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Abstract

Background: Protein function prediction is an important problem in the post-genomic era. Recent advances in
experimental biology have enabled the production of vast amounts of protein-protein interaction (PPIl) data. Thus,
using PPI data to functionally annotate proteins has been extensively studied. However, most existing network-
based approaches do not work well when annotation and interaction information is inadequate in the networks.

Results: In this paper, we proposed a new method that combines PPl information and protein sequence
information to boost the prediction performance based on collective classification. Our method divides function
prediction into two phases: First, the original PPI network is enriched by adding a number of edges that are
inferred from protein sequence information. We call the added edges implicit edges, and the existing ones explicit
edges correspondingly. Second, a collective classification algorithm is employed on the new network to predict
protein function.

Conclusions: We conducted extensive experiments on two real, publicly available PPl datasets. Compared to four
existing protein function prediction approaches, our method performs better in many situations, which shows that
adding implicit edges can indeed improve the prediction performance. Furthermore, the experimental results also
indicate that our method is significantly better than the compared approaches in sparsely-labeled networks, and it

is robust to the change of the proportion of annotated proteins.

Background

The past decade has witnessed a revolution in high-
throughput sequencing techniques, resulting in huge
amounts of sequenced proteins. However, experimental
determination of protein functions is not only expensive
but also time-consuming. As a consequence, there is an
increasing concern about using computational methods
to predict protein functions. Though many efforts have
been made in this regard, the functions of most proteins
in fully sequenced genomes still remain unknown.
This is true even for the six well-studied model species.
Taking yeast as an example, approximately one-fourth
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of the proteins have no annotated functions [1]. There-
fore, functional annotation of proteins is one of the
fundamental issues in the post-genomic era.

The most common approach to computational predic-
tion of protein functions is to use sequence or structure
similarity to transfer functional information among pro-
teins. According to a recent survey [2], homology-based
transfer approaches can be further divided into two
classes: sequence-based approaches and structure-based
approaches. BLAST [3] is one of the most widely used
sequence-based approaches, which assigns un-annotated
proteins with the functions of their homologous pro-
teins. Although sequence similarity is undoubtedly cor-
related to functional similarity, in many cases there is
no need to treat a protein as a whole, This is because
typically only the 100-300 amino acids in a functional
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protein domain perform their functions [4]. Therefore, a
protein can be represented as several sequence (or
structure) based signatures (motifs) that are associated
with some particular functions. PROSITE [5] for exam-
ple is a database of sequence motifs that is composed of
manually selected sequence motifs. Structure-based
approaches are based on the observation that protein
structure is far more conserved than sequence [6], and
thus structure is a useful indicator of function. FATCAT
[7] and PAST [8] are the most popular databases com-
posed of 3D protein structures. The reason for using
structure motifs is analogous to that of sequence motifs,
One example is PROCAT [9], a library of 3D enzyme
structure motifs. However, sequence similarity does not
necessary imply functional equivalence and thus homol-
ogy-based transfer approaches can result in erroneous
predictions, and the original erroneous annotations may
be propagated and amplified in databases [10]. Further-
more, as the databases expand, the utility of the homol-
ogy-based transfer approaches begins to break down.
For example, it has been estimated that < 35% of all
proteins could be annotated automatically when accept-
ing error rates of < 5%, while even allowing for error
rates of > 40%, there is no annotation for > 30% of all
proteins [11].

Recent advances in experimental biology have enabled
the production of vast amounts of protein-protein inter-
action (PPI) data across human and most model species.
These data are commonly represented as networks,
where a node corresponds to a protein and an edge cor-
responds to an interaction between a pair of proteins.
Thus, using PPI data to assign protein function has
been extensively studied. Approaches based on PPI data
assume that proteins with similar functions are topologi-
cally close in the network. In a review of the existing
computational approaches based on PPI data for protein
function prediction, Sharan et al. [1] distinguished two
types of approaches: direct annotation schemes and
module-assisted schemes.

