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Abstract

Background: Characterising genetic diversity through the analysis of massively parallel sequencing (MPS) data
offers enormous potential to significantly improve our understanding of the genetic basis for observed phenotypes,
including predisposition to and progression of complex human disease. Great challenges remain in resolving
genetic variants that are genuine from the millions of artefactual signals.

Results: FAVR is a suite of new methods designed to work with commonly used MPS analysis pipelines to assist in
the resolution of some of the issues related to the analysis of the vast amount of resulting data, with a focus on
relatively rare genetic variants. To the best of our knowledge, no equivalent method has previously been described.
The most important and novel aspect of FAVR is the use of signatures in comparator sequence alignment files
during variant filtering, and annotation of variants potentially shared between individuals. The FAVR methods use
these signatures to facilitate filtering of (i) platform and/or mapping-specific artefacts, (i) common genetic variants,
and, where relevant, (iii) artefacts derived from imbalanced paired-end sequencing, as well as annotation of genetic
variants based on evidence of co-occurrence in individuals. We applied conventional variant calling applied to
whole-exome sequencing datasets, produced using both SOLID and TruSeq chemistries, with or without
downstream processing by FAVR methods. We demonstrate a 3-fold smaller rare single nucleotide variant shortlist
with no detected reduction in sensitivity. This analysis included Sanger sequencing of rare variant signals not
evident in dbSNP131, assessment of known variant signal preservation, and comparison of observed and expected
rare variant numbers across a range of first cousin pairs. The principles described herein were applied in our recent
publication identifying XRCC2 as a new breast cancer risk gene and have been made publically available as a suite
of software tools.

Conclusions: FAVR is a platform-agnostic suite of methods that significantly enhances the analysis of large volumes
of sequencing data for the study of rare genetic variants and their influence on phenotypes.
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Background

We applied FAVR principles, described herein, to iden-
tify that rare mutations in XRCC2 increase the risk of
human breast cancer, which is to our knowledge the first
published report of massively parallel sequencing (MPS)
being successfully applied to identify a new complex
human disease gene [1].

Rare genetic variants have been proven to contribute a
significant fraction of the heritable component of com-
plex human disease [2,3], as well as a range of Mendelian
disorders [4].

We can now generate large sequencing datasets cross-
referenced to detailed human disease phenotypes [5]. How-
ever, such datasets contain millions of disease-unrelated
variants and artefacts. Conventional genetic variant calling
software e.g. GATK (http://www.broadinstitute.org/gsa/wiki/
index.php/The_Genome_Analysis_Toolkit) use Bayesian co-
variate analysis methods to determine the probability that
variants are real based on metrics such as mapping quality
score, base quality metrics, read depth, variant read fre-
quency, mate-pairing, bi-directionality, and co-occurrence
of nearby deviations from the reference genomic sequence.
These methods can apply optimally determined metrics to
a given test specimen but do not use individual variant
comparisons across multiple specimens. At the outset of
our whole-exome sequencing work, we were concerned
that the majority of variants ‘called’ using GATK appeared
suspicious when viewed alongside other whole-exome data
tracks derived from identical chemistry and bioinformatic
processing pipelines (Additional file 1: Figure S1). Many of
these appeared to be quite common across our samples
and yet did not feature in HapMap project databases
in which Sanger sequencing-based determination of
variants had been applied. Frequency of such signals
across specimens and the proportion of aligned reads
exhibiting signal for a given specimen varied widely. Of
concern, it was not readily apparent how the co-variate
analyses performed by conventional variant calling soft-
ware could be used to filter out such artefacts without
seriously compromising the sensitivity of variant calling.
The potential filtering metrics of these artefacts were
often in the ranges observed for proven variants.

Further, we and others have observed that a large
number of artefactual variants derive from shorter reads
following SOLiD4 paired-end sequencing (which yields
50 bases and 35 bases reads at either end of library
fragments) [6].

