structure
(typically a database, table or hierarchical scheme) and
unstructured, with no identifiable organization. Typic-
ally, numerical values from sensors and other types of
measurements constitute an example of structured data,
while free text falls in the unstructured data category.
While the major data mining effort, in both scientific
and business applications (such as genomics/proteomics
and customer behavior/churning, respectively) has
focused on structured data, it has been estimated [3]
that 85% of the data stored on the world’s computers
are unstructured. However, the main (and best known)
automated manipulation of unstructured data today is
restricted to “search” (information retrieval; IR), in both
its classical form based on keywords or in its more
advanced versions relying on machine intelligence and
statistics. The extraction of information by semantic
analysis of content is still left to the ingenuity of the
human reader.
The pharmaceutical industry is no different. The bulk of

the computational effort goes into crunching molecular
data that becomes available through advances in crystal-
lography, nuclear magnetic resonance (NMR) and
bioinformatics. Techniques like virtual screening, in silico
absorption/distribution/metabolism/excretion (ADME)
prediction and structure-based drug design are all aimed
at leading discovery by identifying suitable interactions in
large molecular databases [4],
Biochemical structures are not the only data being

amassed. The sheer numbers of research publications
accumulating in public as well as proprietary repositor-
ies are such that no human team, however specialized,
can easily maintain an up-to-date overview. PubMed,
one of the most important repositories, alone has
reached the level of 19 million documents, growing at
the rate of over one per minute. Semantic technologies
attempt to make these large collections of unstructured
data more tractable, with text mining representing the
most important class. The main thrust in health care
text mining concerns “information extraction” (IE),
whose goal consists in identifying mentions of named
entity types and their explicitly lexicalized, semantically
typed relations. This is the typical domain of natural
language processing (NLP) systems and there is already
a sizable body of literature on this subject (for a review
see [5,6]). A harder task is what has also been dubbed
[5] “the holy grail of text mining knowledge discovery”
(KD) where the aim is to find new pieces of information
which, unlike in the IE/NLP scenario, are not already
explicitly stated in available documents and have to
be discovered by associative, semantically unspecified
relationships. Knowledge discovery is the main subject
of the present paper.
There are a few systems addressing this grand chal-

lenge [5,6]; however, a canonical methodology has not
emerged. Merck & Co., Inc., has for many years
explored advanced search of unstructured information
for purposes of drug discovery and development. This
paper reports on a knowledge discovery text mining
pilot project employing the autonomous, self-organized
semantic engine InfoCodex. The high-level goal of the
project was to explore the power of semantic machine
intelligence for the screening of a collection of research
documents in search of unknown/novel information
relevant to early-stage drug candidate discovery and de-
velopment. The specific task was to discover unknown/
novel biomarkers and phenotypes for diabetes and/or
obesity (D&O) by semantic machine analysis of diverse
and numerous biomedical research texts.

Focus on biomarkers and phenotypes
In order to stem declining revenues the pharmaceutical
industry is restructuring and exploring new business
models. Drugs of the future will be targeted to populations
and groups of individuals with common biological
characteristics predictive of drug efficacy and/or toxicity.
This practice is called “individualized medicine” or
“personalized medicine” [1,6]. The characteristics are
called “biomarkers” and/or “phenotypes”.
A biomarker is a characteristic that is objectively

measured and evaluated as an indicator of normal bio-
logic processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention. In other words,
a biomarker is any biological or biochemical entity or
signal that is predictive, prognostic, or indicative of
another entity, in this case, diabetes and/or obesity.
A phenotype is an anatomical, physiological and

behavioural characteristic observed as an identifiable
structure or functional attribute of an organism.
Phenotypes are important because phenotype-specific
proteins are relevant targets in basic pharmaceutical
research.
Relevant examples of biomarkers/phenotypes and their

vital discovery outcomes are: HER2 for breast cancer,
BCR-ABL kinase and tyrosine-protein kinase Kit for
chronic myloid leukemia, and abnormal or mutated
BRCA1 or BRCA2 gene for breast, pancreatic, testicular,
or prostate cancer.
Biomarkers and phenotypes take on an increasingly

important role for identifying target populations strati-
fied into subgroups in which the efficacy of specific
drugs is maximized. For individuals outside this target,
the drug might work less efficiently or even cause
undesired side effects. Avastin is an often cited example
of some patients responding well to a drug while others
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experience adverse effects, where careful biomarker re-
search might have led to an entirely different regulatory
outcome [1].
Biomarkers and phenotypes constitute one of the “hot

threads” of diagnostic and drug development in pharma-
ceutical and biomedical research, with applications in
early disease identification, identification of potential
drug targets, prediction of the response of patients to
medications, help in accelerating clinical trials and
personalized medicine. The biomarker market generated
$13.6 billion in 2011 and is expected to grow to $25 bil-
lion by 2016 [7].
At odds with this trend are recent reports that

biomarkers “are either completely worthless or there are
only very small effects” in predicting, for example, heart
disease [8]. Ongoing and future efforts to validate or
disprove these conclusions within the scientific commu-
nity magnify the importance of examining the immense
volumes of biomarker research and observational study
data.

Methods
High-level description of the experiment
The object of the experiment was for the InfoCodex
semantic engine to discover unknown/novel biomarkers
and phenotypes for diabetes and/or obesity (D&O) by
analysis of a diverse and sizable corpus of unstructured,
free text biomedical research documents. The engine
and the corpus are described in greater detail below.
Briefly, the corpus consisted of approximately 120,000
PubMed [9] abstracts, ClinicalTrials.gov [10] summaries,
and Merck internal research documents. The D&O
related biomarkers and phenotypes were then compared
with Merck internal and external vocabularies/databases
including UMLS [11], GenBank [12], Gene Ontology
[13], OMIM [14], and the Thomson Reuters [15] D&O
biomarker databases according to precision, recall, and
novelty.

The InfoCodex semantic engine
InfoCodex is a text analysis technology designed for the
unsupervised semantic clustering and matching of multi-
lingual documents [16]. It is based on a combination of a
universal knowledge repository (the InfoCodex Linguistic
Database, ILD), statistical analysis and information theory
[17], and self-organizing maps (SOM) [18].

InfoCodex linguistic database [ILD]
The ILD contains multi-lingual entries (words/phrases),
each characterized by:

� its type (noun, verb, adjective, adverb/pronoun,
name)

� its language (en, de, fr, it, es)
� its significance rank from 0 (meaningless glue word)
to 4 (very significant and unique)

� a hash code for the accelerated recognition of
collocated expressions.

The words/phrases with almost the same meaning are
collected into cross-lingual synonym groups (microscopic
semantic clouds) and systematically linked to a hypernym
(taxon) in a universal 7-level taxonomy (simplified ontology
restricted to hierarchical relations).
With its 3.5 million classified entries, the ILD

corresponds to a very large multi-lingual thesaurus (for
comparison, the Historical Thesaurus of the English
Oxford Dictionary, often considered the largest in the
world, has 920,000 entries). The content and the
semantic structure of the ILD are largely based on
WordNet [19], combined with some 100 other well
established knowledge sources.

