
Varón and Wheeler BMC Bioinformatics 2013, 14:66
http://www.biomedcentral.com/1471-2105/14/66

METHODOLOGY ARTICLE Open Access

Local search for the generalized tree
alignment problem
Andrés Varón and Ward C Wheeler*

Abstract

Background: A phylogeny postulates shared ancestry relationships among organisms in the form of a binary tree.
Phylogenies attempt to answer an important question posed in biology: what are the ancestor-descendent
relationships between organisms? At the core of every biological problem lies a phylogenetic component. The
patterns that can be observed in nature are the product of complex interactions, constrained by the template that our
ancestors provide. The problem of simultaneous tree and alignment estimation under Maximum Parsimony is known
in combinatorial optimization as the Generalized Tree Alignment Problem (GTAP). The GTAP is the Steiner Tree
Problem for the sequence edit distance. Like many biologically interesting problems, the GTAP is NP-Hard. Typically
the Steiner Tree is presented under the Manhattan or the Hamming distances.

Results: Experimentally, the accuracy of the GTAP has been subjected to evaluation. Results show that phylogenies
selected using the GTAP from unaligned sequences are competitive with the best methods and algorithms available.
Here, we implement and explore experimentally existing and new local search heuristics for the GTAP using simulated
and real data.

Conclusions: The methods presented here improve by more than three orders of magnitude in execution time the
best local search heuristics existing to date when applied to real data.

Keywords: Tree alignment, Tree search, Phylogeny, Sequence alignment, Direct optimization

Background
A phylogeny postulates shared ancestry relationships
among organisms in the form of a binary tree. Phylo-
genies attempt to answer an important question posed
in biology: what are the ancestor-descendent relation-
ships between organisms? At the core of every biological
problem lies a phylogenetic component. The patterns
that can be observed in nature are the product of com-
plex interactions, constrained by the template that our
ancestors provide. For example, the presence and struc-
ture of the human skull is mainly determined by its
structure in our ancestors. The relationship between
the features observed in different organisms can only
be understood if the phylogenetic relationships can be
hypothesized.
An important method of phylogenetic inference is

Maximum Parsimony (MP). Under MP, the preferred

*Correspondence: wheeler@amnh.org
Division of Invertebrate Zoology, American Museum of Natural History, New
York, NY - 10024, USA

hypothesis is the one that minimizes the number of evolu-
tionary transformations required to explain the observed
features [1]. This optimization problem is known in Com-
puter Science as the Steiner Tree problem, which is NP-
Complete [2].
The problem of simultaneous tree and alignment esti-

mation under Maximum Parsimony is known in combi-
natorial optimization as the Generalized Tree Alignment
Problem (GTAP) [3]. The GTAP is the Steiner Tree Prob-
lem for the sequence edit distance. Like many biologically
interesting problems, the GTAP is NP-Hard [2]. Typi-
cally the Steiner Tree is presented under the Manhattan
or the Hamming distances. (We will refer to these two
forms generically as the STP.) Experimentally, the accu-
racy of the GTAP has been subject to evaluation [4-6]. The
most recent results have shown evidence that phylogenies
selected using the GTAP from unaligned sequences are
competitive (in terms of optimal and accurate solutions)
with the best methods and algorithms available based on
coupled, but separate multiple sequence alignment and
phylogeny reconstruction [5,6].

© 2013 Varón and Wheeler; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Varón and Wheeler BMC Bioinformatics 2013, 14:66 Page 2 of 12
http://www.biomedcentral.com/1471-2105/14/66

Due to its computational hardness, biologists interested
in the GTAP rely on heuristic procedures to find good
solutions. The simplest, and arguably the most important
heuristic for the GTAP is a local search. A local search
iteratively evaluates trees similar to a current solution T,
where similar trees constitute the neighborhood of T. If
a shorter tree S is found in the neighborhood, then T is
replaced by S, and the search continues. Otherwise, T is
the final solution. Local search is the work horse of most
phylogenetic analysis procedures of practical use, and the
core search procedures to solve the GTAP in the computer
programs MSAM [7], and POY [8,9]. It is known that the
quality of a GTAP analysis is heavily dependent on the fit
of the local search heuristics used [5], but the question
of which heuristics are a better fit under what conditions
remains unanswered.
In this paper, we discuss, implement, and experimen-

tally explore existing and new local search heuristics for
the GTAP using simulated data. Our methods improve
by more than three orders of magnitude the best local
search heuristics existing to date with real data. We begin
by formally explaining the existing heuristics, and new
heuristics for the GTAP. Following the results of [9], we
use the Affine-DO algorithm to compute the tree length
heuristically.

The algorithms
A subproblem of the GTAP is the Tree Alignment
Problem (TAP) (see [10]). Heuristically solving the TAP
with Affine-DO [10] can be done in O(n2|V |), where
n is the maximum sequence length and V the vertex
set of the tree, and typically n � |V |. To simplify
notation, in this section we assume that calculating
the assignment of a vertex in a tree is a constant
time operation (i.e. the score of a tree is computed in
O(|V |) time).

Existing heuristics
A local search consists of two steps: initial tree construc-
tion, and refinement (defined below). Given an initial tree
T, refinement evaluates trees similar to T, in the search for
a better solution. Those trees similar to T are its neighbor-
hood. The most commonly used neighborhood function
is known as Tree Bisection and Reconnection (TBR) [11].

TBR is based on two simple tree modifications: break-
ing an unrooted tree in two components, and joining two
separate trees in one (Figure 1):

Tree Breaking. Given a tree T, remove an edge (u, v)
to produce two connected components, one with u, the
other with v. If u (v) is not a leaf, then collapse it.
Tree Joining. Let T = (V ,E) and S = (V ′,E′) be two
binary trees. T and S can be joined by selecting a pair
of edges (u, v) ∈ E and (u′, v′) ∈ E′, create subdivision
vertices x in the edge (u, v) and x′ in (u′, v′), and add the
edge (x, x′). If T (S) does not have edges, but only one
vertex v, then take v as x (x′).