Direct annotation schemes predict the functions of a
protein from the known functions of its neighbors,
representatives are neighborhood counting approaches
[12-15], graph theoretic approaches [16-18] and Markov
random field (MRF) approaches [19-21]. Majority and
Indirect neighbors are two neighborhood counting
approaches. Majority [12] is the simplest direct
approach, it utilizes the biological hypothesis that inter-
acting proteins probably have similar functions, it ranks
each candidate function based on its occurrences in the
immediate neighbors. Indirect neighbors [13] assumes
that proteins interact with the same proteins may also
have some similar functions. It exploits both indirect
and immediate neighbors to rank each candidate func-
tion. Functional flow [18] is a graph theoretic approach,
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it simulates a discrete-time flow of functions from all
proteins. At every time step, the function weight trans-
ferred along an edge is proportional to the edge’s weight
and the direction of transfer is determined by the func-
tional gradient. Deng et al. [19] devised an MRF model
in which the function of a protein is independent of all
other proteins given the functions of its immediate
neighbors. The parameters of the model are first esti-
mated using quasi-likelihood method, and then Gibbs
sampling is used for inferring the functions of unanno-
tated proteins.

Instead of predicting functions for individual proteins,
module-assisted schemes first identify modules of
related proteins and then annotate each module based
on the known functions of its members, examples
include hierarchical clustering-based approaches [22,23]
and graph clustering approaches [24-27]. A key problem
of this kind of approaches is how to define the similarity
between two proteins. Arnau et al. [23] used the short-
est path between proteins as a distance measure and
applied hierarchical clustering to detecting functional
modules. Up to now, numerous graph-clustering algo-
rithms have been applied to detecting functional mod-
ules, such as spectral clustering [24], edge-betweenness
clustering [25], clique percolation [26] and overlapping
clustering [27].

Additionally, Chua et al. [28] presented a simple fra-
mework for integrating a large amount of diverse infor-
mation for protein function prediction. This framework
integrated diverse information using simple weighting
strategies and a local prediction method. Hu et al. [29]
hybridized the PPI information and the biochemical/
physicochemical features of protein sequences to predict
protein function. The prediction is carried out as fol-
lows: if the query protein has PPI information, the net-
work-based method is applied; otherwise, the hybrid-
property based method is employed.

However, most existing network-based approaches do
not work well if there is not enough PPI information. In
view of this, we proposed a new method that combines
PPI information and protein sequence information to
improve the prediction performance based on collective
classification. Our method divided function prediction
into two phases: First, the original PPI network is
enriched by adding a number of edges that are com-
puted based on protein sequence similarity. Second,
based on the new network, a collective classification
algorithm is employed to predict protein function. The
main idea behind this method stems from the observa-
tion that existing network-based approaches ignore pro-
tein sequence information. Therefore, we increase the
amount of useful information in the networks by adding
a number of computed (or implicit) edges, which conse-
quently improves the prediction performance.
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We conducted experiments on S.cerevisiae and
M. musculus functional annotation datasets. Compared
to four existing protein function prediction methods,
our method performs better in many situations, which
shows that adding implicit edges can indeed improve
the prediction performance. Furthermore, the experi-
mental results also indicate that our method is signifi-
cantly better than the compared methods in sparsely-
labeled networks, and it is robust to the change of the
proportion of annotated proteins.

Methods

Notation and problem definition

Protein function prediction is a multi-label classification
problem where we have a set of functions
F =(Fy, ..., Fy). Given a protein set, P = (Py, ..., Py)
where the first [ proteins are labeled as y, ..., ¥, each y;
is a vector with y;; = 1 in case that the protein P; is
associated with the j-th function Fj, otherwise y; = 0.
Our goal is to predict the labels y;,1, ..., ¥, for the
remaining unlabeled proteins Py, ..., P,. In this study,
we denote the PPI network as a finite undirected graph
G=(V, £ W), with a vertex set V = LUl where [
corresponds to the set of annotated proteins and 4/ cor-
responds to the set of un-annotated proteins. Each edge
E, € ¢ denotes an observed interaction between protein
V;and V; and a weight w;; € W indicates the interaction
confidence between V; and V;. Here, we employ collec-
tive classification to tackle this problem. In addition, we
use both explicit edges that are extracted from PPI data-
sets and implicit edges that are computed from protein
sequence information. In what follows, we present the
method in detail.