Text mining and content analysis
The words/phrases found in a document are matched
with the entries in ILD, providing a cross-language
content recognition. The taxons most often matched by
a document represent the document’s main topics.
Using statistical methods and information theoretical
principles, such as entropies of individual words, a 100-
dimensional content space is constructed that can
depict the document characteristics in an optimal way.
The documents are then projected into this content
space, resulting in 100-dimensional vectors characteriz-
ing the individual documents together with a generated
set of the most relevant synonym groups.

Categorization of a document collection (Kohonen Map)
The fully automatic categorization is achieved by applying
the neural network technique of Kohonen [18], which
creates a thematic landscape according to and optimized
for the thematic volume of the entire document collec-
tion. Prior to starting the unsupervised learning proced-
ure, a coarse group rebalancing technique is used to
construct a reliable initial guess for the SOM. This is a
generalization of coarse mesh rebalancing [20] to general
iterative procedures, with no reference to spatial equation
as in the original application to neutron diffusion and
general transport theory in finite element analysis. This
procedure considerably accelerates the iteration process
and minimizes the risk of getting stuck in a sub-optimal
configuration.
For the comparison of the content of different

documents with each other and with queries, a similarity
measure is used which is composed of the scalar product
of the document vectors in the 100-dimensional content
space, the reciprocal Kullback–Leibler distance [21]
from the main topics, and the weighted score-sum of
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common synonyms, common hypernyms and common
nodes on higher taxonomy levels.
As a result of the semantic SOM algorithm, a docu-

ment collection is grouped into a two-dimensional array
of neurons called an information map. Each neuron
corresponds to a semantic class; i.e., documents assigned
to the same class are semantically similar. The classes
are arranged in such a way that the thematically similar
classes are nearby (Figure 1).
The described InfoCodex algorithm is able to categorize

unstructured information. In a recent benchmark, testing
the classification of “noisy” Web pages, InfoCodex reached
the high clustering accuracy score F1 = 88% [22]. Moreover,
it extracts relevant facts not only from single documents at
hand, but it takes document collections as a whole to put
dispersed and seemingly unrelated facts and relationships
into the bigger picture.

Text mining biomarkers/phenotypes with InfoCodex
We used the InfoCodex semantic technology for the
experiment of finding new biomarkers/phenotypes for
D&O by text mining large numbers of biomedical
research documents. Five steps were involved:

1. Select a document base and submit it to the
InfoCodex semantic engine for text analysis and
semantic categorization.
Figure 1 InfoCodex information map. InfoCodex information map obtai
repository used for the present experiment. The size of the dots in the cen
2. Create reference models: teaching the software the
essential meaning of “what is a biomarker or a
phenotype for D&O.”

3. Determine the meaning of unknown terms (not part
of the current ILD) in the document collection by
semantic inference using the categorized terms of the
ILD.

4. Identify candidates for D&O biomarkers/phenotypes
by comparing the subset of documents containing
the candidates with the reference models established
in Step 2.

5. Compute confidence levels for the identified
candidates.

Step 1: document base
The document base consisted of the following:

� PubMed [9] abstracts with titles: the 115,273 most
recent documents (since 1/1/1998) retrieved by the
query diabetes OR obesity OR X where X is a set of
27 known or suspected D&O biomarkers known to
Merck and connected by Boolean OR’s (i.e., X stands
for 5HT2c OR AMPK OR DGAT1 OR FABP_4_aP2
OR FTO OR . . .). The 27 biomarkers were supplied
by the Diabetes and Obesity Merck franchise and
consisted of, predominantly, genes relevant to those
disorders.
ned for the approximately 115,000 documents of the PubMed
ter of each class indicate the number of documents assigned to it.
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� Clinical Trials [10] summaries: the 8,960 most
recent summaries (since 1/1/2007) retrieved by the
query diabetes OR obesity. (Adding the 27 Merck
D&O biomarkers to the query did not result in any
additional hits.)

� Internal Merck research documents, about one page
in length: 500 documents. Merck internal research
documents refer to a database of full summaries,
figures, tables, conclusions, and other key molecular
profiling project information predominantly in the
fields of atherosclerosis, cardiovascular, bone,
respiratory, immunology, endocrinology, diabetes,
obesity, and oncology.
Step 2: reference models
In order to solve the task of the experiment, the
InfoCodex semantic engine had to “comprehend” the
meaning of biomarker/phenotype for D&O. To this end,
a training set of known biomarkers and phenotypes for
D&O was determined by naïve (not D&O subject matter
experts [SME]) human information research in the
literature, independent of the 27 used for the PubMed
query. This resulted in a list of 224 reference D&O
biomarkers/phenotypes (e.g., “adiponectin” is a biomarker
for diabetes, “body mass index” is a phenotype of obesity).
Four subsets of documents were then identified

containing these reference terms and “diabetes” or “obes-
ity” (2×2 with biomarkers or phenotypes). Each of these
subsets was then clustered into 5–6 subgroups such that
the documents in each subgroup were semantically similar
to each other using agglomerative hierarchical clustering
[23]. As semantic feature vectors (descriptive variables)
for the clustering algorithm, the following characteristic
document data are used: the probabilities pt(m) that a
document is categorized by InfoCodex into main topic m
(m = 1 to 15 for the PubMed collection, see Figure 1 for
the 15 topics); and the scores for the 15 most important
concepts (such as syndromes, biotechnology) resulting
from the automatic InfoCodex text analysis for each docu-
ment. This gives a vector size of 30 components; i.e., two
times the number of thematic topics of the information
map. The number of 5–6 subgroups was chosen according
to the rule of thumb in statistics that the number of
subgroups should not exceed √n for n objects to be
clustered. Since n ≈ 50 for each of the four subsets, this
gives an optimal number of subgroups around 5–6.
For each of the 5–6 sub-clusters, a reference feature

vector was then determined for later comparison. This
reference feature vector represents essentially an average
of the feature vectors of the documents in the sub-cluster,
the features being projections onto nodes in the ILD [22].
Each reference feature vector thus encodes one of 5–6
possible meanings of, say, “biomarker for diabetes.”
Step 3: determination of the meaning of unknown terms
While the ILD contains about 20,000 genes and
proteins, it is not guaranteed to identify all the relevant
candidates by a simple database look-up. A procedure
to infer the meaning of unknown terms from this “hard-
wired” knowledge and for synonym analysis [24] had to
be devised.
To describe the meaning of an unknown term, a

hypernym (superordinate term) is constructed, which
corresponds to a known taxon (node) in the taxonomy
tree of the ILD. For example, the term “endocannabinoid”
is not part of the current ILD and, therefore, its meaning
is unknown; but if a procedure can assign the known taxon
“receptor” as its most likely hypernym, the unknown term
receives a meaning in the sense “is a”.
The taxonomic hypernym is constructed as follows:

for each of the unknown terms occurring at least three
times in the whole collection, a cross-tabulation is
made against all other terms that occur in at least one
of the documents containing the unknown term and
that are part of the ILD linked to a hypernym.
(Example: “unknownword1” occurs in documents 10,
15, and 30. Then, the cross-tabulation is made against
all terms occurring either in document 10, 15, or 30).
Thereafter, the hypernyms of the most relevant cross-
terms are aggregated with the following weighting
factors:

� number of occurrences of the cross-terms
� significance of the cross-terms taken from the ILD

(each term in the ILD is assigned a significance
between 0 and 4)

� 1/entropy of the cross-terms (terms dispersed over
many documents in the collection have a high
entropy and thus a low discriminating power)

� correction factor for disjunct neurons, i.e. reduction
of the neurons containing either the unknown term
or the cross-term by the percentage of the neurons
that do not contain both.