The TBR neighborhood of T is the set of trees that can
be produced by breaking T at any edge to produce two
trees U and V, and then joining U and V. This neighbor-
hood is used in the local search step of the GTAP solver
programs POY [8,9] and MSAM [7].
The most popular strategy for the initial tree construc-

tion is the Wagner algorithm [12], a randomized, greedy
strategy, of time complexity O(|V |2). The Wagner algo-
rithm is used in most software packages for phylogenetic
analysis under MP (e.g. [13]), including POY [8,9]. MSAM
takes a different approach, by using a Neighbor Join-
ing tree, with time complexity O(|V |3) [7]. Deterministic
algorithms are not typically used in the tree building step:
for non trivial data sets, a good randomized method can
be used repeatedly to initiate independent refinements
resulting in different solutions. Their shared properties
can give insights into the problem’s structure, and help
discover better solutions.
Depending on the distance function, different proce-

dures are used to compute the score of the trees in the
TBR neighborhood efficiently [14-21]. In particular, for
the Hamming and Manhattan distance, to calculate all of
the tree scores in the TBR neighborhood has time com-
plexity O(|V |3) [11]. For the GTAP however, it has time
complexity O(|V |4) [19,22-24], or O(|V |3) by increasing
the hidden factor from O(n2) to O(n3) (remember that
typically n � |V |) [20,23].
Exploring a neighborhood requires two additional cri-

teria: the stopping rule, and the selection of the next
candidate solution. Depending on their properties, a num-
ber of local search strategies can be described. A classic

break join

T

Figure 1 Breaking and joining a tree. Breaking a tree in two connected components, and joining them again with a different edge. The resulting
tree is part of T’s TBR neighborhood.

Varón and Wheeler BMC Bioinformatics 2013, 14:66 Page 3 of 12
http://www.biomedcentral.com/1471-2105/14/66

heuristic that specifies the stopping and selection cri-
teria is simulated annealing (SA) [25-27]. Contradictory
conclusions about the applicability of SA to phyloge-
netic analysis can be found in the literature [18,26-29].
A form of simulated annealing with better performance
under the Hamming and Euclidean distance is known
as Tree-Drifting [18]. However, its Metropolis and stop-
ping criteria make Tree-Drifting inapplicable to the GTAP.
The potential of Simulated Annealing for the GTAP has
remained unexplored.
Sectorial search [18] (SS) is a heuristic that restricts

or extends the TBR neighborhood by only breaking and
joining selected subtrees (i.e. connected subgraphs), or
exhaustively solving such subtrees. Two variations of this
scheme have been proposed: in the Random-Based SS,
subtrees are selected uniformly at random. In the second
variation, the Consensus-Based SS, given a parameter 0 ≤
n ≤ 1, only rearrange (or evaluate exhaustively) subtrees
occurring in at least n ∗ m solutions found in m previous
searches (n typically set to 0.85) [18].
Other strategies (e.g. Parsimony Ratchet, Tree Fusing,

the Genetic Algorithm, DCM), do not strictly belong to
the set of local search heuristics. Given that local search
is part of all these strategies, all of them would be more
efficient if a good local search is in place.

New heuristics for the GTAP
In this section, we describe four ideas to improve the
local search strategies in the GTAP: efficient tree length
calculation during the search, better tree cost bounding,
a smarter local search strategy, and initial tree building
algorithms.

Efficient tree updates
To apply the selection and stopping rules during TBR, it
is necessary to calculate the tree length after every break,
and join. Affine-DO requires a directed tree as induced by
its root. If the sequence edit distance function is metric,
the true tree length is independent of the root location.
Given that metric distances are a common requirement
under MP we assume from now on that the edit distance
is metric. It follows that, although Affine-DO can produce
a different tree length for each possible root, there is no
constraint to maintain one.

To update a tree efficiently, we do not maintain a unique
rooted representation, but rather take its unrooted rep-
resentation and keep all the potential roots assigned to
every edge of the tree (Figure 2). We call this a three
directional assignment. Although we describe it for its
application for the GTAP, it is applicable to any algorithm
that requires post-order traversal to compute (or estimate)
the tree length. (We have used it successfully under the
breakpoint [30], inversion [31], and double cut and join
[32] distances.)

Three directional assignment. For an unrooted binary
tree, we assign to each edge (u, v) a sequence. This
sequence is the Affine-DO assignment to the subdivision
vertex w of (u, v). Computing Affine-DO(w) is dependent
on the assignment to its neighbors (Figure 3, center). In a
binary tree, each interior vertex has three incident edges.
Therefore, there are three possible Affine-DO assign-
ments for every interior vertex (i.e. vertex v in Figure 3).
Each assignment is required to compute some subdivision
vertices. Hence, we maintain the three possible assign-
ments for each interior vertex. These assignments can be
computed with time complexity O(|V |), using first a pre-
order traversal then followed by a post-order traversal,
starting on any edge.

Observation 1. A tree with a three directional assign-
ment computes the length of every tree that can be pro-
duced by breaking any one edge with time complexity
O(|V |).

Observation 2. Given two separate trees S and T with
the three directional assignment, computing the length of
all the trees produced by joining every pair of edges in S and
T has time complexity O(|V |2).

The simplest implementation of the three directions is
to eagerly compute all the assignments in preparation for
the first tree break, and join. However, such an algorithm
would entail overhead for greedy heuristics such as simu-
lated annealing, where the first acceptable tree should be
chosen to continue with the local search.
We solve this problem by using lazy evaluation and

memoization [33] as follows: eagerly assign a lazy function

Figure 2 All possible roots of an unrooted tree. All possible roots of the unrooted tree correspond to the subdivision vertices of its edges (empty
circles).

