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Abstract

Background: This paper introduces and applies a genome wide predictive study to learn a model that predicts
whether a new subject will develop breast cancer or not, based on her SNP profile.

Results: We first genotyped 696 female subjects (348 breast cancer cases and 348 apparently healthy controls),
predominantly of Caucasian origin from Alberta, Canada using Affymetrix Human SNP 6.0 arrays. Then, we applied
EIGENSTRAT population stratification correction method to remove 73 subjects not belonging to the Caucasian
population. Then, we filtered any SNP that had any missing calls, whose genotype frequency was deviated from Hardy-
Weinberg equilibrium, or whose minor allele frequency was less than 5%. Finally, we applied a combination of MeanDiff
feature selection method and KNN learning method to this filtered dataset to produce a breast cancer prediction
model. LOOCV accuracy of this classifier is 59.55%. Random permutation tests show that this result is significantly better
than the baseline accuracy of 51.52%. Sensitivity analysis shows that the classifier is fairly robust to the number of
MeanDiff-selected SNPs. External validation on the CGEMS breast cancer dataset, the only other publicly available breast
cancer dataset, shows that this combination of MeanDiff and KNN leads to a LOOCV accuracy of 60.25%, which is
significantly better than its baseline of 50.06%. We then considered a dozen different combinations of feature selection
and learning method, but found that none of these combinations produces a better predictive model than our model.
We also considered various biological feature selection methods like selecting SNPs reported in recent genome wide
association studies to be associated with breast cancer, selecting SNPs in genes associated with KEGG cancer pathways,
or selecting SNPs associated with breast cancer in the F-SNP database to produce predictive models, but again found
that none of these models achieved accuracy better than baseline.

Conclusions: We anticipate producing more accurate breast cancer prediction models by recruiting more study
subjects, providing more accurate labelling of phenotypes (to accommodate the heterogeneity of breast cancer),
measuring other genomic alterations such as point mutations and copy number variations, and incorporating non-
genetic information about subjects such as environmental and lifestyle factors.

Background
Cancer is a complex disease, characterized by multiple
molecular alterations triggered by genetic, environmental
and lifestyle effects. Cancer cells typically accumulate
alterations disrupting the cell’s life cycle of growth,

proliferation, and death [1]. Genomic changes that can
eventually lead to cancer include mutations (<1% in fre-
quency), single nucleotide polymorphisms (SNPs, >1% in
frequency), insertion and deletion polymorphisms and
structural changes in chromosomes. SNPs are the most
common type of inherited genomic variation and recent
advances in high-throughput technologies have led to
whole-genome SNP arrays; datasets of such profiles over
many subjects provide a valuable way to discover the rela-
tionship between SNPs and diseases such as cancer [2].
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A genome wide association study (GWAS) compares the
SNP profiles, over a wide range of SNPs, of two groups of
participants: e.g., people with the disease (cases) versus
people without the disease (controls). Each individual SNP
whose values are significantly different between these
groups (typically based on chi-square test between the
values observed for the two groups) is said to be associated
with the disease [3]. Of course, the resulting associated
SNPs even those with high statistical significance using
genome-wide corrections for multiple hypothesis testing
are at best proxies for truly causal information, which can
only be obtained through further deep sequencing of the
associated loci and well-designed appropriate wet-lab stu-
dies. The database of Genotypes and Phenotypes (dbGaP)
archives and distributes the results of studies that have
investigated the interaction of a genotype and phenotype
in GWASs [4]. However, while GWASs can help the
researchers better understand diseases, genes and path-
ways, they are not designed to predict whether a currently
undiagnosed subject is likely to develop the disease.
This paper introduces Genome Wide Predictive Studies