Finally, the score of a hypernym is enlarged by partial
contributions from the neighboring hypernyms in the
taxonomy tree of the ILD (neighbors within the same
taxonomy branch). The top scoring hypernym of the
cross-terms is selected as the “constructed hypernym”
for the unknown term if there is a relatively clear
dominance over the other cross-term hypernyms
(Table 1).
If no taxonomic hypernym reaches a clear dominance,

the descriptors (the most relevant keywords of a docu-
ment, automatically determined by InfoCodex using the
ILD) of the documents containing the unknown term
are scored and used to estimate the most likely meaning
of the unknown term. The most important descriptor is



Table 1 InfoCodex computed meanings

Unknown term Constructed hypernym Associated descriptor 1

Nn1250 clinical study insuline glargine

Tolterodine cavity overactive bladder

Ranibizumab drug macular edema

Nn5401 clinical study insulin aspart

Duloxetine antidepressant personal physician

Endocannabinoid receptor Enzyme

Becaplermin pathology Ulcer

Candesartan cardiovascular disease high blood pressure

Srt2104 medicine Placebo

Olmesartan cardiovascular medicine Amlodipine

Hctz diuretic drug Hydrochlorothiazide

Eslicarbazepine anti nervous Zebinix

Zonisamide anti nervous Topiramate Capsules

Mk0431 antidiabetic Sitagliptin

Ziprasidone tranquilizer major tranquilizer

Psicofarmcolagia motivation Incentive

Medoxomil cardiovascular medicine Amlodipine

InfoCodex computed meanings of some unknown terms from the
experimental PubMed collection.
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listed as “associated descriptor 1” in Table 1. It is only
used as a substitute in the cases where the described
computation of the “constructed hypernym” fails.
Although descriptors encode a loose “is related to” asso-
ciation rather than a “is a” hypernym relation, they still
provide a useful determination of the meaning of un-
known terms when hypernyms cannot be constructed.
The meaning of unknown terms is estimated fully auto-

matically; i.e., no human interventions were necessary and
no context-specific vocabularies had to be provided as in
most related approaches [6]. The meaning had to be
inferred by the semantic engine only based on machine
intelligence and its internal generic knowledge base, and
this automatism is one of the main innovations of the
presented approach. Some of the estimated hypernyms
are completely correct: “Hctz” is a diuretic drug and is
associated to “hydrochlorothiazide” (actually a synonym).
“Duloxetine” is indeed an antidepressant, and the
associated descriptor “personal physician” expresses the
fact that the contact with the physician plays an important
role in (“is related to”) antidepressant usage. Clearly, not
all inferred semantic relations are of the same quality.
Step 4: generating a list of potential biomarkers and
phenotypes
Most of the reference biomarkers and phenotypes found
in the literature (see Step 2) are linked to one of the
following nodes of the ILD:
Biomarkers

� Genes (including the subnodes “nucleic acids” and
“regulatory genes”)

� Proteins (including the subnodes “enzymes”,
“transferase”, “hydrolase”, ”antibodies”, “simple
proteins”)

� Causal agents (including subnodes such as
“anesthetics”, “diuretic drugs”, “digestive agents”)

� Hormones
� Phenotypes
� Metabolic disorders
� Diabetes
� Obesity
� Symptoms (including the subnode “syndromes”)

Each of the terms appearing in the experimental
document base that point to one of these taxonomy
nodes, whether via hypernyms given in the ILD for
known terms or via constructed hypernyms for un-
known terms, are considered as potential biomarker/
phenotype candidates. They are assessed by the analysis
of the document subsets retrieved from the experimen-
tal document base containing a synonym of the candi-
date in combination with synonyms of “diabetes” or
“obesity” respectively. The assembled document subsets
are then compared with the previously derived reference
models for biomarkers/phenotypes by constructing the
corresponding 30-dimensional feature vectors and com-
puting the distances of the descriptive features used for
the agglomerative hierarchical clustering. A term quali-
fies as a candidate for a D&O biomarker or phenotype if
most of the semantic similarity deviations from one of
the corresponding reference clusters are below a defined
threshold (depending on the confidence level described
under Step 5).
Step 5: confidence levels
Not all the biomarker/phenotype candidates established
this way have the same probability of being relevant.
Therefore, we devised an empirical score representing
the confidence level of each term. This confidence meas-
ure is based on:

� An initial score derived from the mean deviation of
the feature vectors (of the documents retrieved by
the term + synonyms search) from the closest
reference sub-cluster; the smaller the deviation, the
higher the confidence

� Up-weighting the confidence score when a large
number of documents containing the biomarker/
phenotype term/synonyms together with “diabetes”
or “obesity” occur in the whole collection.
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Precision/recall against reference vocabularies/databases
The InfoCodex-computed D&O biomarker and pheno-
type candidates were then compared with Merck internal
and external benchmark vocabularies/databases including
UMLS [11], GenBank [12], Gene Ontology [13], OMIM
[14], and Thomson Reuters [15] D&O biomarker
databases according to the following metrics.

� Precision: % of InfoCodex outputs matched (defined
below) by benchmark biomarkers and phenotypes.

� Recall: % of benchmark biomarkers and phenotypes
matched by InfoCodex outputs.

� Novelty: 100% - precision (i.e., % of InfoCodex
outputs not matched by benchmark biomarkers and
phenotypes)

These metrics have been used since they are standard
measures in pattern recognition and information re-
trieval. It must be pointed out that in the case at hand
they only have a qualitative character as an indicator of
emerging trends rather than a precise meaning. On one
side, recall would only be an accurate measure for the
retrieval power if the reference vocabularies were
established on exactly the same document corpus used
in the experiment. This is not the case, since a compre-
hensive biomarker repository such as Thomson Reuters’
is based on a broader basis than the 120,000 PubMed
abstracts used as a document sample in the current ex-
periment. On the other side, the novelty component of a
biomarker database is zero (by definition), which makes
precision measurements less relevant: Comparing the
InfoCodex results with a database of perfect biomarkers
the novel candidates will be treated as errors, thereby
falsely reducing the precision. This means that the
human assessment of valuable and irrelevant novel
candidates is the most important result.
Being aware of the limitations of the precision/recall

metrics in the case at hand, these standard measures give
at least some qualitative indications in the evaluation of
the results. The objective of the experiment was not a
statistically significant certification of a specific biomarker,
but it was a proof-of-concept for the automatic discovery
of novel biomarkers/phenotypes. For the purpose of evalu-
ating the efficacy of the proposed semantic methods, the
standard precision/recall metrics are nevertheless a useful
qualitative measure.
Four different precision and recall scores were

computed for all analyses except Thomson Reuters’
(described below), corresponding to a 2x2 of two match
types (exact and all = exact + partial) and two match
counting methods (preferred and all = preferred +
synonyms). An example of an exact match (ignoring case,
spaces, and punctuation) is “diabetes” and “Diabetes”;
while “diabetes” and “Diabetes Type 2” is a partial match.
Exact matches are easily computed and do not require
curation. Match counting refers to whether synonyms
(e.g., “DM2” and “Diabetes Type 2”) and their matches are
counted as separate terms (all = preferred + synonyms) or
conflated with their preferred terms (preferred). The most
conservative (lowest) estimates of precision and recall are
generally exact/all = preferred + synonyms and the most
liberal (highest) all = exact + partial/preferred. This pat-
tern was observed to be fairly robust in our results, so
we will report them as this range.