Generating BLAST-inferred edges
As we pointed out above, most existing network-based
approaches do not work well when there is not enough
interaction information in the PPI networks. Consider-
ing this, here we propose a novel method that combines
PPI information and protein sequence information to
improve the prediction performance based on collective
classification. The first step of our method is to enrich
the original PPI network by adding a number of com-
puted edges based on protein sequence similarity. Note
that the similarity between two proteins is not a reliable
proof that the two proteins interact, nevertheless,
enriching PPI networks by adding a number of com-
puted edges can increase the amount of useful informa-
tion to the original PPI network and hence improve the
prediction performance. In this paper, the basic local
alignment search tool (BLAST) is employed to compute
the similarity score between each pair of proteins.

For the protein V,, we define its sequence similarity
scores with other proteins like this:
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S(Vx) = [Sx,lf Sx,21 + e Sx,n] (1)

where s,,; denotes the similarity score between protein
V. and protein V;. We set s,; = 0 if x = i, which means
that we do not consider self-similarity. For each protein
V, in the original network, we create k edges to the k
vertices that have the highest similarity scores with V,,
and use the similarity scores as the weights of these cre-
ated edges in the enriched network. Thus, we have

S(Vx)topk = [Sx,lr Sx,21 v 5x,k]~ (2)

It is worth noting that there are two types of edges in
the new network: BLAST-inferred edges (implicit edges)
and explicit edges that are already there. Here, two ques-
tions need to be answered. One is how many edges be
added for each protein, that is, how to set the value of
parameter k, and another is how to combine the weights
of these two types of edges with different semantics. We
will answer the first question in the experimental eva-
luation section and the second question in the next
subsection.

Gibbs sampling

The second step of our method is to employ the Gibbs
sampling (GS) [30] based collective classification method
o predict protein function based on the new network.
GS is the most commonly used collective classification
algorithm that aims at finding the best label estimate for
each un-annotated vertex V, € i by sampling each ver-
tex label iteratively. GS based collective classification is
divided into two phases: boot-strapping and iterative
classification, its high-level pseudo-code is given in
Algorithm 1. Detailed description on the algorithm is
presented in the following subsections.

Algorithm 1 Gibbs sampling based collective classifi-
cation for protein function prediction with implicit and
explicit edges in PPI networks.

1:  // bootstrapping

2: for each query protein V, do

3: compute the initial a;” using £NN} and
LNANY
4: end for

5. // burn-in period

6: for i=1 to B do

7: for each query protein V, do

8: update a; using current assignments to
N N

9: end for

10: end for

11: // sampling period

12: for i=1 to S do

13: for each query protein V, do

14: update 4, using current assignments to

N N
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15: create b to record the m-rank result
16: end for
17: end for

18: for each query protein V, do

19:  calculate the final result ¢;” based on matrix M,

20: end for
Bootstrapping
According to the observation that proteins with shorter
distance to each other in the network are more likely to
have similar functions, weighted voting is employed to
predict an initial functional probability distribution for
the query protein. Note that there are two types of
annotated neighbors to vote: implicit neighbors
(BLAST-inferred neighbors) and explicit neighbors.
Thus, we introduce a combination parameter A € (0, 1)
to control the tradeoff between these two types of
neighbors.

Formally, for a query protein V, that has k implicit
neighbors and N, explicit neighbors, we define the cor-
responding edge weights like this:

./\[;: = [lel, Sx, 2/ - ./\[;U = [wxl, Wyx2, ..

.y waX]. (3)

.y Sx,k],

Above, N} and NY¥ are the vectors of implicit edges
and explicit edges, respectively. Then, the probability of
V, associated with the j-th function F; is computed like
this:

k N

. 1 1 X
Pho=h D fijwi+ (1=2) ,, D fijis, 4)

Z i=1 Z i=1

where Z; and ZY are the normalizers:

k. m Ny m
Z, = Z Zfiljsx,i z; = Z Zfi/ij/i- (5)
j=1 i=1

j=1 i=1

The larger the value of p/, the more likely protein V,
is associated with the j-th function F;. Given a query
protein V,, its initial functional probability distribution
is denoted as an m-dimensional vector:

a; =[P}, P, ..., P"]. (6)

Note that when predicting the functions of the query
protein V,, we consider only its labeled neighbor pro-
teins (either implicitly connected or explicitly con-
nected). That is the reason why we use LNN; and
LNN in Algorithm 1 (Line 3), because unlabeled
neighbor proteins can not be exploited in the bootstrap-
ping phase. Codes corresponding to the Bootstrapping
phase in Algorithm 1 are from Line 2 to Line 4.