(GWPSs), which take the same input as a GWAS (the
SNP arrays for a set of subjects, each labelled as a case or
a control) but outputs a classification model that can be
used later to predict the class label of a previously undiag-
nosed person, based on his/her SNP profile. The field of
machine learning provides a variety of statistical, probabil-
istic and optimization techniques that allow computers to
learn such classifiers from these datasets of labelled
patients. Machine learning has been applied successfully in
many areas of biology and medicine, often to produce
effective predictors. Baldi and Brunak [5], Larranga
et al. [6], Tarca et al. [7], Cruz and Wishart [8] each
surveyed various applications of machine learning in biol-
ogy, including gene finding [9], eukaryote promoter recog-
nition [10], protein structure prediction [11], pattern
recognition in microarrays [12], gene regulatory response
prediction [13], protein/gene identification in text [14],
and gene expression microarray based cancer diagnosis
and prognosis [8]. We consider a way to learn a predictor
("who has breast cancer?”), for a dataset that specifies all
available SNPs about each subject.
Our “genome wide” approach differs from research that

attempts to learn predictors from only a pre-defined set of
candidate SNPs. As an example of such a candidate SNP
study, Listgarten et al. [15] applied a machine learning tool
(support vector machine, SVM) to a pre-defined set of 98
SNPs, distributed over 45 genes of potential relevance to
breast cancer, to develop a predictive model with 63%
accuracy for predicting breast cancer. Ban et al. [16]
applied a SVM to analyze 408 SNPs in 87 genes involved
in type 2 diabetes (T2D) related pathways, and achieved
65% accuracy in T2D disease prediction. Wei et al. [17]

studied type 1 diabetes (T1D) and reported 84% area under
curve (AUC) using an SVM.
Our approach also differs from the conventional risk

modeling/prediction studies. Those studies also begin with
a small set of pre-defined features: they first sort the train-
ing subjects into a small set of bins, based on the values of
these features e.g., the Gail model uses 7 features and
record the percentage in each bin with the phenotype
(here breast cancer) [18,19]. Afterwards, to estimate the
risk a new subject will face, this tool uses the subject’s
values for those relevant features to sort that subject into
the proper bin, and returns the associated probability
(called risk). Hence this approach bases its assessment on
only a small number of pre-specified features. Note this
might not be sufficient to usefully characterize the sub-
jects, especially if the hand-picked features are not ade-
quate. On the other hand, our machine learning (ML)
approach lets the data dictate on the possible combination
of features that are relevant. (While the ML model
described in this paper returns a specific prediction for the
individual here breast cancer or not there are other ML
models that will return the probability that the individual
will have the disease P(disease | feature_values), which is
basically risk). Our general goal is to develop a tool to help
screen women, by predicting which of the apparently
healthy subjects sampled in a population will eventually
develop breast cancer. This cannot be done by gene
expression-based microarray analyses, as those results
require biopsies of tissues from organs or tumours, which
means they are only relevant to individuals with suspect
tissues; hence they are not effective at identifying indivi-
duals at risk in a general population, before the onset of
the disease, and so cannot be used for our early detection.
The standard breast cancer risk assessment model (the
Gail model [18,19], described above) is designed to help
with early detection; however, it has only limited clinical
value. Note that researchers recently extended this Gail
model by including 7 or 10 SNPs associated with breast
cancer susceptibility (from GWASs); however, this led to
only marginally improved accuracy [20,21].
This paper presents a method to learn, from a dataset

containing genome-wide SNPs of a cohort of subjects
(cases and controls), a classifier that can predict whether a
new subject is predisposed to the phenotype of breast can-
cer. (Note this classifier differs from the Gail model, as it
can assign each individual subject to a label, potentially
based on all of the features describing that subject.) We
describe the challenges of addressing this high-dimen-
sional data and show that a learner is capable of producing
a classifier that can identify, with 59.55% accuracy,
whether the subject has breast cancer, based only on her
SNP profile. While this might not be clinically relevant,
this performance is statistically significantly better than
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the baseline (of just predicting the majority class), which
demonstrates that (1) there is information relevant to
breast cancer in a patient’s SNP values (note our method
uses only SNPs, but not demographic data, nor other
environmental data) and (2) that today’s machine learning
tools are capable of finding this important information.