Varón and Wheeler BMC Bioinformatics 2013, 14:66 Page 4 of 12
http://www.biomedcentral.com/1471-2105/14/66

v

s

t

rw
v

s

t

r
v

s

t

r

Figure 3 Three directional assignment. Three possible assignments to interior vertices of an unrooted tree. Left: computing the subdivision
vertex of (s, v), or any edge rooted by s (grey triangle on s), would require to compute the assignment to v using those of t and r. Center and right:
similarly, the assignment of v could be computed using s and t, or t and r. Each direction is needed for some subdivision vertices.

to each vertex and edge of the tree, but only compute
its value (and the values it depends on) upon request,
while memoizing the result. In this way, we only spend
time computing each vertex if used. This technique has
greater value if the tree break, and join order is care-
fully chosen. In the following section, we will see how the
three directional assignment can also be used to improve
the estimation of each tree cost with no additional time
complexity.

Multiple heuristic TAP solutions
The Affine-DO algorithm may calculate different tree
length bounds depending on the root location (i.e. one
per subdivision vertex). Nevertheless, the best of all the
assignments is preferable for each tree. Computing all of
the Affine-DO tree lengths, however, would add a O(n)

time complexity multiplicative factor to each tree break
and join. We avoid such factor and still produce better
bounds for the tree cost during the search by using Algo-
rithm 1 on each break, and Algorithm 2 on each join of
the local search.

Algorithm 1: Improving the bound of a tree on each edge
break

Data: A tree T with assigned length
Data: A lazy Affine-DO assignment to all subdivision
vertices of E(T)

Data: An edge (u, v) ∈ E(T) to break, with
subdivision vertex w
if Affine-DO(w) < length then

length ← Affine-DO(w);
proceed to break (u, v);

Algorithm 2: Improving the bound of a tree on each join
Data: A tree T created by joining two separate trees
S and R.
Data: S and R have a three directional assignment
Data: The new edge (u, v) ∈ E(T) created to join S
and R.

Data: n ∈ Nr is the maximum distance parameter
Result: the estimated length of T using Affine-DO
l ← ∞;
foreach (s, t) ∈ E(T) at distance less than n from
(u, v) following a BFS that starts in (u, v) do

Assume that t is closer to (u, v);
w ← subdivision vertex of (s, t);
If Two directions of t have not been updated
after the join then

Update the new two directions of t ;
Assign the corresponding sequence computed
in Affine-DO(w) to w;
If Affine-DO(s) < l then

l ← Affine-DO(s);
end
return l ;

For a fixed n, the join procedure adds only a constant
multiplicative factor, without increasing the time com-
plexity. Note that if all the edges of a tree T are broken
during a local search, then 2n − 3 alignments are evalu-
ated for the final tree, with no additional time complexity.
We call this variation of the TBR Exhaustive-TBR.

Smarter local searches
Affine-DO [10] defines a compact representation of sets
of sequences called a reduced alignment graph (RAG).
RAGs are less powerful than alignment graphs [34], but
are simpler and more efficient to compute and use. It is
then possible to align RAG’s, find the closest sequences
contained in them, and compute their RAG with time
complexityO(n2), the same of a regular pairwise sequence
alignment [35]. Ultimately, Affine-DO is amethod to com-
pute the distance between the closest sequences contained
in a pair of RAGs efficiently.
RAGs can be used to guide a local search. If the union

of a pair of RAGs A and B can be efficiently computed in
a new RAG C, then C can be used to bound the distance

Varón and Wheeler BMC Bioinformatics 2013, 14:66 Page 5 of 12
http://www.biomedcentral.com/1471-2105/14/66

between any other RAG D and A or B simultaneously.
Therefore, it is possible to use the union of multiple RAGs
assigned to multiple vertices in a tree, to compute a lower
bound of the closest pair of sequences contained in a pair
of vertex sets (Figure 4).

Algorithm 3: Algorithm to computemerge(i, j, k, result). The
union of a single RAG A is 〈Ai, true〉

Data: The operation (a, b) : r prepends the pair
(a, b) to the list r.
Data: A and B are a pair of aligned RAGs with
median M.
Data: X and Y are the unions associated with A and
B.
Result:merge(|X|, |Y |, |A|, 〈〉) computes the union Z
associated with M
if: i > 0 and Xi flag is false then

merge(i − 1, j, k, ((Xi, false) : result));
else if j > 0 and Yj flag is false then

merge(i, j − 1, k, ((Yj, false) : result));
else if k > 0 then

flag ← Mk �= {indel};
if Ak �= {indel} and Bk �= {indel} then

merge(i− 1, j− 1, k − 1,
(
(Xi ∪ Yj ∪ Mk , flag) :

result));
else if Ak �= {indel} then

Y

Z

X
A

B

Figure 4 Unions to bound the cost of a tree. Use of unions to
bound the cost during a local search. Shade areas enclose disjoint sets
of vertices in the tree. Suppose that we merge all the RAG’s of each
vertex set using Algorithm 3 to produce the unions X, Y, and Z. Then
we can heuristically bound d(A, B) as d(X , Y) ≤ minA∈C,B∈D d(A, B),
where d is the distance as calculated using the Affine-DO alignment
algorithm.

u ← Xi ∪ Mk ∪ {indel}, flag;
merge(i − 1, j, k − 1, (u : result));

else
u ← Yj ∪ Mk ∪ {indel}, flag;
merge(i, j − 1, k − 1, (u : result));

end
else return result

Theorem 1. Let R = merge(|X|, |Y |, |M|, 〈〉) (Algo-
rithm 3). All the sequences contained in X, Y, and M are
contained in R.

Proof. At each step, either Xi, Yj, Mk , {indel}, or any of
their combinations is prepended to the result. Therefore,
no element appearing in X, Y, orM is missing in R. More-
over, for all 0 < e, f ≤ |X|, Xe is prepended before Xf if
and only if e < f . Hence, the relative order of the elements
in X is maintained in R. Finally, for all the cases where
Xi is not prepended, then the indel element is included
in R. It follows that that we can recover X by removing
those elements in R where such indels where inserted and
no element of X was. By the definition of sequences con-
tained in a RAG [10], it follows that every sequence in X is
contained in R.
The analysis of Y andM is symmetric.