Iterative classification
The iterative classification process is divided to the fol-
lowing two periods: the burn-in period and the sampling
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period. The burn-in period consists of a fixed number B
of iterations where we update a4, using weighted vot-
ing. This period is implemented in Algorithm 1 from
Line 6 to Line 10. The sampling period consists of S
iterations. In each iteration, we not only update 4~ but
also maintain the count statistics as to how many times
we have sampled the j-th function F; for protein V,.
This period is implemented in Algorithm 1 from Line
12 to Line 20.

It is worth noting that most proteins in vivo often per-
form more than one function, thus, protein function
prediction is a multi-label classification problem. For the
query protein V,, its most likely function can be com-
puted as follows:

b} = argmax;ciy m P (7)

where b represents the argument j that maximizes
the value of p/, which is regarded as the 1st-rank result.
Accordingly, the second most likely function b? is
regarded as the 2nd-rank result, and the third most
likely function b? is regarded as the 3rd-rank result, and
so forth. In rare case when more than one element p/
in Eq. (7) has the same score, their ranks will be
assigned randomly. So we can create an m-dimensional
vector b;; for the query protein V, to record its ranking
result in the i-th iteration as follows:
by = by, by

xi’

.., b, 8)

When the threshold number S of iterations is reached,
we can get a matrix M, with S rows and m columns for
the query protein V:

My = [b, by bg]" ©)

In the first column of the matrix M,, the most fre-
quently sampled function is denoted by ¢!, called the first
rank predicted function. Accordingly, in the second col-
umn of the matrix M,, the most frequently sampled func-
tion (excluding c!) is denoted by ¢2, called the second
rank predicted function. In the third column of the matrix
M,, the most frequently sampled function (excluding both
c! and ¢2) is denoted by ¢, called the third rank predicted
function, and so forth. Finally, we get an m-dimensional
vector ¢, for the query protein V:

(10)

— 1 2
¢ =[ce s ..

o &

Results and discussion

Interaction and annotation data

We evaluated the performance of our approach with
two PPI datasets. The firs dataset (denoted as Dataset
A) used in this study is based on Gene Ontology (GO)
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annotation scheme [31]. GO annotations are arranged in
a hierarchical order, and consist of three basic GO
namespaces: molecular function, biological process and
cellular component. There are 19655 GO terms that
constitute 15 levels of annotations, and the higher level
terms are more generic while the lower level terms are
more specific. In this setting, some vague terms such as
“G0:0005554 molecular function unknown” and annota-
tions with evidence code “IEA” (Inferred from Electronic
Annotation) were excluded. Furthermore, to avoid the
bias problem in the annotations, we applied the concept
of informative Functional Class [13] to selectively iden-
tify GO terms for validation. An informative GO is
referred as the one that 1) is annotated by at least 30
proteins; and 2) has no child terms annotated by at least
30 proteins. This ensures that terms used for validation
have a reasonable number of annotations and do not
have overlapping description. Predictions were per-
formed separately for each namespace. As a result, in
the S.cerevisiae annotation dataset, there are 39, 95 and
66 informative GO terms and in the M.musculus anno-
tation dataset, there are 103, 334 and 130 informative
GO terms for the molecular function, biological process
and cellular component namespaces, respectively.

Protein interactions of Dataset A were downloaded
from the Biological General Repository for Interaction
Datasets (BioGRID) [32]. BioGRID is a public database
that archives and disseminates genetic and protein inter-
action data from model organisms and humans, it cur-
rently holds 347966 interactions (170162 genetic,
177804 physical) obtained from both high-throughput
data sets and individual focused studies, which were
derived from over 23000 publications in the literature.