Herein, we describe and validate FAVR methods for
the shortlisting of rare, germline variants of potential
disease-relevance, with dramatically improved specifi-
city and without compromising sensitivity, based on
observations of signals from sequence alignment files
that are detectable by comparison across but not neces-
sarily within datasets.
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Methods

Subjects

The subjects were part of a collaborative multiple-case,
early-onset, breast cancer family exome sequencing pro-
ject and were selected from the international Breast
Cancer Family Registry. The subjects selected in the
present study were pairs of affected first cousins, from
ten families.

Whole-exome sequencing

Families 1 to 5 were sequenced on a SOLiD4 instrument
(Life Technologies) and families 6 to 10 were sequenced
on a HiSeq instrument (Illumina).

Libraries were prepared for paired-end seqeuncing
following SOLiD ((Life Technologies) and TruSeq
(Ilumina) protocols respectively. Exome-capture was
performed with the Nimblegen SeqCap EZv2 (Roche
Nimblegen, Inc.) exome-capture DNA kit, then se-
quenced using the SOLiD4 instrument or the HiSeq
instrument.

The sequence data from this study are available via
dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000601.v1.p1).

Pre-FAVR bioinformatic processing

Reads generated using the SOLiD4 were mapped to a
human reference (hgl9) using Bioscope v1.3.1, locally
realigned using GATK v1.0.5336 and duplicates were
removed using Picard v1.29 (http://picard.sourceforge.
net/index.shtml).

Reads generated on the HiSeq were mapped to hgl9
using Novoalign (Novocraft). GATK v1.6 was used for
local realignment, duplicate removal and base quality
recalibration (GATK TableRecalibration).

Based on the GATK exome analysis pipeline, single
nucleotide variants (SN'Vs) were called using the GATK
v1l.5 UnifiedGenotyper (with -stand_call_conf=30 -
stand_emit_conf=30 -dcov =700 -mbq =17). Variant
quality score recalibration was performed using the
VariantRecalibrator and ApplyRecalibration tools (de-
fault parameters). Raw variant calls were filtered to re-
move dbSNP131-registered variants (http://www.ncbi.
nlm.nih.gov/projects/SNP/) and non-exome variants
using BEDtools (http://code.google.com/p/bedtools/).
These methods generated alignment files in BAM for-
mat [7] and variant lists in VCF format [8]. Variant lists
were annotated using ANNOVAR [9].

Additional comparative FAVR analyses using either
dbSNP131 or dbSNP135-registered variants were per-
formed after variant calling using GATK v 1.0.5336
(-strand_emit_conf=15 —-mbq=15 —-mmq=20 —mm40=2
—dcov=700), and are illustrated in Additional file 2:
Figure S2.
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FAVR bioinformatic processing

FAVR methods were developed as a software suite, in-
cluding Rare and True Filter, PE Bias Detector, and Fam-
ily Annotate Tool, and made freely available (https://
github.com/bjpop/favr). These methods were applied
following pre-FAVR bioinformatic processing and are
detailed below (Figure 1). FAVR software suite has been
tested on Linux and Mac operating systems.
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FAVR filtering for authentic rare genetic variants

The application of Rare and True Filter makes novel use
of signature sequences in BAM files to infer evidence of
sequencing/mapping artefacts. Variants observed below
a particular frequency in comparator BAM files are
kept and all other variants are discarded. Under a rare
variant-disease model, the tool does not need to dif-
ferentiate between mapping/sequencing artefacts and
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relatively common genetic variants and both are filtered
out. The determination of variant frequency is configur-
able by two command-line parameters. The first param-
eter is a threshold for the number of reads in a sample
that have the same base as the variant in the same pos-
ition. Samples with a number of variant reads greater than
or equal to this threshold are considered variant-like. Hav-
ing filtered out replicate reads, e.g. using Picard, and using
sequencing chemistry with accuracy similar to those of
the SOLID or TruSeq, this threshold can be set to very
low levels to remove variants derived from mapping
artefacts without sequencing chemistry errors leading to
unwanted removal of variants. The second parameter spe-
cifies a threshold for the percentage of comparator BAM
files (excluding relatives and derived from identical se-
quencing chemistry and bioinformatic processing) exhi-
biting evidence of the same variant as the test sample. In
this study, we set the first parameter to 1 and set the sec-
ond parameter to 30%, using 8 comparator BAM files.
These are tailorable for application to different platforms
or to apply different filtering stringencies.