How reference biomarkers/phenotypes were extracted
Merck internal vocabularies
The following dictionaries are not an exhaustive list of
Merck internal vocabularies, rather the few we were able
to access that contained reference data relevant to the
experimental goals.

I2E
As stressed above, a really meaningful recall assessment
requires a reference list based on the exact same docu-
ment pool used for the experiment. This is clearly not
the case for the available standard databases described
below. In order to obtain a rough estimate of such a
reference list we used the Merck implementation of
Linguamatics I2E [25], a text mining tool, to extract
relevant class1-relation-class2 triples found within
sentences in the experimental PubMed collection. This
NLP tool provided a more controlled, query-specific
method to convert unstructured sentences mentioning
biomarkers/phenotypes into a structured term list. It
also serves as an example of the typical use of NLP tools
as an aid in information extraction of known, lexicalized
named entities, for comparison with the associative
discovery approach of InfoCodex.

I2E-raw
I2E was used to extract relevant class1-relation-class2
triples found within sentences in the experimental PubMed
collection. For biomarkers, class2 was defined as “diabetes”
or “obesity” (note that no synonyms or hyponyms were
used) and the relation as “biomarker” or any of its
synonymous, lexical, or hyponymic variants according to
the Linguamatics ontology. Class1 thus encompassed the
I2E-extracted biomarkers. The result was 1,339 such triples;
these triples could be de-duplicated, frequency-weighted,
and reduced to 788 unique biomarkers for diabetes and
242 for obesity. For example, the sentence “Participants in
this sample had insulin resistance, a potent predictor of
diabetes” yielded class1 = “insulin resistance”; relation =
“predictive”; class2 = “Diabetes”.
For phenotypes, class1 was defined as one of the 27

proprietary Merck-known biomarkers, and the relation
as “phenotype” or any of its synonymous, lexical, or
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hyponymic variants according to the Linguamatics
ontology. Class2 thus encompassed the I2E-extracted
phenotypes. The result was 18,250 such triples; these
could be de-duplicated, frequency-weighted, and reduced
to 6,691 unique phenotypes for diabetes and obesity to-
gether. For example, the sentence “Constitutively-active
AMPK also inhibited palmitate-induced apoptosis” yielded
class1 = “AMPK”; relation = “inhibit”; class2 = “apoptosis”.
I2E-normalized
The raw I2E phenotype output was normalized by one of
Merck’s Linguamatics consultants using automated map-
ping of the class2 values to UMLS controlled vocabulary
terms, resulting in 12,015 unique triples, or 1,520 unique
phenotypes for diabetes and obesity together.
I2E-manual
We manually extracted a curated version from the I2E-
extracted PubMed sentences. This yielded 3,800 biomarker
triples; after de-duplication and synonym/variant conflation,
823 unique biomarkers for diabetes and 315 for obesity. It
also yielded 11,365 phenotype triples; after de-duplication
and synonym/variant conflation, 4,780 unique phenotypes
for diabetes and obesity together.
TGI
Merck maintains a Target-Gene Information (TGI)
system which includes a database of text-mined and
SME-curated binary associations between genes and other
biological entities (e.g., between “DGAT1” and “Adipoq”;
“Insulin Resistance”; “fatty acid”; “Body mass”; . . .). From
this database we extracted 13,863 binary associations (de-
duplicated for case and directionality) in which at least one
of the concepts contained at least one of the following
strings:

� “diabetes” or “diabetic” (2,014)
� “obese” or “obesity” (2,486)
� one of the 27 Merck D&O biomarkers or their

GenBank hyponyms or synonyms (e.g., “AMPK”
includes “PRKAA1”; “PRKAA2”; “PRKAB1”;
“PRKAB2”; “PRKAG2”; . . .) (9,363)
UMLS
We created a version of the UMLS Metathesaurus
MRREL (relationship) file (2009AA release) with the
terms mapped to the numerical concept identifiers, and
from it extracted 205 relationships encoded by different
UMLS source vocabularies for the 27 Merck D&O
biomarkers and their GenBank synonyms/hyponyms
(Table 2).
Gene ontology
We extracted the Gene Ontology (GO) primary
relations of the 27 Merck D&O biomarkers and their
GenBank synonyms/hyponyms using the GO Online
SQL Environment [26]. A primary GO relation involves
the GO annotations of the gene itself; for example,
{“PRKAA1”, molecular_function, “ATP binding”} or
{“PRKAA1”, biological_process, “fatty acid oxidation”}.
Secondary relations were then computed by matching
the primary GO terms to a downloaded version of GO.
For example, since “PRKAA1” is annotated with “fatty
acid oxidation” it would pick up a secondary relation to
“fatty acid metabolic process” by virtue of the internal
GO relation {“fatty acid oxidation”, is_a, “fatty acid
metabolic process”}. The result was 4,104 primary and
3,688 secondary GO reference D&O biomarkers/
phenotypes.

OMIM
Disease-gene links in the Online Mendelian Inheritance
in Man (OMIM) database were manually extracted for
the 27 Merck D&O biomarkers and their GenBank
synonyms/hyponyms, yielding 41 reference biomarkers/
phenotypes, such as:

� D&O biomarker/hyponym: MC4R
� OMIM gene ID: 155541
� OMIM disease ID: 601665
� Disease name: OBESITY; LEANNESS, INCLUDED
� Disease-gene links: OB4, OB10Q, PPARGC1B, FTO,

BMIQ8, GHRL, SDC3, . . .