Theorem 2. Algorithm 3 computes the union of X, Y,
and M with time complexity O(|X|) where X is the longest
union.

Proof. The algorithm stops when i, j, k < 1. At each
recursive step, either i or j is reduced by one, with initial
values i = |X| and j = |Y |.

The union of RAGs can be executed inO(n|V |), on each
vertex, during the Affine-DO computation. Affine-DO
is O(n2), therefore, this method entails a small additive
factor to the time complexity of Affine-DO. In our imple-
mentation, we have fixed the size of the vertex sets to 12
vertices on all data sets experimentally.

Using unions during a local search. Let T be the cur-
rent candidate solution during a local search, and U the
set of unions of T by applying Algorithm 3 while travers-
ing the tree in Affine-DO. If a new candidate tree S is
accepted during the local search, then update U using the
direction for the best subdivision vertex computed for S
(i.e. the one that bounds S with the lowest length). By
maintaining this set of unions, we can modify the TBR
local search as in Algorithm 4, to join only edges that are
incident in unions at short distance. We call this method
Union–pruning.

Varón and Wheeler BMC Bioinformatics 2013, 14:66 Page 6 of 12
http://www.biomedcentral.com/1471-2105/14/66

Algorithm 4: Heuristic Union-pruning TBR. The threshold
1.17 parameter was experimentally tuned

Data: A pair of trees S and R produced by breaking a
tree T
Data: A set of unions U containing the assignment
of the vertices of T
Result: A tree which is a heuristic TBR local
optimum
foreach: Y ∈ U do

foreach: Z ∈ U do
if There exists vertices y and z such that
y ∈ Y , y ∈ V (S), z ∈ Z, z ∈ V (R) then

if The distance between Y and Z is less than
1.17 × (length(T) − length(S) − length(R))

then
Attempt all the TBR joins on edges

incident in vertices of Y and Z;
if A better tree T ′ is found then

T ← T ′;
Update U with the assignment of T ′;
Goto line 1;

end
end
return T

Building the initial trees
The Wagner algorithm is a basic procedure to compute
an initial tree (Algorithm 5). We modify this procedure in
two ways.

Algorithm 5: TheWagner algorithm for initial tree building
Data: A sequence L = 〈l1, . . . , ln〉 of trivial trees
corresponding to the

leaves.
Data: A tree T, initially empty
Result: A tree such that every element in L is a leaf.
for i = 1 to n do

c ← ∞;
foreach T ′ produced by joining li and T do

if c > length of T ′ then
T ← T ′;
c ← length of T ′;

end
end

Union–pruning. Unions can be used to efficiently prune
candidate trees during theWagner algorithm bymaintain-
ing the union set of the tree T in Algorithm 5, and treat
each leaf to be added as a union of its own. Then use
Algorithm 4 to guide the join step in Algorithm 5.

Addition sequence. The initial sequence L in Algo-
rithm 5 is typically randomized, assigning equal proba-
bility to each permutation. This algorithm is known as

Random Addition Sequence (RAS). The randomization
of L is used to obtain multiple starting points for local
searches. We have explored the following variation suc-
cessfully:

1. Compute a Minimum Spanning Tree (MST) of L (i.e.
the set of leaves).

2. Traverse L using a BFS. The order in which we visit
the elements of L is our initial addition sequence
Q(0).

3. To produce the n’th tree, produce the sequence Q(n)

by flipping consecutive elements in Q(n − 1) with
probability 0.5.

We call this procedure MST-Wagner.

Methods
We evaluated experimentally a number of algorithms for
local searches under the GTAP. An experimental evalu-
ation of this kind has three fundamental components: a
selection of heuristics, implementation, and selection of
data sets. The overall performance is compared with the
length of the trees found by each method.

Algorithms compared
We compared the following heuristic local searches, in
all meaningful combinations. TAP Computation: Using
Affine-DO in two variations, Exhaustive, and Non-
exhaustive. Building: Wagner algorithm using RAS and
MST addition sequences, and the Neighbor Joining (NJ)
algorithm. The Wagner algorithm was executed with
lookahead parameters of 1, 2, 4, and 10. Neighborhood:
TBR and SPR (a subset of TBR). Edge breaking order:
randomized, or in length decreasing order. Join order: ran-
domized, or in ascending order based on the distance
of the union that each edge belongs to. In the second
case, the Union-pruning strategy was used to filter candi-
dates. Sector and reroot diameters: 2, 3, 5, and infinity (i.e.
no sector). The rerooting order followed a breadth first
search (BFS) order, around the broken edge. The sector
and reroot diameters were selected to match the simu-
lation size (50 leaves). Simulated annealing: using initial
temperatures of 2, 5, and 10, and coefficients of 12, 50,
250, and 500. The values were selected experimentally as
a good sample of the performance variation observed by
the authors in real GTAP problems.
For the edit distance parameters we tested the follow-

ing combinations of substitution, indel, and gap opening
parameters [total gap cost = gap opening + (length ×
indel)]: (1, 1, 0), (1, 2, 0), (2, 1, 1), (3, 1, 2). In our expe-
rience, these parameters encompass enough variation in
the GTAP, while maintaining a limited number of com-
binations with the algorithms. In total, 34 combinations
of build algorithms and distance functions were tested.

Varón and Wheeler BMC Bioinformatics 2013, 14:66 Page 7 of 12
http://www.biomedcentral.com/1471-2105/14/66

For the refinement step, a total of 208 combinations of
algorithms and edit distance functions were tested.

Implementation
We implemented the algorithms under comparison in the
Objective CAML and C programming languages. All the
algorithms are available in the author’s computer program
POY version 4 [9]. The functions are highly optimized for
performance.