FAVR imbalanced pair artefact filtering

Using PE Bias Detector, we can filter out those variants
that have been called but which are evident only in short
reads of imbalanced pairs. This can be tailored for use
with other platforms which exhibit imbalanced paired-
end data, but is likely not to be useful in the context of
balanced platform data. PE Bias Detector was not
required for the analysis of balanced paired-end TruSeq
data.

FAVR annotation of evidence for shared variants

Variants that are found in any reads of any samples from
related individuals, for instance, can be annotated using
Family Annotate Tool. Depending on the trait inherit-
ance model, this allows shortlisting of genetic variants of
particular interest. In the case of a highly penetrant breast
cancer gene mutation, for example, a variant might be ex-
pected to be observed in multiple affected family members.
Similarly, in cases of de novo mutation disorders or rare
Mendelian disorders, comparing shared or non-shared va-
riants across family members can inform the process of
shortlisting candidate variants of interest. Since this tool
uses BAM files as input and not just VCEF files, further op-
portunity is presented to detect rare variants which may be
shared between family members, for instance, which would
otherwise be missed as false-negatives due to rigid thresh-
old setting.

First cousins data analysis to assess FAVR processing
specificity

To analyse SOLiD-derived datasets, five pairs of first
cousins were assessed for the number of SNVs ‘called’
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following pre-FAVR bioinformatic processing and following
processing with Rare and True Filter, PE Bias Detector or
both. In order to assess the specificity of these conditions,
we compared observed versus expected SNVs shared be-
tween cousins, assuming variants to be rare and genuine
and that first cousins are expected to share, on average,
12.5% of their DNA.

The same analyses were performed on TruSeq datasets,
derived from five different families.

Sanger sequencing assessment of FAVR processing
specificity

Forty eight rare SNVs not reported in dbSNP131 identi-
fied in a range of breast cancer cases involved in the
multiple-case breast cancer family exome sequencing
project and ‘called’ following FAVR processing were
subjected to BigDye Terminator v3.1-based Sanger se-
quence analysis (Life Technologies). These SNVs were in
genes of plausible biological interest with regard to can-
cer predisposition.

Known variant testing to assess FAVR processing
sensitivity versus pre-FAVR processing

One hundred exonic SNVs were selected in a sampling
approach from the Illumina 610 k SNP chip feature list
to represent a range of minor allele frequencies across
the genome. These were assessed against 12 whole-
exome alignment files in the following manner. The as-
sumption was made that if a given SNV was observed in
an alignment file at a frequency of greater than or equal
to 9%, that specimen was judged to be a ‘true carrier’ of
the variant. ‘True carriers’ were excluded from the
following analysis. If the variant was apparent in any
read in greater than or equal to 30% of the remaining
alignment files, the variant would be judged to be an
artifact, which would result in a false-negative variant
call. We used the filtering thresholds detailed above to
gauge the false negative rate of FAVR processing using
pre-FAVR filtering as a reference. The vast majority of
rare SN'Vs annotated in current databases have not been
validated by Sanger sequencing or by other means to in-
stil confidence and are therefore not appropriate for our
purposes here.

Results and discussion

The principles behind the FAVR methods that are
presented in this article were used as part of a body of
work which resulted in our recent publication of the first
new breast cancer (and to our knowledge, complex human
disease) predisposition gene to be identified via MPS ana-
lysis, XRCC2 [1]. In this study, we were presented with a
large dataset and needed to yield a manageable shortlist of
‘variants of interest’. As others have done, we removed du-
plicate reads and performed local re-alignment, filtered
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for co-ordinates of interest (e.g. the exome), used quality
metrics including read depths and frequencies, base and
mapping scores, filtered based on prior appearance in
databases and minor allele frequencies (e.g. dbSNP), and
used in silico predictions of the likely deleterious nature of
variants (e.g. SIFT, http://siftjcviorg/). Despite these
measures, for a majority of variants, we observed evidence
of the same signals (signatures) across a range of compara-
tor specimen alignment files, at a range of read depth fre-
quencies and across-sample frequencies. According to a
rare variant model, we can remove such ‘variants’ from fur-
ther consideration either as being too common (yet real) to
be of interest or as artefacts (synthetic). We do not differ-
entiate between these classifications, but it is noteworthy
that having filtered out features listed in dbSNP131, we
have never encountered a homozygous signal for any such
‘variant’ despite their collective apparent high frequencies.
This suggests that a majority of such signals are synthetic.