In this study, we constructed one protein interaction
network for each GO namespace using only physical
interactions. Therefore, there are totally six PPI net-
works (three for S.cerevisiae and the other three for
M. musculus) in Dataset A. In these networks, a node
corresponds to a protein and a un-weighted edge corre-
sponds to an interaction between two proteins. Each
node was assigned with at least one Go term, and pro-
teins without interaction data or sequence information
were deleted. The details for these networks are shown
in Table 1.

The second dataset (denoted as Dataset B) used in this
study is based on Functional Catalogue (Fun-Cat) annota-
tion scheme [33] taken from Munich Information Center

Table 1 Statistics for Dataset A.
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for Protein Sequences (MIPS) (http://www.helmholtz-
muenchen.de/en/ibis). Fun-Cat is organized as a hierarchi-
cally structured annotation system and consists of 28 main
functional categories. FunCat annotations for S.cerevisiae
were downloaded from Comprehensive Yeast Genome
Database (CYGD) [34]. CYGD is a frequently used public
resource for yeast related information. There are totally
6168 proteins in the dataset, of which 4774 were anno-
tated. These proteins belong to 17 functional categories.
The number of proteins for each functional category is
listed in Table 2. FunCat annotations for M.musculus were
downloaded from Mouse functional Genome Database
(MfunGD) [35]. MfunGD provides a resource for anno-
tated mouse proteins and comprises 17643 annotated pro-
teins. These annotated proteins belong to 24 functional
categories, which are also shown in Table 2.

Protein interactions of Dataset B were downloaded from
STRING database [36], which is an integrated protein
interaction database containing known and predicted pro-
tein interactions. These interactions were mainly derived
from four data sources: genomic context, high-throughput
experiments, conserved co-expression and previous
knowledge. The most recent version of STRING covers
about 5.2 million proteins from 1133 organisms. For Data-
set B, we constructed two PPI networks (one for S.cerevi-
siae and another for M.musculus), proteins without
interaction data or sequence information were deleted. As
a result, in the S.cerevisiae interaction network, there are
totally 388846 distinct interactions among 4687 proteins,
and in the M.musculus interaction network there are
14269 proteins and 832124 interactions. Additionally, pro-
tein sequence information for Dataset A and Dataset B
were also downloaded from the STRING database.

Competing approaches

We compared our method with a sequence similarity
based approach (termed BLAST-mined) that does not
take the PPI network into account. The BLAST-mined
approach was performed in two steps. First, BLAST was
adopted to compute similarity score between each pair
of proteins. Second, we employed the KNN classifier to
predict the functions of un-annotated proteins. We also
conducted comparison with a graph based method:
Functional flow, as well as two neighbor counting meth-
ods: Majority and Indirect neighbors. Functional flow
[18] treats each annotated protein as the source of a
functional flow. After simulating the spread over time of

S.cerevisiae interactions

M.musculus proteins M.musculus interactions

Namespaces S.cerevisiae proteins

molecular function 1147 20013
biological process 3277 54983
cellular component 4497 74422

715 1855
1046 2729
1406 3614



http://www.helmholtz-muenchen.de/en/ibis
http://www.helmholtz-muenchen.de/en/ibis

Xiong et al. BMC Bioinformatics 2013, 14(Suppl 12):54 Page 6 of 13
http://www.biomedcentral.com/1471-2105/14/512/54

Table 2 Statistics for Dataset B

MIPS Functional Category cYGD MfunGD
01 METABOLISM 942 2662
02 ENERGY 151 603
04 STORAGE PROTEIN 0 0
10 CELL CYCLE AND DNA PROCESSING 1010 1113
11 TRANSCRIPTION 1078 2119
12 PROTEIN SYNTHESIS 480 490
14 PROTEIN FATE (folding, modification, destination) 1155 2484
16 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (structural or catalytic) 1049 8369
18 REGULATION OF METABOLISM AND PROTEIN FUNCTION 249 112
20 CELLULAR TRANSPORT, TRANSPORT FACILITIES AND TRANSPORT ROUTES 1042 2407
30 CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM 234 4061
32 CELL RESCUE, DEFENSE AND VIRULENCE 554 769
34 INTERACTION WITH THE ENVIRONMENT 463 1486
36 SYSTEMIC INTERACTION WITH THE ENVIRONMENT 0 2073
38 TRANSPOSABLE ELEMENTS, VIRAL AND PLASMID PROTEINS 120 1
40 CELL FATE 273 1312
41 DEVELOPMENT (Systemic) 69 1042
42 BIOGENESIS OF CELLULAR COMPONENTS 863 979
43 CELL TYPE DIFFERENTIATION 452 370
45 TISSUE DIFFERENTIATION 0 426
47 ORGAN DIFFERENTIATION 0 559
70 SUBCELLULAR LOCALIZATION 0 9739
73 CELL TYPE LOCALIZATION 0 273
75 TISSUE LOCALIZATION 0 366
77 ORGAN LOCALIZATION 0 619