Methods
In general, a Genome Wide Predictive Study (GWPS)
takes as input the SNP profiles of a set of N individuals
(including both cases and controls) and outputs a classi-
fier, which can later be used to predict the class label of a
new individual, based on his/her SNP profile; see Figure 1.
Here, we used a dataset of N = 696 subjects including 348
breast cancer cases (late onset of disease, i.e., of sporadic
nature) and 348 controls (disease free at the time of
recruitment and with no family history of breast cancer),
accessed from a previous study on sporadic breast cancer
wherein breast cancer predisposition in women is not
related to mutations in the known high penetrance breast
cancer genes (eg, BRCA) nor other genes of moderate
penetrance, described in earlier studies [22]. Germline
DNA was isolated from peripheral blood lymphocytes.
Genotyping profiles were generated using Affymetrix
Human SNP 6.0 array platform (906,600 SNPs on each
array). The study subjects provided informed consent and
the study was approved by the Alberta Cancer Research
Ethics Committee of the Alberta Health Services.

Following probe labelling, hybridization and scanning,
population stratification correction using EIGENSTRAT
removed 73 subjects (46 cases and 27 controls) that did
not co-cluster with Hapmap II Caucasian subjects, which
left 623 Caucasian subjects (302 cases and 321 controls)
[23]. After that, the dataset was filtered by removing any
SNP (1) that had any missing calls, (2) whose genotype fre-
quency deviated from Hardy-Weinberg equilibrium (nom-
inal p-value <0.001 in controls) or (3) whose minor allele
frequency were less than 5% (>5% frequency considered as
common variants); this left a total number of 506,836
SNPs for analysis. For each SNP, we represented wild type
homozygous, heterozygous and variant homozygous by 1,
2, and 3 respectively.
A trivial classifier, which just predicts the majority class

(here control), will be 321/623 = 51.52% accurate. The
challenge is producing a classifier that uses subject SNP
data to produce predictions that are significantly more
accurate. In particular, we explored tools that use the
given labelled dataset to find the patterns that identify
breast cancer (i.e., case versus control). Fortunately, the
field of machine learning (ML) provides many such learn-
ing algorithms, each of which takes as input a labelled
dataset, and returns a classifier. These systems typically
work best when there are a relatively small number of fea-
tures typically dozens to hundreds but they tend to work
poorly in our situation, with over half-a-million features;
here, they will often over-fit [24]: that is, do very well on

Figure 1 A schema of a genome wide predictive study (GWPS). Given a labelled training dataset of subjects each described by a genome
wide scan of SNPs, feature selection and learning methods are applied to learn a classifier that can predict the labels of a set of novel subjects.
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the training data as they find ways to fit the details of this
sample, but in a way that does not work well on the sub-
jects that were not part of the training dataset. Note that
our goal is to correctly classify such novel (that is, cur-
rently-undiagnosed) subjects. We therefore apply a pre-
processing step to first reduce the dimensionality of the
data, by autonomously identifying a subset of the most
relevant SNPs (features). We then give this reduced data-
set to a learning algorithm, which produces a classifier
[25]. We later discuss how to evaluate the classifier pro-
duced by this “feature selection + learning” system.

Feature Selection
In our analysis, as we expect only a subset of the SNPs to
be relevant to our prediction task, we focused on ways to
select such a small subset of the features. In general, this
involves identifying the features that have the highest
score based on some criteria (which we hope corresponds
to being most relevant to the classification task). In this
study, we used the MeanDiff feature selection method,
which first sorts the SNPs based on their respective Mean-
Diff values, which is the absolute value of the difference
between mean values of this SNP over the cases and the
controls:

MeanDiff (SNPi,D) = |µ (i, C) − µ (i,H) | (1)

over the dataset D = C ∪ H where C is the set of sub-
jects known to have cancer (each labelled as case) and H
is the remaining healthy subjects (each labelled as con-
trol), and using Expr(i,j) as the value of the i’th SNP of

subject j, µ(i,H) = 1
|H|

∑
j∈HExpr(i, j) is the mean value of

the i’th SNP over the subset H (the controls) and
µ(i,C) = 1

|C|
∑

j∈CExpr(i, j) is the mean value of the i’th

SNP over the subset C (the cases). Note this MeanDiff
(SNPi, D) score will be 0 when SNPi is irrelevant and pre-
sumably larger for SNPs that are more relevant to our
prediction task. Here, we decided to use the m = 500
SNPs with the largest MeanDiff values; see the summary
information of these top 500 MeanDiff selected SNPs in
Additional file 1: Appendix1.