We assume that these signals are the result of map-
ping/alignment errors in the context of highly similar
sequences existing elsewhere in the genome. As to the
precise causes, at this point we can only speculate that
perhaps polymorphisms and/or sequencing chemistry
errors in these regions or in regions of similar sequence
could play roles.

Per exome, prior to the development of FAVR me-
thods, we were faced with a shortlist of approximately
1000 SNVs of possible interest. Only approximately one
third of these would have been real rare variants, and
laborious and expensive Sanger sequencing-based valid-
ation would have been required to further shortlist.

FAVR filtering methods compare signals across com-
parator datasets in a way that has not been described pre-
viously. As such, the best performance comparison we felt
we could make was based on a conventional bioinformatic
analysis pipeline with or without the additional application
of FAVR processing (Figure 1). The variant calling soft-
ware we used, GATK, is among the most widely-used in
the field and has been described as representing ‘best
practice’ [10]. Testing the sensitivity and specificity of rare
SNVs presents certain challenges. Recent iterations of
dbSNP, following the incorporation of MPS data, contain
a large number of unvalidated rare variants, many of
which are likely to be artefacts. As such, simple simulated
dataset analyses would not be appropriate for our purpose.
Instead, we opted to undertake a series of sampling-based
analyses, in which we could be confident of the validity of
our reference points, to assess the sensitivity and specifi-
city performances of FAVR methods.

Our experiments to assess the observed/expected (O/E)
shared SN'Vs between first cousins indicate that the appli-
cation of FAVR methods dramatically increases variant
calling specificity, for sequencing data derived both from
the SOLID and the TruSeq chemistries. The total numbers
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of variants found in each individual and observed number
of shared variants between first cousins pairs at each stage
of filtering are reported in Additional file 3: Table SI.
Figure 2 illustrates the mean (first cousin pairs) number
of SNVs remaining in each of ten families after pre-
FAVR processing and following additional application
of PE Bias Detector, Rare and True Filter or both. Ap-
plied to SOLiD-derived data, the latter three filtering
conditions resulted in a mean proportion of variants
remaining relative to pre-FAVR processing of 0.74, 0.37 and
0.32, respectively (95% confidence intervals (95% ClIs) =
[0.62-0.85], [0.26-0.48] and [0.19-0.45]) (Figure 2A). For
TruSeq-derived data, the mean proportion of variants
remaining after Rare and True Filter was 0.49 (95% Cl=
[0.44-0.54]) (Figure 2B).

Applied to SOLiD-derived data, the Rare and True Filter
tool or both PE Bias Detector and Rare and True Filter
tools resulted in mean O/Es (across families) of 1.00 and
1.05, respectively, compared with 1.95 both following no
FAVR filtering and application of just the PE Bias Detector
tool (95% CI= [0.80-1.20], [0.83-1.27], [1.75-2.14] and
[1.77-2.14], respectively) (Figure 3A). For TruSeq-derived
data, the O/E (across families) was 2.99 without FAVR
filtering and 1.25 after Rare and True Filter (95% Cl=
[2.80-3.18] and [1.11-1.39], respectively) (Figure 3B).

The observations of O/Es close to 1 following applica-
tion of FAVR methods provide confidence that the ma-
jority of remaining variants are likely to be genuine rare
variants and not the result of sequencing or mapping
artefacts. Findings using GATK v1.0.5336 showed very
similar results (Additional file 2: Figure S2 A and C).