this functional flow through the network, each un-anno-
tated protein is assigned a score for having the function
based on the amount of flow it received during the
simulation. Majority [12] makes use of the observation
that interacting proteins are more likely to have similar
functions, it determines the functions of a protein based
on the known functions of proteins lying in its immedi-
ate neighborhood. The principal advantages of the
Majority are its simplicity and effectiveness. Indirect
neighbors [13] exploits both direct and indirect function
associations. It computes scores based on level 1 and
level 2 interaction partners of a protein.

Experimental setup

For traditional classification problems, the standard eva-
luation criterion is accuracy. However, in this paper we
can not simply determine whether a prediction is correct
or wrong because of the partially correct phenomenon in
multi-label classification problems [37]. Therefore, as in
[38] we adopted the widely-used performance measure,
the ratio of TP/FP, which depicts the relative magnitude
between the number of true positives and the number of
false positives. In this setup, we define the i-th rank over-
all true positive (TP) as the number of proteins whose
i-th rank predicted function c. is one of the true

functions of the protein V, and the i-th rank overall false
positive (FP) as the number of proteins whose i-th rank
predicted function ¢, is not one of the true functions of
the protein V,. To evaluate the prediction performance
of our method, leave-one-out cross validation was used
to compare the performance of our method with that of
the competing approaches. The idea behind leave-one-
out cross validation is simply to treat each annotated pro-
tein as un-annotated in turn, then run the algorithm and
compare the predicted functions to the known functions
of the protein. It is worth noting that the iterative classifi-
cation step is omitted in leave-one-out validation, this is
because the label vector of the query protein is never
updated after bootstrapping. However, in real PPI net-
works, there are a significant number of un-annotated
proteins, thus leave-one-out cross validation seems
impracticable in reality. Therefore, we also compared the
performance of our method with that of the competing
approaches in sparsely-labeled networks. In our imple-
mentation, the proportion of annotated proteins was var-
ied from 10% to 90%, we ran 10 experiments for each
given proportion of annotated proteins and reported the
average performance. Moreover, the burn-in period and
the sampling period were set to contain 20 and 100 itera-
tions respectively.
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Effect of parameters A and k

We studied the effect of two parameters used in our
study. The first one is the combination parameter A that
controls the tradeoff between implicit (BLAST-inferred)
edges and explicit edges. We varied A from 0.1 to 0.9
and compared the prediction performance. Table 3 and
Table 4 lists the performance of different A in dataset A,
and Table 5 details the performance of different A in
dataset B. The experimental results show that the pre-
diction performance is not definitely sensitive to the
value of A, as long as it is not chosen extremely small or
extremely large. Thus, in our following experiments, the
value of A was set to 0.3 for both datasets. Next, we
examined the effect of the number of BLAST-inferred
edges k. We varied k from 1 to 15 for BLAST and com-
pared the prediction performance. Table 6 and Table 7
gives the performance of different k in dataset A, and
Table 8 shows the performance of different k in dataset
B. We can see that when using k=5 for both dataset A
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and dataset B the proposed method performs best. This
is because adding BLAST-inferred edges with low
sequence similarity (when k is large) may produce false
predictions. Hence, in our rest experiments, the value of
k was set to 5.