Data sets
To generate the instance problems, we simulated
sequences using DAWG 1.1.1 [36] with insertions and
deletions following a power law distribution. The sim-
ulations followed random binary trees of 50 leaves
comprising all the combinations of the parameters listed
in Table 1. This tree size was chosen to be both tractable
and realistic in size without biasing trees to any particular
shape. The indel and branch parameters also were chosen
to be similar to what is seen in empirical data sets. These
produced a total of 30 independent simulations. Each
simulation was analyzed independently with 100 repeti-
tions for each randomized algorithm. NJ was tested only
once, as our implementation is deterministic. An initial
exploration with 300 repetitions showed no significant
difference compared to 100 repetitions. In total, 102, 000
builds, and 624, 000 refinements were performed. Due to
the large number of simulations and local searches per-
formed, we will concentrate on a reduced set of cases that
represent the overall patterns observed.

Results and discussion
This section begins with the difference in performance
between the Exhaustive (E) and the Non-exhaustive (NE)
algorithms, which can be applied in conjunction with
any other search strategy. It continues with a compar-
ison of the build algorithms, and the refinement algo-
rithms. Finally, we compose the results in a simple local
search heuristic which we compared with the previous
best heuristic on a real dataset.

Exhaustive and non-exhaustive algorithms
In the build step (Figure 5), the difference between E
and NE is small for all equivalent algorithms with branch

Table 1 Simulation parameters

Parameter Values Evaluated

Substitution Rate 1.5

Average Branch Length 0.1, 0.2, 0.3,∞
Max. Gap 1, 2, 5, 10, 15

Root Sequence Length 500

All combinations of parameters were employed to generate the test data sets.
The branch length variation equals the average branch length.

lengths of 0.1 and 0.2 (Figure 5a, left and center). Themost
striking difference, however, occurs for branch length 0.3
(Figure 5a, right), where NE shows an expected tree length
50% higher than that of E. Such extreme variation shows
a strong dependence on the root location when branch
lengths make sequences close to random relative to each
other.
For the TBR step, E significantly outperforms NE, with

better minimum and expected scores (Figure 5b). This
pattern was observed for every combination of algorithm,
simulation, and edit distance parameters. In the following
two sections, we concentrate on the results obtained using
the E algorithm. The same general patterns were observed
with NE, but with less competitive tree scores.

Initial tree building
The initial tree building algorithms fall into two main
groups: algorithms with RAS, and algorithms using MST.
In all cases, MST produced significantly shorter trees
(Figure 6). The use of higher lookahead parameters did
not produce consistent improvements in the resulting
trees, while the use of the Union-pruning algorithm
did significantly improve the expectation, and the mini-
mum tree cost for branch lengths 0.1 and 0.2. For long
branch lengths, however, no significant improvement was
observed.
Neighbor joining produced trees of highest score among

all the algorithms for all parameters (i.e. the worst,
between 10% and 20% higher). We do not present it in
the graphs as it would make the more subtle differences
between other algorithms difficult to observe. Overall, the
most important improvement occurs with the MST addi-
tion sequence in first place, followed by the use of the
Union-pruning strategy in second. Nevertheless, we will
see in the next section that the use of the MST algorithm
remains limited.

Refinement
To evaluate the TBR refinement experimentally, we must
produce an initial tree. Although MST showed better
results than RAS, we found that in almost every instance
TBR failed to improve the MST trees. At the end, RAS +
TBR would always find better trees than MST + TBR. For
this reason, we used the second best method to construct
the initial trees: RAS using Union-pruning.
The refinement comparison can be divided in two

groups: 1.) a comparison between basic TBR using Union-
pruning, and branch length sorting, and 2.) the compar-
ison of different algorithms using the best combination
among those in 1.

Union-pruning and branch length sorting. The behav-
ior of TBR with Union-pruning and branch length
sorting is presented in Figure 7, the Union-pruning

Varón and Wheeler BMC Bioinformatics 2013, 14:66 Page 8 of 12
http://www.biomedcentral.com/1471-2105/14/66

1.0

1.05 1.05 1.50

1.0 1.0

0.1, 5 0.3, 40.2, 4
Avg. Branch Length, Maximum Gap Length

T
re

e
L

en
gt

h
/ B

es
t T

re
e

Non-Exhaustive, Exhaustive
(a)

1.0

1.05 1.05 1.05

1.0 1.0

0.1, 5 0.3, 40.2, 4
Avg. Branch Length, Maximum Gap Length

T
re

e
L

en
gt

h
/ B

es
t T

re
e

Non-Exhaustive, Exhaustive
(b)

Figure 5 Tree building algorithm comparison: NE vs E. Comparison of the Non-Exhaustive (NE), and Exhaustive (E) TAP approximation
algorithms in tree building (Figure a), and TBR (Figure b). The patterns showed were observed in most of the combinations of simulation, algorithm,
and edit distance parameters. a. Tree building using the Wagner algorithm. In every case, E outperformed NE, but the difference is not significant.
However, as the branch lengths increased, the performance of the NE algorithm showed high variability (right), making E highly competitive for all
distance functions with average branch length 0.3. b. Refinement using Union-pruning with NE and E. In this case, for almost every combination of
algorithm, simulation, and distance function, E produce significantly shorter trees.

algorithm produced significantly better trees, both in
the minimum and expected scores. This advantage
disappears as sequences diverge to close to random
(branch length of 0.3) (Figure 7 left to right). Branch
length sorting had a small positive impact, but not
significative.

The results match our expectation: the Union-pruning
algorithm can positively guide the search with better
taxon sampling. We have observed this behavior in real
data sets, where new terminals some times speedup the
local search. This somewhat counter-intuitive behavior is
likely due to the structured nature of phylogenetic data.