The encouraging results from our analyses using first
cousin datasets were further substantiated by the following.
Rare SN'Vs not reported in dbSNP131 and ‘called’ following
FAVR processing of whole-exome data proved to be genu-
ine according to Sanger sequence validation in 94% of
cases (45/48). We assessed sensitivity of FAVR compared
with pre-FAVR bioinformatic processing as outlined in
Methods (note our assumption regarding the definition of
genuine variants for the purposes of this sub-analysis and,
to re-iterate, the difficulties faced with assigning appro-
priate reference data in the context of rare variant ana-
lyses). Our results projected that 100% (100/100) of rare,
genuine variants ‘called” would be maintained following
FAVR processing.

The application of FAVR methods in the context of
different sequencing chemistries and different mapping
software indicate that similar benefits can be achieved
across a range of analysis pipelines preceding the FAVR
processing steps. The software that supports the FAVR
methods outlined here is designed to be compatible with
common sequence alignment [7] and variant caller file
formats [8] that have been designed to standardise bio-
informatic processing pipelines (Figure 1).
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both FAVR filters

Application of Rare and True Filter and PE Bias Detector
reduces the number of variants of possible interest per
exome, in automated fashion and without compromising
‘true variant’ sensitivity. Further, Family Annotate Tool of-
fers improvements over conventional methods to facilitate
the rationalised optional shortlisting of variants based on
assumptions relating to the nature of genetic variants and
projected patterns of inheritance, respectively. The Rare
and True Filter could be more broadly used in the study of
any genetic-phenotypic analysis in which rare genetic va-
riants are expected to contribute significantly to a given
phenotype, by increasing their detection specificity.

When dbSNP135 (incorporating substantially more
unvalidated MPS-generated variants) was used to filter

variants instead of dbSNP131 for the above SOLiD ana-
lyses, we observed mean proportions of variants remaining
of 0.67, 0.22 and 0.16 following application of PE Bias
Detector, Rare and True Filter or both, respectively (95%
CI=[0.56-0.79], [0.16-0.27] and [0.08-0.24]) (Additional
file 2: Figure S2B). The mean O/Es of shared variants
between first cousins (average across families) were 0.81
and 0.84 after applying the Rare and True Filter tool or
both PE Bias Detector and Rare and True Filter, respect-
ively, compared with 2.04 and 2.10 following no further
filtering or application of just PE Bias Detector (95%
CI=[0.64-0.99], [0.62-1.06], [1.87-2.22] and [1.94-2.25]
respectively) (Additional file 2: Figure S2D). The signifi-
cance of these findings is unclear since we cannot resolve
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what proportion of signal removed by filtering dbSNP135
represents real rare variants and what proportion repre-
sents artefacts.

Figure 4 demonstrates the distribution of VQSLOD
scores generated by the Variant Quality Score Recalibrator
(GATK) for FAVR-kept and FAVR-removed SNV signals.
The limited overlaps indicate reasonably good correlation
between the confidence attributed to a variant called by
GATK and the likelihood that it could be retained fol-
lowing FAVR processing. These data do suggest however
that a VQSLOD score-based threshold to remove a high
percentage of artefactual signals could result in a substan-
tial proportion of true rare variants being unintentionally
removed. Perhaps the best future strategy for rare SNV
analyses may be to use similar principles to those em-
bodied in machine-learned probabilistic approaches such
as GATK in combination with FAVR methods. Under this

type of strategy the VQSLOD score threshold may be rela-
tively relaxed to achieve optimal balance of sensitivity and
specificity. Of course, this could be tailored to suit re-
quirements on an application-by-application basis.