Learning
To build a classifier, we use the very simple learning algo-
rithm, K-Nearest Neighbors (KNN), which simply stores
the (reduced) profiles for all of the training data [26]. To
classify a new subject p, this classifier determines p’s k
nearest neighbors, and then assigns p the majority vote.
(So if k = 5, and p’s 5 closest neighbors include 4 controls
and 1 case, then this classifier assigns p as control). Of
course, we need to define distances to determine the near-
est neighbors. As we are representing each patient as a
m-tuple of the SNP values, we define the distance between

two individuals p = [p1, ..., pm] and q = [q1, ..., qm] as the
square of the Euclidean distance (aka L2 distance) as
shown below.

d(p, q) =
∑m

i=1
(pi − qi)

2 (2)

Learning Parameter Selection
Notice the KNN learning algorithm requires us to specify
how many neighbors to consider the k mentioned above.
Which value should we use i.e., should we use k = 1 (i.e.,
consider only the single nearest neighbor), or k = 3 or k =
5 or...? It is tempting to set k by: running 1-NN on the
data, then determining the apparent error (using leave-
one-out cross validation see below), then computing the
error associated with 3-NN, then 5-NN, and so forth; and
finally selecting the value k Î {1, 3, 5, 7} that produces the
smallest error. Unfortunately, this would mean finding a
relevant parameter based on its score on the full set of
training data, which corresponds to testing on the training
data. That is, the k-value that optimizes that score might
not be the one that produces the best performance on
novel subjects, as the value determined in this fashion can
lead to serious over-fitting.
We therefore need a more elaborate method, BestKNN,

to determine the appropriate values for this parameter.
Here, BestKNN first divides the training data into r = 10
disjoint subsets, D = D1 ∪... ∪Dr, then for each i = 1..r,
defines D-i=D - Di as the complement of Di, and lets Ci1

be the 1-NN classifier that is trained on D-i. For each i, the
Ci1 classifier uses the m SNPs that have the best MeanDiff
(., D-i) scores, based on the D-i dataset. As D-i is different
from D-j when i≠j, the m SNPs used by Ci1 will typically
be different from the m SNPs used for Cj1. BestKNN then
computes the accuracy, acc(Ci1, Di), of this Ci1 classifier
over Di ie, over data that it was not trained on. It then
computes the average accuracy over all r different folds,
score(1,D) = 1

r

∑r
i=1 acc(Ci1,Di) which is an estimate of

how well 1-NN would work over the complete dataset D.
BestKNN similarly computes score (3,D) based on 3-NN,
and score(5,D), etc., for kÎ{1, 3, 5, 7}, then uses the high-
watermark as the appropriate value of k. Here, using r =
10 folds, it found k* =7 worked best for our dataset (note
this requires computing the top m SNPs, then running the
resulting KNN, for 4×10 different datasets; the only pur-
pose of all of this work is to find this k* value). BestKNN
then defines the final classifier based on the top m SNPs
over the entire dataset, using this specific k* =7 value.

Evaluation
The next challenge is estimating the quality of the classi-
fier, C623 = BestKNN(D623) the classifier produced by run-
ning BestKNN (which involves the m best MeanDiff
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SNPs), on our 623 subject cohort D623. Here we use two
strategies to evaluate our classification algorithm: (1) by
using Leave-One-Out Cross Validation (LOOCV) strategy
and (2) by using an external hold-out (validation) dataset.
First, we use the LOOCV strategy, which first runs the