1.0

1.05 1.05 1.05

1.0 1.0

(3, 2, 1), 0.2, 15 (1, 2, 0), 0.2, 5 (1 ,1, 0), 0.1, 1

(Subs, Indel, Gap Opening), Avg. Branch Length, Max. Gap Length

T
re

e
Le

ng
th

 /
B

es
t T

re
e

Union, Union-Look. 4, Look. 10, MST, Union-MST-Look. 2

Figure 6 Tree building algorithm comparison. Comparison of initial tree build algorithms. Union is the Wagner algorithm + RAS +
Union-pruning. Union - Look. 4 is the Wagner algorithm + RAS + Union-pruning + Lookahead of at most 4 trees. Look. 10 is the Wagner algorithm +
RAS + Lookahead of at most 10 trees.MST is the Wagner algorithm + MST sequence, but no Union-pruning. Union-MST-Look. 2 is the Wagner
algorithm + MST sequence + Union-pruning + Lookahead of at most 2 trees.

Varón and Wheeler BMC Bioinformatics 2013, 14:66 Page 9 of 12
http://www.biomedcentral.com/1471-2105/14/66

1.0

1.007 1.01 1.03

1.0 1.0

0.1 0.2 0.3

Avg. Branch Length

T
re

e
Le

ng
th

 /
B

es
t T

re
e

Union-TBR, TBR, Rand-Union-TBR, Rand-TBR

Figure 7 Tree search algorithm comparison. Comparative performance of Union-pruning, and branch length sorting, with randomized
algorithms in TBR. Union-TBR is the length sorted edge break + Union-pruning. TBR is length sorted edge break + randomized edge break and edge
join ordering. Rand-Union-TBR is a randomized edge break + Union-pruning. Rand-TBR is randomized edge break and edge join.

Table 2 Minimum and average tree score comparison among algorithms using Union-pruning and Exhaustive TAP
estimation

Gap Len. Edition Distance TBR Sectorial BFS Annealing

Subst. Indel GO Min. Avg. Min. Avg. Min. Avg. Min. Avg.

1 1 1 0 7190 7222.75 7186 7221.188 7190 7220.969 7198 7230.802

1 2 0 8410 8437.76 8405 8429.812 8406 8436.865 8416 8457.24

2 1 1 14022 14111.76 14032 14107.58 14022 14096.88 14031 14144.56

3 1 2 20089 20236.07 20118 20303.64 20062 20221.83 20172 20373.85

2 1 1 0 6680 6702.115 6674 6697.76 6676 6699.719 6687 6713.854

1 2 0 7969 7992.562 7963 7989.333 7969 7990.583 7967 8005.479

2 1 1 12994 13040.67 12978 13034.80 12981 13030.21 13001 13074.80

3 1 2 18603 18690.26 18588 18716.78 18589 18678.82 18629 18785.17

4 1 1 0 7164 7190.719 7164 7186.323 7166 7188.062 7176 7208.594

1 2 0 8684 8719.552 8684 8714.406 8682 8716.677 8698 8751.26

2 1 1 13586 13652.25 13590 13658.08 13592 13646.89 13601 13694.72

3 1 2 19148 19291.41 19149 19344.61 19113 19283.66 19209 19448.12

5 1 1 0 7049 7077.542 7043 7074.229 7049 7073.729 7057 7092

1 2 0 8692 8716.01 8683 8715.5 8688 8711.104 8690 8730.646

2 1 1 13329 13389.48 13334 13394.16 13336 13387.41 13363 13429.17

3 1 2 18876 18983.53 18861 19027.35 18870 18974.93 18930 19091.70

10 1 1 0 7149 7181.74 7141 7174.938 7145 7176.719 7163 7200.5

1 2 0 8965 9002.677 8944 8993.438 8948 8992.656 8979 9020.635

2 1 1 13200 13271.72 13199 13277.82 13195 13266.54 13235 13320.24

3 1 2 18395 18557.96 18423 18630.5 18402 18549.86 18470 18648.79

15 1 1 0 7162 7194.01 7160 7194.531 7159 7190.542 7182 7216.719

1 2 0 9151 9196.552 9142 9192.125 9147 9191.344 9151 9228.146

2 1 1 13168 13230.11 13164 13231.83 13155 13217.84 13186 13271.46

3 1 2 18194 18350.44 18234 18415.64 18166 18335 18290 18484.11

The differences observed are not significant. All the simulations shown have branch length 0.3, but similar patterns were observed for branch lengths 0.1 and 0.2. The
minima across each row is in bold.

Varón and Wheeler BMC Bioinformatics 2013, 14:66 Page 10 of 12
http://www.biomedcentral.com/1471-2105/14/66

The addition of new terminals increases the data support
for subtrees, thereby increasing the cost penalty when
these groups are violated. Union-pruning takers advan-
tage of this in creating unions from larger sets of taxa,
hence containing more information. As the data become
less structured (approaching random asmentioned above)
the effect disappears.

Local search strategy. Beyond the use of Union-
pruning, and Exhaustive TAP estimation, the differences
among the algorithms compared are not significant
(Table 2). Although in general Sectorial finds the shortest
tree with highest frequency, the difference is typically less
than two length units, compared to the second best algo-
rithm. In general, the algorithmwith the best mean is BFS,
but again, not significative. However, due to the algorithm
design, BFS is the fastest of all.

Overall performance
Based on the previous experiments, we prefer a heuris-
tic local search strategy that consists of the following
steps: build initial trees using RAS guided by Union-
pruning, followed by a refinement step consisting of TBR
using the three directional heuristics, Exhaustive TAP,
Union-pruning, and cutting edges according to descend-
ing lengths. We compared this algorithm (implemented
in POY version 4), with that of POY version 3 which
uses a one directional algorithm, with randomized TBR
steps [19,37]. Due to limitations in POY version 3’s imple-
mentation, we only compare an edition distance with
substitution parameter 1, indel parameter 1, and gap
opening parameter 0. Due to the implementation limita-
tion, MSAM was not included in the comparison.
For this comparison, a random subset of 100 pub-

lished anurans [38] was analyzed. The data set includes
12S rRNA, tRNA valine, 16S rRNA, and fragments of
cytochrome b, rhodopsin, tyrosinase, 28S rRNA, and RAG
1, and a small set of 38 morphological, non-additive char-
acters (i.e. Hamming distance model).
To compare the performance of POY version 3 and

version 4, we executed 1000 independent repetitions
consisting of 1 build, followed by refinement, and
reported the resulting tree score. This procedure
can be executed in POY 3 with the command:
poy -replicates 1 -seed -1 -maxtrees 1
-nooneasis -minterminals 0 -terminals-
file ranNamesPH.txt *.fas *.ss. The score of
the trees found by each program were plotted in a density
histogram (Figure 8). The results show that one repeti-
tion of our new heuristic in POY version 4 outputs a tree
which is expected to belong to the top 15% of the best
trees found by this very simple search strategy. To expect
a tree within the same percentile using the old heuristic, it