These methods are not without limitations. As stated
previously, FAVR methods do not currently separate ap-
parently common variants into ‘true common’ or ‘arte-
fact’ classifications, which restricts their utility to rare
variant models unless used in conjunction with alterna-
tive approaches to study common genetic variation. The
methods have also only been tested using the GATK vari-
ant caller and performance may vary when used with other
variant callers. While we have used different mapping tools
(Bioscope and Novoalign) in the context of different se-
quencing chemistries (SOLiD and Truseq), different map-
ping tools applied in conjunction with different variant
calling software could also influence performance. To date,



Pope et al. BMC Bioinformatics 2013, 14:65
http://www.biomedcentral.com/1471-2105/14/65

Page 8 of 9

>

3000 FAVR-removed
2500
2000
1500

1000

500

Number of SNV signals

——FAVR-kept

-
_-——---

=== Without FAVR

-26 -22 -20 -18 -16 -14 -12

3000 FAVR-removed
2500
2000
1500

1000

Number of SNV signals

500

i

-10 8 6 -4 -2 0 2 4 6
VQSLOD score

—FAVR-kept

=== Without FAVR

0 -

sequencing data (B), according to METHODS.
.

-30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8

Figure 4 Distribution of VQSLOD scores derived from the Variant Quality Score Recalibrator (GATK). VOSLOD scores were obtained
without FAVR processing and for FAVR-kept and FAVR-removed SNV signals after processing of SOLID sequencing data (A) and TruSeq

6 -4
VQSLOD score

-2 0 2 4 6 8 10 12

we have not included automated indel calling as part of
FAVR methods, but intend to shortly and expect this to
provide similar benefits to those observed for SNVs. FAVR
software currently uses empirically-determined filtering
thresholds that do not vary according to coverage depth at
given positions or sequencing errors in particular contexts,
for instance. In future iterations, we intend to incorporate
such considerations to allow the FAVR principles to be ap-
plied in a more Bayesian approach.

It is possible that some of the principles outlined here
may be extendable to the study of common variants. If
we were to include thresholds governing the permissible
range of variant read frequencies across a panel of spe-
cimens, for example, with measures of ‘non-called’ vari-
ant signals across the panel, we may be able to markedly
increase non-rare variant calling specificity while only
tolerably decreasing sensitivity. If so, such an approach
could be useful in studies involving genomes that are
not currently well-defined at population levels.

Conclusions

The suite of tools presented here address the challenge of
analysing the large amounts of data generated by MPS
technologies, with emphasis on the study of rare genetic
variants, in an accurate, efficient and time-effective man-
ner. Handling and customisation of the whole FAVR suite
does not require advanced computational skills or large
computational resources and can be performed as part of
routine data cleaning and interpretation pipelines. The
methods can be applied across MPS sequencing platforms,
accept commonly-used file formats, complement other
commonly-used bioinformatic pipeline tools, and will be
broadly useful for the study of rare genetic variants and
their influence on phenotypes.

Additional files

Additional file 1: Figure S1. Example of a typical artefact signal. Six
individual alignment files are displayed. The variant has been ‘called’ only
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for the first individual whereas the variant signal also appears in other
individuals. This assumed artefact signal was observed in systematic
fashion across our dataset at a frequency higher than would be expected
to be caused by sequencing chemistry errors.

Additional file 2: Figure S2. Filtering of SOLID sequencing data using
dbSNP131 and dbSNP135. Mean (of first cousins) number of rare SNVs
remaining without any further filtering and using the PE Bias Detector
Tool only, the Rare and True Filter only, or both tools in five families, after
filtering out common variants appearing in dbSNP131 (A) or dbSNP135
(B). Mean (across families) O/E number of shared SNVs, assuming first-
cousins share 12.5% of their DNA (on average) without further filtering
and using the PE Bias Detector Tool only, the Rare and True Filter only, or
both tools in five families, after filtering on dbSNP131 (C) or dbSNP135
(D). Error bars indicate 95% confidence intervals (see Results and
discussion). Data were processed according to Pre-FAVR bioinformatic
processing and further FAVR filtering was applied as described in FAVR
bioinformatic processing (see Methods).

Additional file 3: Table S1. Total number of variants found in each
individual and observed number of shared variants between first cousins
pairs, at the different stages of filtering. N/A indicates non-applicable.
Data were processed according to Pre-FAVR bioinformatic processing and
further FAVR filtering was applied as described in FAVR bioinformatic
processing (see Methods).
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