BestKNN algorithm to produce a classifier based on N-1 =
622 training subjects (of the dataset with N=|D|=623 sub-
jects), which is then tested on the 1 remaining subject. We
ran these processes N times, so that every subject is used
one time as the test dataset. We estimate the true accuracy
of C623 as the percentage of correctly classified subjects,
over these 623 folds. Producing this estimate means run-
ning all of BestKNN 623 more times which, recall, each
involves computing the top m SNPs for 40+1 different
configurations. Some earlier researchers mistakenly ran
their feature-selection process over the entire dataset D,
and then committed to these features for all folds of the
cross-validation process. Unfortunately, this gives inaccu-
rate (overly optimistic) estimates [27-29]. On our task, we
found that this incorrect process suggests that the result-
ing classifier has an apparent accuracy of over 90% –
which is considerably above its true accuracy of around
60% (see below).
Second, we used an external validation dataset of 2287

subjects (1145 breast cancer cases and 1142 controls) from
the Cancer Genetic Markers of Susceptibility (CGEMS)
breast cancer project [30]. Genotyping profiles for these
subjects were generated using Illumina HumanHap550 (I5)
array platform (555,352 SNPs on the array).To date, this is
the only publicly available dataset related to a genome wide
association study of breast cancer, which is on Caucasian
population set.

Results
Table 1 provides the confusion matrix of actual versus
predicted labels given by the classification model built
using BestKNN, over the specified dataset. Our LOOCV
estimates the accuracy of this model to be 59.55%; with
precision 50.40%, recall/sensitivity 61.92%, and specificity
57.32%. To test if this result is significantly more accurate
than the baseline of 51.52%, we applied a permutation test
[31]. Here, we permuted the labels in the original dataset
randomly, which should destroy any signal relating the

SNPs to the cancer/no-cancer phenotype. We then ran
the BestKNN to build new classifiers on this new dataset,
and ran the LOOCV process to estimate the accuracy of
the new model. We repeated this “permute, learn, evalu-
ate” process over 100 permutations. As presented in
Figure 2, none of these accuracies (of the 100 models built
over randomly permuted labelled datasets) exceeded the
59.55% accuracy of our model. This suggests that our
result is significantly better than the baseline, with a confi-
dence of more than 1 1/100 = 0.99 ie, the associated
p-value is p<0.01. Figure 3, which provides the LOOCV
accuracy of the classification model built using BestKNN
on sets of SNPs with the top {500, 600, ..., 1500} MeanDiff
scores, suggest our model is fairly robust to the number
of MeanDiff selected SNPs, when selecting more than
500 SNPs.
To test the effectiveness of our approach, we next

explored ways to apply it to other datasets. The standard
approach involves running the resulting classifiers on
another dataset, whose subjects include values for the
same set of features and are labeled with the same phe-
notypes. Unfortunately, there are no other public datasets
for this phenotype that use the same Affymetrix Human
SNP 6.0 array Platform. We did, however, consider apply-
ing our C623 = BestKNN(D623) classifier on the CGEMS
breast cancer dataset that includes 1145 breast cancer
cases and 1142 controls genotyped on the Illumina I5
array platform. Unfortunately, due to this difference
between the platforms, this dataset includes only 101
SNPs in common with the m = 500 SNPs used by C623.
As this meant the CGEMS data was missing ~80% of the
SNP values used by C623, we obviously could not apply
C623 directly on this dataset. As this CGEMS breast can-
cer dataset is the only available genome-wide dataset on
Caucasian population, we therefore had to design another
experiment to evaluate our approach, based on the
MeanDiff500+BestKNN learning method. Here, we used
the same MeanDiff500+BestKNN algorithm, but here
trained this method over D2287, the 2287 subjects of
CGEMS breast cancer dataset. We again evaluated the
performance of this learned model using the LOOCV
method. Table 2 shows the estimated accuracy of this
learning algorithm on this external validation dataset,
BestKNN(D2287), is 60.25% (which is significantly better
than the baseline of 50.06%), with precision 60.44%,
recall/sensitivity 59.65%, and specificity 60.86%. This
confirms that our approach and algorithm, is reproduci-
ble, as this exact system works effectively on a second,
very different breast cancer dataset. Notice others have
used the same validation approach; see [32].
Hoping to further improve these results, we explored

several techniques both biologically naïve and informed
for both selecting features and for building the classifier
itself. To select features, we considered biologically naïve