Leave-one-out cross validation experiments

To evaluate the prediction performance of our method,
leave-one-out cross validation was used to compare the
performance of our method with that of the competing
approaches. For S.cerevisiae in Dataset A, there are
three PPI networks (corresponding to the three GO
namespaces). The average number of functions that
each protein has in these networks is 1.24, 1.33 and
1.64, respectively. So we considered only the top 2
(11.24) + 1, [1.33) + 1 and [ 1.64 ) + 1 are all 2) predic-
tions. Figure 1 shows the performance comparison of
our approach to the competing methods for the top-2
predictions. For M. musculus in Dataset A, as the average

Table 3 The effect of the combination parameter A (Dataset A: S.cerevisiae)

parameter A molecular function

biological process cellular component

1st 2nd 1st 2nd 1st 2nd
Origin 1.083 0.136 0.587 0.190 0.923 0.408
A=0.1 1.381 0.197 0.648 0.201 0.983 0429
A=03 1.703 0.250 0.818 0.239 1.174 0.493
A=0.5 1.630 0.267 0.781 0.223 1.133 0407
A=0.7 1513 0.226 0.692 0210 1.053 0.445
A=09 1273 0.178 0617 0.195 0.873 0.378

Table 4 The effect of the combination parameter 1 (Dataset A: M.musculus)

parameter A

molecular function

biological process

cellular component

1st 2nd 3rd 1st 2nd 3rd 4th 1st 2nd 3rd

Origin 0.282 0.124 0.099 0.389 0.233 0.127 0.087 1.632 0.449 0.237
A=0.1 0327 0.160 0.149 0416 0.229 0.131 0.104 1.762 0.549 0.267
A=03 0.470 0.285 0.230 0.563 0.317 0.157 0.135 2.020 0.670 0.319
A=0.5 0442 0.296 0.161 0537 0.267 0.147 0.146 1.850 0.618 0279
A=0.7 0.404 0.253 0.183 0493 0.285 0.168 0.109 1.654 0.540 0.245
A=09 0376 0.206 0.110 0429 0.243 0.115 0.131 1522 0414 0.197
Table 5 The effect of the combination parameter A (Dataset B).
parameter A S.cerevisiae M.musculus

1st 2nd 3rd st 2nd 3rd
Origin 2.226 0.754 0.493 1.941 1.488 0.818
A=0.1 2.355 0.788 0.557 2115 1512 0.851
A=03 2.833 0.815 0.639 2.446 1.632 0.873
A=0.5 2.560 0.752 0.663 2343 1.369 0.820
A=0.7 1.893 0.695 0.580 2011 1.440 0.775
=09 1.564 0.629 0413 1.761 1276 0.724
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parameter k

molecular function

biological process

cellular component

1st 2nd 1st 2nd 1st 2nd
Origin 1.083 0.136 0.587 0.190 0.923 0.408
k=1 1439 0219 0.689 0.190 1.010 0429
k=5 1.703 0.250 0.818 0.239 1.174 0.493
k=10 1.630 0.265 0.786 0.206 1.225 0467
k =15 1615 0239 0.754 0224 1.130 0449

Table 7 The effect of the number of BLAST-inferred edges k (Dataset A: M.musculus)

parameter k

molecular function

biological process

cellular component

1st 2nd 3rd st 2nd 3rd 4th 1st 2nd 3rd
Origin 0.282 0.124 0.099 0.389 0.233 0.127 0.087 1.632 0.449 0.237
k=1 0.391 0.237 0.150 0470 0.255 0.147 0.115 1.708 0497 0.270
k=5 0470 0.285 0.230 0.563 0.297 0.177 0.135 2.020 0.670 0319
k=10 0.491 0.242 0212 0.538 0316 0.142 0.109 1.943 0579 0.293
k=15 0456 0.266 0.203 0493 0.339 0.151 0.123 1.857 0.620 0.331
Table 8 The effect of the number of BLAST-inferred edges k (Dataset B).
parameter k S.cerevisiae M.musculus
1st 2nd 3rd st 2nd 3rd
Origin 2.226 0.754 0.493 1.941 1.488 0.818
k=1 2112 0.636 0446 2.153 1.510 0.823
k=5 2.833 0.815 0.639 2.446 1.632 0.873
k=10 2.572 0.754 0.651 2.330 1.565 0.845
k=15 2.395 0.692 0616 2.275 1493 0.757
P
25 - 1.2 : r
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(a) molecular function (b) biological process (c) cellular component
Figure 1 Performance comparison by leave-one-out validation (Dataset A: S.cerevisiae).