Thomson Reuters
Thomson Reuters SMEs compared the InfoCodex
PubMed output to their proprietary biomarkers and sig-
nalling pathways for obesity, diabetes mellitus type 1
(DM1), diabetes mellitus type 2 (DM2), and diabetes
insipidus (DI) from MetaBase, a systems biology data-
base developed in GeneGo (now Thomson Reuters).
Biomarkers for abovementioned disorders were
annotated in the scope of the disease consortium
MetaMiner Metabolic Diseases, a partnership between
Thomson Reuters, pharmaceutical companies and
academia focused on development of systems biology
content for disease research in the form of disease
biomarkers, disease pathway maps, and disease data
repositories. A biomarker in MetaMiner programs is
defined as any molecular entity (DNA, RNA, protein, or
an endogenous compound) that is distinctly different
between normal and disease states. A gene can be classi-
fied as a biomarker if the evidence is established on at
least one of the following levels: DNA (e.g. mutations,
rearrangements, deletions), RNA (e.g. altered expression
level, abnormal splice variants) or protein (e.g. change



Table 2 UMLS benchmark sources, numbers, and examples

Source #rels CUI-1 concept1 rel relationship CUI-2 concept2

NCI 58 C0007595 FABP4 gene RO gene_plays_ role_in_process C1333527 Cell Growth

MSH 45 C0022621 FTO protein, mouse RN mapped_to C2002654 Oxo-Acid-Lyases

OMIM 44 C0064317 KHK gene RO related_to C1416630 Ketohexo-kinase

MTH 38 C0061352 GCGR gene RO C1415011 Glucagon Receptor

LNC 20 C0005767 MC4R gene mutation analysis:. . . RO has_system C1715956 Blood

Sources, numbers, and examples (concept1) of benchmark D&O biomarkers/phenotypes extracted from UMLS (CUI: Concept Unique Identifier, RO: Related Other,
RN: Related Narrow).
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in abundance, hyperphosphorylation). Disease specific
pathway maps developed in MetaMiner consortia depict
signalling events most relevant for a disease in focus as well
as showing the changes in normal pathways that occur in
disease states (e.g., gain and loss of protein functions
resulted in new or disrupted protein interactions). All path-
way maps developed in the scope of MetaMiner programs
are subjected to approval and review of consortia members
who are experts in the corresponding disease areas.
After performing the comparisons, Thomson Reuters

reported matching statistics according to the algorithm
shown in Figure 2. In Figure 2 it can be seen that precision
and recall can be computed for obesity from the “All
[InfoCodex] obesity records”; “Match Thomson Reuters
Obesity Biomarkers”; and “Missed Known Biomarkers”:
precision = 182/2,551 = 7%; recall = 182/(182 + 308) = 37%.
(It has to be kept in mind that the computed precision/re-
call values are just an indication and not an accurate meas-
ure as explained above.) “Relevance” and “Sense checking”
refer to an effort to narrow the novelty (93%) down to
useful novelty: 512 (20%) “New testable hypothesis” of
which 71 (3%) appear to be supported by the candidate
Figure 2 Thomson Reuters obesity algorithm. Obesity example of Thom
(“All obesity records”) and Thomson Reuters knowledge bases.
biomarker’s presence on the Thomson Reuters Obesity
Pathway Maps.

Merck SME qualitative analysis
Of particular interest to Merck was the question “What
biomarker/phenotype terms could be identified by the se-
mantic engine that are in the Merck internal research
documents and not publicly available in PubMed and
ClinicalTrials.gov?” Creating this “unique to Merck” list
was an exercise in cross referencing the three engine-
produced lists for PubMed, ClinicalTrials.gov, and Merck
internal research documents to uncover the terms in one
list (Merck internal research documents) that are not in
the other two lists (PubMed and ClinicalTrials.gov). The
complete “unique to Merck” list was then culled of terms
that were clearly not biomarkers/phenotypes and/or too
general to be considered valuable medical terms.

Results
Overall output
The InfoCodex output was transformed into lists of D&O
biomarker/phenotype candidates with their confidence level
son Reuters algorithm for scoring matches between InfoCodex output
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(CL) scores and other metadata. A total of 4,467 {entity,
biomarker/phenotype, diabetes/obesity} candidate triples
were found (1,361 and 1,743 biomarkers for diabetes and
obesity, respectively, and 653 and 710 phenotypes for
diabetes and obesity, respectively) ranging in CL from 3%
to 70%, and distributed as shown in Figure 3. The highest
scoring candidates discovered by InfoCodex text mining of
the experimental PubMed collection are shown in Table 3.
Precision/recall
The fine conceptual/definitional difference between
“biomarkers” and “phenotypes” was evident in the high
degree of overlap in the two subsets produced by
InfoCodex and I2E. Therefore we combined them for
purposes of computing precision and recall. The results
are shown in Table 4. Due to the volume of data and the
need for SME curation of partial matches, we could not
compute values for all of the quadrants of the 2×2
matching matrix described under Methods. The
numbers tend to be low but there were some encour-
aging trends. InfoCodex precision/recall was higher for
the more reliable manually parsed I2E output than for
raw or auto-normalized I2E output, and could be made
even higher by principled lumping of I2E terms (e.g.,
lumping hyperglycemia, postprandial hyperglycemia,
chronic hyperglycemia, hyperglycemia in women, etc.).
The high-end of the recall score ranges had good
consistency for the most reliable benchmarks (I2E man-
ual 33%, UMLS + GO + OMIM 35%, Thomson Reu-
ters 36%).
The precision scores for individual biomarkers were

highly variable, but some were impressive (I2E manual
Figure 3 PubMed results confidence level distribution.
Confidence level distribution of candidates discovered by InfoCodex
text mining of the experimental PubMed collection.
52%, Thomson Reuters 49%, TGI 35%, ClinicalTrials.gov
59%) (not shown). For diabetes, there was a slight correl-
ation between InfoCodex confidence level (CL) scores and
precision against the I2E-manual benchmark (Figure 4).
However, among the novel subset, there appeared to be a
slight inverse correlation between quality and CL (see next
section).

Novelty quality
Novelty is the “flip side” of precision; the “bad news” of
low precision is accompanied by the “good news” of high
novelty. But novel biomarker/phenotype candidates are
useful only if they are high quality (credible enough to jus-
tify follow-up research). Row 18 (“stimulant”) in Table 3
and “antagonist” and “hypodermic” in Figure 4 would ap-
pear to be examples of low quality candidates. On the
contrary, “insulin” (Row 2 in Table 3) and “proinsulin”
(Row 3 in Table 3) are positive examples of proper
candidates recognized as known biological complexes of
diabetes. According to the classification of type 1 and type
2 diabetes adopted by the World Health Organization – a
loss of the physical or functional β-cell mass and increased
need for insulin due to insulin resistance, respectively – it
is quite possible that both processes would operate in a
single patient and contribute to the phenotype of the pa-
tient [27]. Fasting intact proinsulin is a reliable and robust
biomarker for beta-cell dysfunction, metabolic insulin
resistance, and cardiovascular risk in Type 2 diabetes
mellitus patients [28].