Table 1 Confusion matrix for comparison of actual and
predicted labels on 623 breast cancer study subjects

Predicted Label

Case Control

Actual Label Case 187
(TP)

115
(FP)

Control 137
(FN)

184
(TN)

Accuracy = (TP+TN)/(TP+FP+TN+FN)=59.55%; Precision = TP/(TP+FP)=50.40%;

Recall/Sensitivity = TP/(TP+FN)=61.92%; Specificity = TN/(TN+FP)=57.32%.
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methods such as information gain [33], minimum redun-
dancy maximum relevance (mRMR) [34] and principal
component analysis (PCA) [35]. We also applied other
biologically naïve learning algorithms, including decision
trees [33], and support vector machines (with RBF kernel)

[36]. In all, we tried dozens of different combinations of
the learning and feature selection algorithms (each with its
own range of parameters values) each of which proved to
be computationally intensive (several CPU days). Table 3
shows the accuracy of each of these combinations. Here,

Figure 2 Accuracy of a hundred “Permute, Learn, and Evaluate” Instances. The accuracies of 100 random permutation tests. We see that
none of these accuracies exceeded the 59.55% accuracy of our model. This means that our result is significantly better than the baseline, with a
confidence of more than 99%.

Figure 3 Accuracy of the BestKNN algorithm for different numbers of MeanDiff selected SNPs. Accuracy of the classifiers built using
BestKNN on sets of SNPs with the top {500, 600, ..., 1500} MeanDiff scores. This suggests that our model is fairly robust to the number of
MeanDiff-selected SNPs, when selecting more than 500 SNPs.
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we see that none of these combinations are more accurate
than our suggested combination of MeanDiff500 feature
selection and BestKNN learning (59.55%); indeed, several
do not even beat the baseline of 51.52%.
We also used biological information related to cancer

to inform feature selection i.e., use SNPs known to be
relevant to breast cancer, rather than our biologically-
naïve MeanDiff method: First, we considered the 28
SNPs identified by recent GWASs as being highly asso-
ciated with breast cancer (see Table 4; [30,37-43]). We
trained KNN over the 623 subjects, but using only these
28 SNPs. Unfortunately the LOOCV of this classifier
was just baseline, indicating that the SNPs that appear
to be the most associated content with breast cancer are
not sufficient to produce an effective classifier. Indeed,
none of those 28 SNPs appear in the top 500 that
MeanDiff selected. While different studies often identify
different SNPs as significant, biological pathways seem
much more stable, in that certain pathways are identi-
fied across multiple studies. This motivated us to try
using only the 12,858 SNPs associated with genes of the
KEGG’s cancer pathways [44] recognized as hallmarks
of cancer [1]; unfortunately, the classifier based on these
features also did not perform better than baseline.
Finally, we built a classifier using only the 1,661 SNPs
associated with breast cancer in the F-SNP database
[45]; this too had just baseline accuracy. These negative
results show that the obvious approach of first using
prior biological information to identify SNPs, and then

learning a classifier using only those SNPs, does not
seem to work here.

Discussion
Our study confirms that SNPs do carry information
related to breast cancer genetic susceptibility, and that
GWPSs are a promising tool for decoding and exploiting
this information. While this approach is theoretically
applicable for studying other cancer types and diseases,
we list below some of the potential limitations that may
make it difficult to produce more accurate prediction
models, for breast cancer or other diseases:
Small sample size vs. large feature size: As noted ear-

lier, as the number of subjects in this study is significantly
less than the number of SNPs (a few hundred instances
versus half a million features), we face high-dimensionality

Table 3 Accuracy of a dozen of different combinations of
feature selection and learning methods

Feature Selection Methods

Information
Gain

MeanDiff mRMR PCA

Learning
Methods

Decision
Tree

50.88% 52.06% 51.20% 51.69%

KNN 56.17% 58.71% 57.78% 51.36%

SVM-RBF 55.37% 57.30% 56.18% 51.84%

10-fold cross validation accuracies of combination of 4 feature selection
methods and 3 learning methods shows that none of these combinations are
more accurate than our suggested combination of MeanDiff500 feature
selection and BestKNN learning (59.55%); indeed, several do not even beat
the baseline of 51.52%.