number of functions that a protein possesses in the three
original networks is 2.16, 3.96 and 2.79, we considered
only the first 3, 4, and 3 predictions, respectively. The
results are shown in Figure 2. In Dataset B, there are two
PPI networks (corresponding to S.cerevisiae and M.mus-
culus). The average number of functions that each pro-
tein has in these networks is 2.13 and 2.58, so we
considered only the top 3 ranks. The results are shown in
Figure 3. It can be seen from Figure 1, 2, 3 that our

method can obtain more accurate predictions than the
four competing approaches, due to the combination of
implicit (BLAST-inferred) and explicit edges. These
results indicate that enriching PPI networks by adding a
number of BLAST-inferred edges can indeed improve
prediction performance. The experimental results also
validate that the network-based approaches outperform
the sequence similarity based approach in most cases.
This is because the sequence similarity based approach is
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Figure 2 Performance comparison by leave-one-out validation (Dataset A: M.musculus).
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Figure 3 Performance comparison by leave-one-out validation (Dataset B).

completely based on protein sequence information, and
thus perform the worst. In addition, it is worth noting
that higher rank functions are predicted better than
lower ones, implying that the protein functions are well
ranked by our approach.

Performance in sparsely-labeled networks

Here we compared the performance of our method with
that of the competing approaches in sparsely-labeled
networks. In our implementation, the proportion of
annotated proteins in PPI networks was varied from
10% to 90%, with which we predicted the functions of
the remaining (un-annotated) proteins. We ran 10
experiments for each given proportion of annotated pro-
teins and evaluated the average performance. Figure 4,
5, 6 and Figure 7, 8, 9 present the results over S.cerevi-
siae and M.musculus data in Dataset A, and Figure 10
and Figure 11 show the results over the S.cerevisiae and
M.musculus data in Dataset B. These results clearly
show that our method performs better than the four
compared approaches in most cases. The experimental
results also validate that generally for all approaches the
prediction performance gets better as the number of
annotated proteins in the network increases. However,

very interestingly we noticed that in Figure 9, the pre-
diction performance of Function flow and Indirect
neighbors slightly degrade as the number of annotated
proteins in the network increases. And in Figure 11,
when the ratio of annotated proteins increases up to
50%, prediction performance of our approach (for the
2nd and 3rd rank functions) turns slightly down. This
may be due to the overfitting effect or annotation qual-
ity problem. Specifically, when the proportion of anno-
tated proteins is 90%, the predicted functions of the un-
annotated proteins are mainly based on the immediate
neighbors, annotation quality will considerably impact
the prediction performance. However, when the ratio of
annotated proteins is 10%, the predicted functions of
the un-annotated proteins are mainly based on the
whole network, which thus alleviates the impact of
annotation quality.

Conclusion

In this paper, we proposed a new method to protein
function prediction that combines PPI information and
protein sequence information to improve prediction per-
formance. It first reconstructs PPI networks by adding a
number of BLAST-inferred implicit edges, and then
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Figure 6 Performance comparison in sparsely-labeled networks (Dataset A: S.cerevisiae).
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applies the collective classification method to predicting
protein functions based on the new networks. The key
idea of our work is to enrich the PPI information of PPI
networks by adding a number of computed edges, which
subsequently improves the prediction performance. We
carried out experiments on S.cerevisiae and M.musculus

functional annotation datasets. The experimental results
demonstrate that our method outperforms the existing
approaches across a series of label situations, especially
in sparsely-labeled networks where the existing
approaches do not work well due to PPI information
inadequacy. Experimental results also validate the
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robustness of the proposed approach to the number of
labeled proteins in PPI networks.

In this paper, we used a very simple scheme (BLAST
alignment) to infer implicit edges. Actually, there are
some other methods that can be used to mine useful
implicit edges, such as random walk. Random walk
exploits both local and global network information,
should be able to discover more useful hidden edges.
We will explore this direction in the future.
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