Associative retrieval of known D&O biomarkers/
phenotypes
In an effort to exemplify the associative recovery of a
known phenotype of obesity, we used PubMed as a
baseline to characterize the retrieval of a term
InfoCodex specified as a phenotype. Melatonin receptor
1B (MTNR1B) is a candidate gene for type 2 diabetes
acting through elevated fasting plasma glucose (FPG).
As a phenotype of obesity, MTNR1B should not be
considered novel, but it can be used to substantiate the
soundness of InfoCodex results extracted from PubMed
and to illustrate the associative retrieval mechanism.
In PubMed, a search for “MTNR1B” AND “obesity”

returned 9 documents, of which two (PMID: 20200315,
19088850) matched the PubMed abstracts selected by
InfoCodex to substantiate its identification of MTNR1B as
an obesity phenotype. When the criterion “phenotype”
was added to the search, however, PubMed did not return
any documents. A simple PubMed search would have thus
failed to immediately identify MTNR1B as an obesity
phenotype.
In PMID 19088850, the word “phenotyping” is used to

describe an action on a cohort of subjects, not a specifica-
tion of MTNR1B as a phenotype. Later in the abstract the



Table 3 PubMed results with highest confidence levels

Row Term (A) Relationship (B) Object (C) Conf% (D) #Docs (E) PMIDs (F)

1 glycemic control BiomarkerFor Diabetes 70.3 1122 20110333, 20128112, 20149122,

2 Insulin PhenoTypeOf Diabetes 68.3 5000 19995096, 20017431, 20043582,

3 Proinsulin BiomarkerFor Diabetes 67.8 105 16108846, 9405904, 20139232,

4 TNF alpha inhibitor PhenoTypeOf Diabetes 67.1 245 9506740, 20025835, 20059414,

5 anhydroglucitol BiomarkerFor Diabetes 67.1 10 20424541, 20709052, 21357907,

6 linoleic acid BiomarkerFor Diabetes 67.1 61 20861175, 20846914, 15284064,

7 palmitic acid BiomarkerFor Diabetes 67.1 24 20861175, 20846914, 21437903,

8 pentosidine BiomarkerFor Diabetes 67.1 13 21447665, 21146883, 17898696,

9 uric acid BiomarkerFor Obesity 66.8 433 10726195, 19428063, 10904462,

10 proatrial natriuretic peptide BiomarkerFor Obesity 66.6 4 14769680, 18931036, 17351376,

11 ALT values BiomarkerFor Diabetes 66.3 2 20880180, 19010326

12 adrenomedullin BiomarkerFor Diabetes 64.3 7 21075100, 21408188, 20124980,

13 fructosamin BiomarkerFor Diabetes 64.2 59 20424541, 21054539, 18688079,

14 TNF alpha inhibitor BiomarkerFor Diabetes 62.1 245 9506740, 20025835, 20059414,

15 uric acid BiomarkerFor Diabetes 61.8 259 21431449, 20002472, 20413437,

16 monoclonal antibody BiomarkerFor Obesity 61.7 41 14715842, 21136440, 21042773,

17 Insulin level QTL PhenoTypeOf Obesity 61.2 1167 16614055, 19393079, 11093286,

18 stimulant BiomarkerFor Obesity 61.2 646 18407040, 18772043, 10082070,

19 IL-10 BiomarkerFor Obesity 60.9 120 19798061, 19696761, 20190550,

20 central obesity PhenoTypeOf Diabetes 59.5 530 16099342, 17141913, 15942464,

21 lipid BiomarkerFor Obesity 59.5 4279 11596664, 12059988, 12379160,

22 urine albumin screening BiomarkerFor Diabetes 59.0 95 20886205, 19285607, 20299482,

23 tyrosine kinase inhibitor BiomarkerFor Obesity 58.8 83 18814184, 9538268, 15235125,

24 TNF alpha inhibitor BiomarkerFor Obesity 58.0 785 20143002, 20173393, 10227565,

25 fas BiomarkerFor Obesity 57.7 179 12716789, 17925465, 19301503,

26 leptin PhenoTypeOf Diabetes 57.6 870 11987032, 17372717, 18414479,

27 ALT values BiomarkerFor Obesity 57.4 8 16408483, 19010326, 17255837,

28 lipase BiomarkerFor Obesity 56.8 356 16752181, 17609260, 20512427,

29 insulin resistance PhenoTypeOf Obesity 55.8 5000 20452774, 20816595, 21114489,

30 chronic inflammation PhenoTypeOf Diabetes 55.7 154 15643475, 18673007, 18801863,

Highest confidence level scoring biomarker/phenotype candidates discovered by InfoCodex text mining of the experimental PubMed collection. The identified
candidate terms appear in column A, with their relationship to diabetes or obesity in columns B-C. The confidence level, in column D (the descending sort key), is
normalized on a scale in which the maximum of 100% is the score of the manually curated reference biomarkers/phenotypes. In column E are the numbers of
documents in which a given candidate term appears. Column F displays the PubMed IDs of the most relevant PubMed documents for purposes of manual SME
review. Note that the same term can have multiple entries since it can have different relationships (biomarker for diabetes, phenotype for obesity, etc.).
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word “traits” is, however strongly indicating MTNR1B as a
phenotype of obesity. The word “phenotype” is missing
entirely in PMID 20200315. The InfoCodex semantic
engine could still correctly combine the MTNR1B-related
information “increased prevalence of obesity” in PMID
20200315 with “traits” in PMID 19088850 to infer
MTNR1B as a phenotype of obesity. A human read of
these two abstracts would indeed immediately detect
MTNR1B as a phenotype for obesity, an identification the
PubMed search engine failed to reveal, while the InfoCodex
semantic engine was able to reconstruct it by integrating
information distributed over the two documents even if
the exact word “phenotype” never appears in relation to
MTNR1B. Two abstracts subsequently indexed by PubMed
also fully confirm the identification of MTNR1B as a
phenotype for obesity.
In this MTNR1B benchmark set, the comparison with

another, traditional text mining approach (i.e., PubMed
Search) exposed a relevant difference in results. The
measured InfoCodex CL for MTNR1B as a phenotype of



Table 4 Precision and recall

Benchmark Benchmark corpus InfoCodex corpus Precision Recall

I2E raw PubMed PubMed (exact) (exact)

<1% obesity 5% obesity

3-5% diabetes 9-11% diabetes

3-7% MDOB 7% MDOB

I2E normalized PubMed PubMed (exact) (exact)

3-7% MDOB 3-7% MDOB

I2E manual PubMed PubMed 1-5% obesity 9-33% obesity

3-11% diabetes 9-31% diabetes

3-26% MDOB 4-15% MDOB

UMLS + GO + OMIM UMLS + GO + OMIM PubMed 1-4% 3-22%

1-8% (unary) 4-35% (unary)

Thomson Reuters Thomson Reuters PubMed 7-36% obesity 36% obesity

18% DM2

9-49% DM2 22% DM1

25% DI

TGI TGI PubMed 0-5% obesity (exact) 2.5%

0-4% diabetes

1-14% MDOB

I2E manual PubMed ClinicalTrials.gov (preferred terms) 27-59% (preferred terms) 3-7%

UMLS + GO + OMIM UMLS + GO + OMIM ClinicalTrials.gov (preferred terms) 1-2% (preferred terms) <1%

I2E manual PubMed Merck internal (preferred terms) 8-14% (preferred terms) 1-2%

UMLS + GO + OMIM UMLS + GO + OMIM Merck internal (preferred terms) <1% (preferred terms) <1%

Precision and recall of InfoCodex candidate biomarkers/phenotypes compared to various benchmarks. “(exact)” and “(preferred terms)” refer to sub-ranges
according the 2x2 matching matrix described in the text under “Methods – Precision/recall”. “MDOB” refers to the InfoCodex output subset containing references
to the 27 Merck D&O biomarkers. “(unary)” means all InfoCodex candidate biomarkers/phenotypes were lumped together across obesity, diabetes, and MDOB, in
contrast to the default binary criterion for matching.