Table 4 List of breast cancer associated SNPs reported by
recent genome wide association studies

dbSNP ID Gene Reference

rs2981579 FGFR2 Hunter et al., 2007 [30]

rs2420946 FGFR2 Hunter et al., 2007 [30]

rs11200014 FGFR2 Hunter et al., 2007 [30]

rs7696175 TLR1/TLR6 Hunter et al., 2007 [30]

rs17157903 RELN Hunter et al., 2007 [30]

rs1219648 FGFR2 Hunter et al., 2007 [30]

rs3803662 TNRC9/LOC643714 Easton et al., 2007 [37]

rs889312 MAP3K1 Easton et al., 2007 [37]

rs13281615 8q Easton et al., 2007 [37]

rs3817198 LSP1 Easton et al., 2007 [37]

rs2981582 FGFR2 Easton et al., 2007 [37]

rs2075555 COL1A1 Murabito et al., 2007 [38]

rs1978503 FLJ45743 Murabito et al., 2007 [38]

rs1926657 ABCC4 Murabito et al., 2007 [38]

rs13387042 2q35 Stacey et al., 2007 [39]

rs3012642 PHKA/HDAC8 Gold et al., 2008 [40]

rs7203563 A2BP1 Gold et al., 2008 [40]

rs6569479 ECHDC1/RNF146 Gold et al., 2008 [40]

rs2180341 ECHDC1/RNF146 Gold et al., 2008 [40]

rs6569480 ECHDC1/RNF146 Gold et al., 2008 [40]

rs4415084 5p12 Stacey et al., 2008 [41]

rs10941679 5p12 Stacey et al., 2008 [41]

rs2067980 MRPS30 Thomas et al., 2008 [42]

rs7716600 MRPS30 Thomas et al., 2008 [42]

rs11249433 1p11.2 Thomas et al., 2008 [42]

rs999737 RAD51L1 Thomas et al., 2008 [42]

rs4973768 SLC4A7 Ahmed et al., 2009 [43]

rs6504950 STXBP4 Ahmed et al., 2009 [43]

28 SNPs identified by the 8 recent genome wide association studies on breast
cancer. The accuracy of the classifier learned over these 28 genotyped SNPs
was not better than the baseline of 51.52%.

Table 2 Confusion matrix for comparison of actual and
predicted labels on 2287 CGEMS breast cancer dataset

Predicted Label

Case Control

Actual Label Case 683
(TP)

462
(FP)

Control 447
(FN)

695
(FN)

Accuracy = (TP+TN)/(TP+FP+TN+FN)=60.25%; Precision = TP/(TP+FP)= 60.44%;

Recall/Sensitivity = TP/(TP+FN)=59.65%; Specificity = TN/(TN+FP)=60.86%.
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problem, which can cause the learning systems to over-fit
i.e., produce models that perform well on the training sub-
jects but relatively poorly on new subjects distinct from
those used for training. Two categories of techniques that
attempt to tackle high-dimensionality are feature selection
and sample integration. This report shows feature selec-
tion produces a classifier whose accuracy is significantly
above baseline. Sample integration involves increasing the
number of subjects in the study by either collecting more
instances or by combining the dataset with other existing
datasets, perhaps from different laboratories. However,
there are still many significant challenges here, including
dealing with batch effects [46].
Breast cancer heterogeneity: Breast cancer is biologi-

cally heterogeneous: current molecular classifications
based on transcriptome-wide analysis, clinical determi-
nations of steroid hormone receptor (like ER) status,
human epidermal growth factor receptor 2 (HER2)
status, or proliferation rate status (PR), all suggest a
minimum of four distinct biological subtypes [47]. Our
current dataset ignores the differences by merging these
different sub-classes into the single label: case. We
might be able to produce a more accurate predictor if
we employed more detailed labelling of sub-cases, to
produce a classifier that could map each subject to a
molecular subtype. However, as our dataset is relatively
small, further stratification of cases into subtypes of
breast cancer might add to the high-dimensionality
problem.
SNPs are only one form of genomic alterations:

While this study considered only SNPs, there are also
many other heritable genetic factors including muta-
tions, copy number variations (CNVs), and other chro-
mosomal changes. We believe that augmenting the SNP
data with additional genetic information, such as inser-
tion/deletion polymorphisms and CNVs, could lead to
more accurate breast cancer predictive models. Of
course, as this means using yet more features, this could
also increase the risk of over-fitting.
Breast cancer is also influenced by non-genetic

factors: Heritable factors are only part of the issue: while
they play a major role in monogenic diseases such as hae-
mophilia, diseases such as tuberculosis and lung cancer
have a very high environmental and life style component,
meaning genetic component contributes only a small
amount to overall risk. Indeed, for many of diseases, the
genetic component accounts for only 30-60% of the risk,
with the remaining risk due to environmental and life style
risk factors. There are many factors that contribute to
developing breast cancer, in addition to heritable (DNA
based) changes. The major environmental and lifestyle risk
factors include age, estrogen exposure (from endogenous
and exogenous sources), smoking, radiation exposure, obe-
sity, and lifestyle in general [48]. As the breast cancer

predictive model presented here used only germline DNA,
it did not incorporate any of these non-genetic variables.
We anticipate better results from a comprehensive model
that includes both genetic and non-genetic factors.

Conclusions
We present a genome wide predictive study as a way to
understand, and effectively use, data from multiple sin-
gle nucleotide polymorphisms. We first contrast this
approach with the more standard associative studies,
connecting this predictive approach directly with screen-
ing and personalized health care. We also show that it
differs from the risk model (such as Gail) as our model
can involve a large number of characteristics for each
patient (here, hundreds of SNPs).
Our studies confirmed the feasibility of predicting

breast cancer susceptibility from genome wide analysis
of SNPs, by presenting a learning model that first uses
the MeanDiff feature selection technique to identify the
best subset of (m = 500) SNPs from the over-500K
SNPs of the original dataset, then used k-nearest neigh-
bour (with the k learned using an appropriate algorithm)
as the classifier over these SNPs. Leave- one-out cross
validation estimates the prediction accuracy of this pro-
posed method to be 59.55%. A random permutation test
indicated that this result is significantly better than the
baseline predictor (p < 0.01). Sensitivity analysis on per-
formance of our classifier showed that our model is
robust to the number of MeanDiff-selected SNPs. We
externally validated our learning algorithm using 2287
subjects from the CGEMS breast cancer dataset; this
again produced a classifier whose LOOCV accuracy was
significantly better than the baseline, which shows the
reproducibility of our combination of MeanDiff and
BestKNN in breast cancer prediction.
To better understand the challenge of this dataset, we

systematically explored a large variety of other feature
selection and learning algorithms. We found that none
of the biologically naïve approaches to feature selection
worked as well as our MeanDiff. We also considered
many biologically-informed methods to select SNPs
using SNPs reported in the literature to be associated
with breast cancer, SNPs associated with genes of
KEGG’s cancer pathways, and SNPs associated with
breast cancer in the F-SNP database. However, those
SNPs produced classifiers that were not even better
than baseline. These negative findings suggest the chal-
lenge of our task, and of the importance of findings of
our study.
We also identified several limitations that may hinder

a more accurate predictive model for breast cancer sus-
ceptibility. Sporadic breast cancer is a heterogeneous
phenotype, which is also heavily influenced by environ-
mental factors. Moreover, while our study does involve
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623 samples, this is small relative to the number of fea-
tures (SNPs) from a whole genome scan; we expect to
achieve yet better results given a larger sample sizes.
Furthermore, we anticipate developing better predictive
models by incorporating other information both other
genetic information (such as point mutations, copy
number variations, and other structural chromosome
changes using next generation sequencing) as well as
environmental and lifestyle factors. The fact that our
study produced statistically significant results, despite
these limitations, demonstrates the potential of this
machine learning approach in this context of screening,
and of personalized patient care.

Additional material

Additional file 1: Appendix1. Summary information of the top 500
MeanDiff selected SNPs.
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