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Abstract

Background: With its massive amount of data, gene-expression profiling by RNA-Seq has many advantanges
compared with microarray experiments. RNA-Seq analysis, however, is fundamentally different from microarray data
analysis. Techniques developed for analyzing microarray data thus cannot be directly applicable for the digital gene
expression data. Several statistical methods have been developed for identifying differentially expressed genes
specifically from RNA-Seq data over the past few years.

Results: In this study, we examined the performance of differential gene-calling methods using RNA-Seq data in
practical situations. We focused on two representative methods: one parametric method, DESeq, and one
nonparametric method, NOISeq. We examined their performance using both simulated and real datasets. Our
simulation followed the RNA-Seq process and produced more realistic short read data. Both DESeq and NOISeq
identified over-expressed genes more correctly than under-expressed genes. While DESeq was more likely to call
longer genes as differentially expressed than shorter ones, NOISeq did not have such bias. When the underlying
variation increased, both methods showed higher rates of false positives. When replicates were not available in the
experiments, both methods showed lower rates of true positives and higher rates of false positives.

Conclusions: The level of variation clearly affected the performance of both methods, showing the importance of
understanding the variation in the data as well as having replications in RNA-Seq experiments. We showed that it

characteristics of the data.

is possible to obtain improved differential gene-calling results by combining the results obtained by the two
methods. We suggested strategies to use these two methods individually or combined according to the

Background

RNA-Seq is a recently developed technology based on
next-generation sequencing. It is used to analyze gene
expression profile by counting the number of short reads
directly generated from each mRNA. Compared with
microarray technology, RNA-Seq has many advantages, e.
g., high resolution, low background noise, no prior
knowledge of reference sequence required (with de novo
transcriptome assembly), and capability of distinguishing
isoforms and allelic expression [1]. RNS-Seq analysis is,
therefore, now overtaking microarray analysis. However,
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the count data used in RNA-Seq are discrete and funda-
mentally different from continuous microarray data [2].
Techniques developed for analyzing microarray data are
therefore not directly applicable on these digital gene
expression data.

Many challenges exist in normalizing and analyzing
RNA-Seq data. Even after length normalization, e.g.,
using RPKM (reads per kilobase of exon model per mil-
lion mapped reads) [3], the length bias may still persist in
differential gene-calling [4]. Non-uniform read coverage
depending on experimental protocols and local sequence
context has been reported [5-7]. The fact that a small
number of highly expressed genes can generate a big por-
tion of the total reads complicates normalization [8].
Moreover, expression levels affect the effectiveness of
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detecting differentially expressed genes; highly expressed
transcripts are more likely to be called as differentially
expressed and vice versa [9].

For continuous data obtained by microarray, a normal
distribution is usually used to model biological and tech-
nical variations after log transformation [10]. For dis-
crete count data obtained by RNA-Seq, Poisson
distribution has been applied to fit the count variation
across technical replicates [8]. However, RNA-Seq data
show larger variation than Poisson distribution [11].
Many methods developed for RNA-Seq analysis, such as
DESeq [11], edgeR [12], Cufflinks/Cuffdiff [13,14], bay-
Seq [2], and TSPM [15], therefore, apply negative bino-
mial distributions (as well as Poisson in the case of
TSPM) to account for biological variation. NOISeq [16]
is a non-parametric method. Recently released BitSeq
[17] uses Bayesian approach to estimate transcript
expression levels incorporating uncertainty in read map-
ping while the biological variation is modeled using an
expression-level-dependent prior.

Importance of including both technical and biological
replicates in designing RNA-Seq experiments is clearly
demonstrated in Auer and Doerge [18]. Mclntyre et al.
[19] further demonstrated that technical variation,
although smaller than the biological variation, cannot be
ignored. In practice, however, many RNA-Seq experi-
ments are done without or with only a few replicates. In
order to accommodate such situations, for example,
DESeq estimates gene-expression variance between
replicates by pooling genes with similar expression to
enhance the variance estimation [11]. When no repli-
cates are available, DESeq treats gene expressions
between two experimental conditions as replicates.
Without replicates, determination of differentially
expressed genes becomes very conservative. In the case
of NOISeq, a non-parametric method, when no repli-
cates are available, it simulates technical replicates
(but no biological replicates) based on multinomial
distribution [16].

Kvam et al. [20] compared DESeq, edgeR, baySeq, and
TSPM methods on simulated data under various scenar-
ios, e.g., using 2 or 4 replicates, and using Poisson or nega-
tive binomial models to generate data. Their report is
consistent with previous other studies; baySeq performed
slightly better than DESeq and edgeR in general, and
TSPM did not perform well when only a few replicates
were available (see also [15]). In the study by Tarazona et
al. [16], NOISeq was compared with DESeq, edgeR, bay-
Seq, and Fisher’s Exact Test. For both simulated count
data and real datasets, NOISeq performed comparable to
or better than other methods. While NOISeq found
slightly fewer truly differentially expressed genes compared
to other methods, the sensitivity of discovering differen-
tially expressed genes by NOISeq was less dependent on
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the sequencing depth. The sensitivity of other methods
increased with increasing sequencing depth resulting dis-
covering more true positives. However, this was at the
cost of having significantly more false positives compared
to NOISeq.