Figure 4 PubMed results confidence levels x I2E-manual precision. Correlation between InfoCodex confidence levels (Conf%; purple bars)
and precision (light blue bars) against I2E-manual diabetes PubMed benchmark. Pink shading: exact match; yellow shading: partial match. Row 15
(100 Conf%) represents a member of the manually compiled reference set.
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Table 5 SME relevance analysis

Biomarker
type / disease

Average relevance
scores for high

confidence candidates

Average relevance
scores for low

confidence candidates

Molecular
Biomarkers

Diabetes Type 1 1.6 3.2

Diabetes Type 2 3.6 3.7

Obesity 6.9 6.2

Non-molecular
Biomarkers

Diabetes Type 1 0.7 3.4

Diabetes Type 2 0.9 3.6

Obesity 2.6 2.8

Scale is described in main text.

Table 6 UMLS mapping

Match
type

InfoCodex novel
biomarker/ phenotype
candidate

UMLS term

Exact ABCC8 gene ABCC8 gene

Left
substring

ABCC8 ABCC8 gene

9-cis-retinoic acid 9-cis-retinoic acid biosynthesis

Cara C ara A

CD-1 CD100 antigen

Between
2 (;; =
separator)

acute coronary
syndromes

Acute Coronary Syndrome ;;
Acute coronary thrombosis. . .

abnormal laboratory
findings

Abnormal Keratinocyte ;;
Abnormal Laboratory Result
(Biochemistry)

alpha receptor Alpha Rays ;; alpha resorcylic acid

Bmisds BM Iron Stain Test ;; BmJHE

Examples of novel InfoCodex biomarker/phenotype candidates mapped to
UMLS by three uncurated match types. The italicized matches are clearly false
(unrelated conceptually).
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obesity is 3.6%. This low CL for a term is consistent with
the high plausibility/interestingness observation addressed
in the Discussion section.

Thomson Reuters relevance analysis
Thomson Reuters D&O SMEs quantified novelty quality
as shown by the “Relevance” and “Sense checking”
components of Figure 2. In that case, Thomson Reuters
analysts narrowed 2,369 (93%) novel obesity biomarker
candidates down to 512 (20%) credible molecular
biomarkers, of which 71 (3%) appeared to be initially
confirmed by their presence on the Thomson Reuters
Obesity Pathway Maps. For the finer relevance analysis,
random samples of high- and low-confidence level
InfoCodex/PubMed biomarker candidates were scored
on the relevance scale from 0 to 10 as shown below
(several thresholds of the scale below 10 reflect main
types of erroneous associations between found
biomarkers and diseases and how close they are in our
opinion to relevant and unambiguous relationships):

� 10 – totally relevant and unambiguous relationship
� 8–9 – relevant, but can be associated with a related

term – disease subtypes, disease symptom or
consequence, etc.

� 6–7 – relevant, but correlation is rather remote. For
example, some drugs may be causing elevation of
blood pressure and should be administered with
caution in diabetes patients (but drug is not for
diabetes)

� 4–5 – associated in a specific context or found only
one record

� 1–3 – low level of association
� 0 – no association, or term is so general it is not

going to make sense

From the results in Table 5, it can be seen that only
the obesity/molecular samples had respectable average
relevance scores (6.9 high confidence, 6.2 low confi-
dence). DM2/molecular and obesity/non-molecular
terms averaged around 3 for both low and high confi-
dence. DM2/non-molecular and both classes of DM1
exhibited an inverse confidence score effect, averaging
around 1 for high and 3.4 for low. The main reason for
low scores of non-molecular biomarkers with high con-
fidence scores is the high percentage of terms that were
considered to be too general and received score of 0; for
example, “drug delivery”, “first-in-class”, “genotyping”
and others.

UMLS mapping
A second approach to assessing the quality of the novel
InfoCodex biomarker/phenotype candidates was mapping
them to UMLS by co-sorting with the full 2009AA
UMLS English lexicon extracted from the MRCONSO
file. Three types of matches could be computed from
this sort without SME curation: exact, left substring,
and “between 2” (all ignoring case, spacing, and punctu-
ation), as exemplified in Table 6. Exact matches are clear
evidence of plausibility from a lexicosemantic type point
of view (as opposed to the D&O SME point of view of
the Thomson Reuters analysts), while the other two
match types vary.
The results are shown in Table 7. The highest percent-

age of exact matches was found for the novel InfoCodex
biomarker/phenotype candidates from ClinicalTrials.
gov (52%), followed by PubMed (39%), and lastly by
Merck internal research documents. This order “makes
sense” because new knowledge generally takes time to
become canonical enough for controlled vocabularies.
Clinical trials would be expected to be founded on the



Table 7 UMLS match type distribution

Corpus Exact Left substring Between 2

Pubmed 789 (39%) 591 (29%) 632 (31%)

ClinicalTrials.gov 409 (52%) 225 (29%) 155 (20%)

Merck internal 24 (28%) 25 (29%) 38 (44%)

UMLS match type distribution of novel InfoCodex biomarker/phenotype
candidates from the three corpora analyzed.

Figure 6 ClinicalTrials.gov results confidence levels x UMLS
match type. Confidence levels of novel InfoCodex biomarker/
phenotype candidates from ClinicalTrials.gov broken down by match
type to UMLS terms (100% refers to the reference/training set).
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oldest, most well-developed knowledge, while Merck in-
ternal research concerns the newest and most tentative,
with published literature being intermediate, consistent
with our UMLS exact match results.
We further broke down the novel InfoCodex bio-

marker/phenotype candidates by confidence level and
their mapping to UMLS as shown in Figures 5, 6, 7. For
the PubMed candidates there was little or no confidence
level effect, but there appeared to be an inverse correlation
(more exact matches at lower confidence levels) for the
ClinicalTrials.gov and Merck internal candidates.

Merck SME qualitative results
10,953 novel biomarker/phenotype candidate terms were
identified by InfoCodex from PubMed, ClinicalTrials.
gov, and Merck internal research documents (“P3” in the
figures). The summary for each data source and the
overlap across data sources is summarized in Figure 8.
Table 8 shows some examples of novel InfoCodex

biomarker/phenotype candidates from Merck internal
research documents that were clearly not biomarkers/
phenotypes and/or too general to be considered valuable
medical terms. Confidence levels reach the 50% + range in
the example presented. Tens of interesting, plausible
Figure 5 PubMed results confidence levels x UMLS match type.
Confidence levels of novel InfoCodex biomarker/phenotype
candidates from PubMed broken down by match type to UMLS
terms (100% refers to the manually discovered
reference/training set).
biomarkers/ phenotypes were found (not shown due to
proprietary nature) in Merck internal research documents
database (P3) but not in PubMed or ClinicalTrials.gov.
These interesting, plausible terms are expressed with low
CLs (<15%) and document counts (<7). This paradoxical
phenomenon – inverse relationship between plausibility/
interestingness and confidence levels (as well as document
counts) – is discussed in the next section.