Performance Comparison

Tree Cost

29700 29800 29900 30000

000.0
500.0

010.0
510.0

POY 4.0
POY 3.0

D
en

si
ty

Figure 8 Comparison of new algorithms vs old algorithms.
Density histogram of the frequency of occurrence of different tree
scores in POY version 3 and version 4 for the example data set.

would be necessary to run more than 2000 local searches.
It follows that through combination and speed and effi-
ciency, the new heuristic is more than 2000 times faster
than the previous heuristic of POY 3.

Discussion
We described and implemented new heuristics for the
GTAP. We have shown that they find better solutions
than previous approaches. We found that a number of
conditions affect the fit of the heuristic to the prob-
lem: long branch–length data sets can be better analyzed
with Sectorial Search instead of the Union-pruning, while
Union-pruning yields excellent results in medium, and
short branch lengths. Exhaustive-TBR yields the best
results overall and should always be preferred. Although
the MST algorithm yields better initial results than RAS,
it is not preferable in the long run, and a small number
of local searches should never be used to produce reli-
able results. It remains to be explored the quality of the
numerous meta–heuristics available in the literature. It is
now possible to explore them using a more efficient local
search strategy.

Conclusions
We described new strategies that can be composed to
produce a powerful local search strategy for the Tree
Alignment Problem. The results showed that our meth-
ods improve on the best existing local search heuristics by
more than three orders of magnitude.

Varón and Wheeler BMC Bioinformatics 2013, 14:66 Page 11 of 12
http://www.biomedcentral.com/1471-2105/14/66

In general, the Exhaustive–TBR refinement strategy
should always be used, while Union-pruning should only
be preferred if dense taxon sampling or short branch
lengths are expected. Moreover, although the MST build
strategy yields better results than the traditional Wagner
build, the former should not be preferred in real analyses
since it tends to produce less competitive trees after the
refinement step.
It is difficult to predict the performance of other high

level heuristics applied to the GTAP. Strategies such as
Sectorial Search, and Tree Fusing should be effective.
However, Divide and Conquer techniques such as DCM-
3 may have a more limited application, unless used in
the spirit of Sectorial Search. Given that phylogenetic
analysis under MP shows a simplified setting compared
to other optimality criteria, it is our opinion that meta-
heuristics such as Simulated Annealing have limited appli-
cability in the join estimation of tree and alignments for
all optimality criteria, and novel strategies are needed
to successfully scale to larger problem sizes. Neverthe-
less (unless P = NP), all these strategies will belong to
the heuristic realm, and further experimental efforts will
be required.
Affine-DO, Union–pruning, and Exhaustive–TBR are

some of the algorithms that we have implemented in the
computer program POY version 4 [9]. The algorithms and
their implementation have had a significant impact in the
biology community interested in different approaches to
joint tree and phylogeny reconstruction. By using bet-
ter algorithms, algorithm engineering, and better parallel
strategies, POY version 4 is three orders of magnitude
faster than its predecessor. The concepts, and desirable
properties of this implementation should be extended
to other phylogenetic inference criteria, to broaden its
usability, and better serve the research purposes set for the
software package.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors contributed equally to this work. Both authors read and approved
the final manuscript.

Acknowledgements
This material is based upon work supported by, or in part by, the U. S. Army
Research Laboratory and the U. S. Army Research Office under grant number
W911NF- 05-1-0271.

Received: 17 May 2012 Accepted: 31 January 2013
Published: 26 February 2013

References
1. Farris JS: The Logical Basis of Phylogenetic Analysis. New York, NY: Columbia

University Press; 1983. 7–36 .
2. Foulds LR, Graham RL: The Steiner problem in phylogeny is

NP-complete. Adv Appl Math 1982, 3:43–49.
3. Sankoff D:Minimal mutation trees of sequences. SIAM J Appl Math

1975, 28:35–42.

4. Ogden TH, Rosenberg MS: Alignment and topological accuracy of the
direct optimization approach via POY and Traditional Phylogenetics
via ClustalW + PAUP∗. Syst Biol 2007, 56(2):182–193.

5. Lehtonen S: Phylogeny Estimation and Alignment via POY versus
Clustal + PAUP∗: A response to Ogden and Rosenberg (2007). Syst
Biol 2008, 57(4):653–657.

6. Liu K, Nelesen S, Raghavan S, Linder CR, Warnow T: Barking up the
wrong treelength: the impact of gap penalty on alignment and tree
accuracy. IEEE Trans Comput Biol Bioinf 2008, 6:7–20.

7. Yue F, Shi J, Tang J: Simultaneous phylogeny reconstruction and
multiple sequence alignment. BMC Bioinf 2009, 10(Suppl 1):S11.

8. Wheeler WC, Aagesen L, Arango CP, Faivovich J, Grant T, D’Haese C, Janies
D, Smith WL, Varón A, Giribet G: Dynamic Homology and Phylogenetic
Systematics: A Unified Approach using POY. New York, NY: American
Museum of Natural History; 2006.

9. Varón A, Vinh LS, Wheeler WC: POY version 4: Phylogenetic analysis
using dynamic homologies. Cladistics 2010, 26:72–85.