Discussion
One of the major high-level novelties of this experiment
with respect to other recent studies [6] lies in the fact
that the experiment was designed to test the power of
Figure 7 Merck P3 results confidence levels × UMLS match
type. Confidence levels of novel InfoCodex biomarker/phenotype
candidates from Merck internal research documents broken down
by match type to UMLS terms (100% indicates the
reference/training set).



Figure 8 Novel candidates repository overlap. Overlap between
novel InfoCodex biomarker/phenotype candidates from PubMed
(PM), ClinicalTrials.gov (CT), and Merck internal research documents
(P3). Lavender shading: found in one repository only; dark violet
shading: found in all three; others: found in two.
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autonomous self-organizing semantic engines. By the
analysts, the experiment was handled strictly as a “blind
experiment” and no feedback from preliminary results
was used to improve the machine-generated results.
Compared with recent studies [29-32] aimed at the ex-

traction of drug–gene relations from the pharmacogenomic
literature, our experiment introduces three novelties. First,
while most related work is based on high-quality manually
curated knowledge bases such as PharmGKB [29] to train
the recognition of connections between specific drugs and
genes, our experiment’s reference/training set (Step 2) was
assembled in an ad hoc way by naïve (non-biologist)
PubMed searchers. Second, aside from the generic ontology
Table 8 UMLS benchmark sources, numbers, and
examples

Term Relationship Object Target Conf% #Docs

wenqing BiomarkerFor Obesity Obesity 53.5 29

proteomic BiomarkerFor Obesity Obesity 40.8 128

gene expression BiomarkerFor Obesity Obesity 38.9 62

Mouse model BiomarkerFor Obesity Obesity 19.8 17

muise BiomarkerFor Obesity Obesity 17.5 20

athero- BiomarkerFor Obesity Obesity 16.5 6

shrna BiomarkerFor Obesity Obesity 9.6 4

inflammation BiomarkerFor Obesity Obesity 8.2 4

TBD BiomarkerFor Obesity Obesity 7.4 3

body weight PhenoTypeOf Diabetes MGAT2 1

cell line BiomarkerFor Diabetes MGAT2 1

Examples of uninteresting novel InfoCodex biomarker/phenotype candidates
from Merck internal research documents.
in the ILD, no context-specific vocabularies (e.g., UMLS)
were provided to inform the semantic engine. The meaning
of unrecognized words had to be inferred by the InfoCodex
engine based only on its universal internal linguistic data-
base. Third, the text mining algorithms used here do not
use rule-based approaches [31], or analyze co-occurrences
sentence by sentence [29] or section by section [32], but ra-
ther they extract knowledge from entire documents and
their relations with semantically related documents.
Natural language processing (NLP) approaches extract

possible relations through analyzing documents sentence
by sentence. Basically, such techniques can detect only
those relations that have been written down by an author
in some form or another, i.e., that are already known to
some extent. Discoveries of really novel relationships
require more than a sentence-by-sentence analysis. They
are rather a result of the combination of small, seemingly
unrelated and unnoticed facts dispersed over isolated
publications. This is exactly what the InfoCodex approach
intends to achieve, combining semantic technologies with
statistical and neural analysis of whole document collections.
Among the discovered potential biomarkers/phenotypes

there are some candidates of apparent high quality
(“needles in the haystack”). Some of these have been tested,
with encouraging results, for actual novelty in a very
preliminary way by internet searches (e.g., “xyz obesity” in
Google or PubMed) where “xyz” is one of the candidates
and “actual novelty” is defined as low hit rates, near or at
zero, compared to known biomarkers (e.g., “adiponectin
obesity”) with hit rates in the hundreds of thousands. More
rigorous testing will require sizable effort and so we leave it
up to future follow-up studies.
However, most results are not plausible or incompletely

specified. This is not surprising for the following reasons:

� No prior knowledge on biomarkers/phenotypes was
provided to the analysts who assembled the
reference/training set (Step 2) and re-iteration was
not allowed.

� Domain-specific knowledge (e.g., UMLS) was not
added to the ILD to help the clustering or term
extraction processes.

� Although it is certainly true that a large amount of
human work was required to assess the quality of
the generated results for potential novel biomarkers/
phenotypes in the proof-of-concept phase, the
semantic analysis process for a discovery of novel
biomarkers was largely automatic. No human expert
feedback was allowed to influence the results.
According to the blind nature of the experiment, the
pure machine intelligence has been tested.

In view of these constraints, the capability of automat-
ically identifying high quality candidates is encouraging.
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The machine discovery process can deliver a list of po-
tential biomarkers and can aid the biomarker discovery
process by prioritizing them for follow-up research by
confidence scores.
On the basis of the quality assessment by human SMEs,

the quality of the machine discovery could substantially be
improved by the following measures:

� Utilization of reliable SME-curated training sets of
biomarkers/phenotypes for the construction of the
reference models (Step 2 above). In the present
blind experiment the absence of any prior
knowledge has led to a poor choice of some of the
reference sets (e.g., generic terms such as
“transforming growth factor” or “epistatic
interaction” for biomarkers).

� Putting the focus of the novel biomarker discovery
on proteins and genes as specified by the ILD
ontology and giving other terms a lower weight.

� Extension of the ILD with additional proteins and
genes taken from well-recognized biomedical
dictionaries (e.g., UMLS), thus reducing the
uncertainty in estimating the meaning of unknown
terms and avoiding the use of incompletely specified
terms.

� Use of named entity extraction rules to enhance the
mapping of incomplete terms to complete,
standardized biological terms.

� Improvement of the scoring method used in the
estimation of the confidence level. The number of
documents in which a particular biomarker/
phenotype candidate appears should not be used to
up-weight the confidence score, since it enhances
too much the importance of irrelevant generic terms
appearing in many documents (Step 5 above). A
relevant quantity to include in the confidence score
design is the information-theoretic entropy of
candidates or – even more important – the joint
entropy between the distribution of the candidates
and the reference models over the neurons.

Conclusions
The reported approach of employing autonomous self-
organising semantic engines to aid biomarker discovery
shows promise and has potential to impact pharmaceutical
research; for example to shorten time-to-market of novel
drugs, or for early recognition of dead ends such as those
with prohibitive side-effects through targeted extraction of
relevant information.
The machine discovery must be considered as a semi-

automatic, rather than a fully automatic, process since it
cannot fully replace the competence of human researchers.
The most promising approach is a hybrid process in which
the automatically inferred discoveries are assessed by
human experts. Sorting results by a measure of confidence
would significantly speed the review process for the
highest/lowest ranges in the scale. The verification of the
identified candidates can be supported by InfoCodex’s user
interface, visualizing the semantic similarity between a
query text and the retrieved documents.
In conclusion, we stress that what we presented

here is a first step in an iterative process in which
the machine discovery of biomarkers/phenotypes and
related pharmacogenomic entities is perfected to a
level sufficient for human assessment of only the top
tier of proposed novel entities. The final machine
process we have in mind should not only lead to cost
cutting with respect to traditional human research
but it could become a valuable ingredient to tackle
the sheer number of relevant documents available.
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