10. Varón A, Wheeler WC: The tree-alignment problem. BMC Bioinf 2012,
13:293.

11. Semple C, Steel M: Phylogenetics. first edition. Great Britain: Oxford
University Press; 2003.

12. Farris JS:Methods for computing wagner trees. Syst Zool 1970,
19:86–92.

13. Swofford DL: PAUP: Phylogenetic Analysis using Parsimony, V3.1.1.
Washington: Smithsonian Institution; 1993.

14. Zachariasen M: Rectilinear full Steiner tree generation. Networks 1999,
33:125–143.

15. Winter P, Zachariasen M: Euclidean Steiner minimum trees: an
improved exact algorithm. Networks 1997, 30:149–166.

16. Goloboff PA: Tree searches under Sankoff parsimony. Cladistics 1998,
14:229–237.

17. Goloboff PA: Character optimization and calculation of tree lenghts.
Cladistics 1993, 9(4):433–436.

18. Goloboff PA: Analyzing large data sets in reasonable times: solutions
for comosite optima. Cladistics 1999, 15(4):415–428.

19. Wheeler WC: Optimization alignment: the end of multiple sequence
alignment in phylogenetics? Cladistics 1996, 12:1–9.

20. Wheeler WC: Search-based optimization. Cladistics 2003, 19(4):348–355.
21. Gladstein DS: Efficient incremental character optimization. Cladistics

1997, 13:21–26.
22. Hein J: A newmethod that simultaneously aligns and reconstructs

ancestral sequences for any number of homologous sequences,
when the phylogeny is given.Mol Biol Evol 1989, 6(6):649–668.

23. Sankoff D, Cedergren RJ: Simultaneous Comparison of Three or more
Sequences Related by a Tree. Reading MA: Addison-Wesley; 1983. 253–263.

24. Wheeler WC: Iterative pass optimization of sequence data. Cladistics
2003, 19:254–260.

25. Kirkpatrick S, Gelatt CD, Vecchi MP: Optimization by simulated
annealing. Science 1983, 220(4598):671–680.

26. Barker D: LVB: parsimony and simulated annealing in the search for
phylogenetic trees. Bioinformatics 2004, 20:274–275.

27. Zola J, Tryastram D, Tchernykh A, Brizuela C: Parallel multiple sequence
alignment with local phylogeny search by simulated annealing. In
IPDPS, 20th International Parallel and Distributed Processing Symposium:
IEEE; 2006.

28. Platnick N: An empirical comparison of parsimony programs.
Cladistics 1987, 3:121–144.

29. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM: Phylogeny reconstruction.
InMolecular Systematics. 2edition. Edited by Hillis DM, Moritz C, Mable BK.
Sunderland, Massachusetts: Sinauer Associates; 1996:407–514.

30. Sankoff D, Leduc G, Antoine N, Paquin B, Lang BF, Cedergren R: Gene
order comparisons for phylogenetic inference: evolution of the
mitochondrial genome. Proc Natl Acad Sci USA 1992,
89:6575–6579.

31. Kececioglu J, Sankoff D: Efficient bounds for oriented chromosome
inversion distance. In Proceedings of the 5th Annual Symposium on
Combinatorial Pattern Matching, Volume 807 of Lecture Notes in
Computer Science. New York, NY: Springer Verlag; 1994:307–325.

32. Yancopoulos S, Attie O, Friedberg R: Efficient sorting of genomic
permutations by translocation, inversion and block interchange.
Bioinformatics 2005, 21:3340–3346.

Varón and Wheeler BMC Bioinformatics 2013, 14:66 Page 12 of 12
http://www.biomedcentral.com/1471-2105/14/66

33. Okasaki C: Purely Functional Data Structures. Cambridge: Cambridge
University Press; 1999.

34. Schwikowski B, Vingron M:Weighted sequence graphs: boosting
iterated dynamic programming using locally suboptimal solutions.
Discrete Appl Math 2003, 127:95–117.

35. Needleman SB, Wunsch CD: A general method applicable to the
search for similarities in the amino acid sequence of two proteins.
J Mol Biol 1970, 48:443–453.

36. Cartwright RA: DNA Assembly with gaps (Dawg): simulating
sequence evolution. Bioinformatics 2005, 21(Suppl 3):iii31–iii38.

37. Wheeler WC, Gladstein D, De Laet J: POY, Phylogeny Reconstruction via
Optimization of DNA and other Data version 3.0.11 (May 6 of 2003). New
York, NY: American Museum of Natural History; 2003. [http://research.
amnh.org/scicomp/projects/poy.php].

38. Faivovich J, Haddad CFB, Garcia PCA, Frost DR, Campbell JA, Wheeler WC:
Systematic review of the frog family Hylidae, with special reference
to Hylinae: phylogenetic analysis and taxonomic revision. Bull Am
MuseumNat Hist 2005, 294:1–240.

doi:10.1186/1471-2105-14-66
Cite this article as: Varón andWheeler: Local search for the generalized tree
alignment problem. BMC Bioinformatics 2013 14:66.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://research.amnh.org/scicomp/projects/poy.php
http://research.amnh.org/scicomp/projects/poy.php

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	The algorithms
	Existing heuristics
	New heuristics for the GTAP
	Efficient tree updates
	Three directional assignment.

	Multiple heuristic TAP solutions

	Algorithm 1: Improving the bound of a tree on each edge break
	Algorithm 2: Improving the bound of a tree on each join
	Smarter local searches

	Algorithm 3: Algorithm to compute merge(i, j, k, result). The union of a single RAG A is "426830A Ai, true "526930B
	Using unions during a local search.

	Algorithm 4: Heuristic Union-pruning TBR. The threshold 1.17 parameter was experimentally tuned
	Building the initial trees

	Algorithm 5: The Wagner algorithm for initial tree building
	Union–pruning.
	Addition sequence.

	Methods
	Algorithms compared
	Implementation
	Data sets

	Results and discussion
	Exhaustive and non-exhaustive algorithms
	Initial tree building
	Refinement
	Union-pruning and branch length sorting.
	Local search strategy.

	Overall performance
	Discussion

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References