Simulated read-count data have been often used for
testing performance of differential gene expression ana-
lysis methods [2,15,17,20]. In these previous studies,
except for the study by Glaus et al. [17], count data
were directly simulated from a defined distribution (e.g.,
Poisson or negative binomial models) given the expected
expression level of each gene in each condition. How-
ever, in the real RNA-Seq analysis, some reads can be
mapped to multiple locations on the genome or tran-
scripts. Such non-uniquely mapped reads are usually
discarded and are not counted. This practice could
affect the relationship between expected gene expression
levels and the actual read counts obtained causing the
count data not following the defined distribution. In
order to examine the effect of having non-uniquely
mapped reads (and how they are handled), simulation
experiments should incorporate the entire RNA-Seq
process step by step, instead of only simulating the
count data.

In this study, we focused on comparing the perfor-
mance of two methods: DESeq, a parametric, negative-
bionomical model based method, and NOISeq, a non-
parametric method. We examined their performance
using both simulated and real datasets. We simulated the
process of short-read generation and read-mapping in
order to examine how the mapping method affects the
results. While both methods showed that their ability to
identify differentially expressed genes depended on gene-
expression level, length-based bias was not shown with
NOISeq. The level of variation among replicates clearly
affected the performance of both methods. We further
examined how having no replicates affected the differen-
tial gene-calling results. Based on the results we obtained
with both methods under different conditions, we
presented a possible strategy to improve identification
accuracy for differentially expressed genes by using these
two methods.

Methods

Overall process of the RNA-Seq simulation

In order to examine how discarding non-uniquely
mapped reads affects the results of RNA-Seq analysis, we
simulated the entire RNA-Seq process step by step:

1. We used the entire set of the protein-coding
transcripts from the mouse genome as our reference
transcriptome. It included 26,017 transcripts excluding
alternative-splicing forms. These sequences were used
for generating short reads.



Zheng and Moriyama BMC Bioinformatics 2013, 14_(Suppl 13):57
http://www.biomedcentral.com/1471-2105/14/513/S7

2. Each gene was randomly assigned an expression
level from a Gamma distribution (described in the
next section).

3. Short reads with their length of 36bp were gener-
ated from each gene starting at random positions. No
sequencing errors were introduced in this process. The
number of short reads generated for each gene was set
to be proportional to the expression level and the
length of the gene (described in the next section).

4. Short reads generated were mapped back to the
mouse reference sequences by using SOAP2 [21]
allowing up to two mismatches. Following the com-
mon practice, only short reads that can be uniquely
mapped back to the reference sequences were consid-
ered ("-r 0” option), and those mapped more than one
location were discarded.

5. These steps were repeated for each replicate of
each experimental condition.

The number of short reads mapped to each gene was
used as the count input for differential gene expression
analysis.

Modeling gene expression levels
The expression level of each gene at the control condition
was assigned randomly from a Gamma distribution with
the shape parameter 0.15 and the scale parameter 1160.
These parameters were chosen to reproduce a distribution
similar to those found in many available RNA-Seq datasets.
Table 1 summarizes our simulation model. 10% each of
the genes (types A and B) were assigned to be “over"- and
“under"-expressed in the experimental condition. For
these differentially expressed genes, the fold-changes were
chosen randomly from 1.1 - 5.0. The remaining 80% of the
genes (type C) were considered to have no difference in
expected expression between the control and experimental
conditions. Since RNA-Seq experiments often include only
a few replicates, we included only two replicates in each of
the experimental ("Expl” and “Exp2”) and control ("Ctrl”
and “Ctr2”) conditions. For a testing purpose, another
dataset was simulated without replicates (one replicate
each in experimental and control conditions).

Table 1 Simulation strategy

Gene types Number of genes Gene expression levels®
(26,017)? Exp1 Exp2 Ctr1 Ctr2
A 2,602 Over Over  Normal Normal
B 2,602 Under  Under Normal Normal
C 20,183 Normal Normal Normal Normal

*Total number of genes is shown in parentheses.
b4Over"; over-expressed, “Under": under-expressed, and “Normal": no-
differential expression.
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Modeling technical and biological variations
The biological variation between replicates within each
condition group was modeled by a Gamma distribution:

Ai ~ Gammal(k;, 6;) (1)

where k; and 0; are the shape and scale parameters for
gene i. Two datasets were generated with different levels
of variation: the moderate-variation dataset with 0.33 of
the coefficient of variation (CV) and the large-variation
dataset with 0.67 of CV. The technical variation was
modeled by a Poisson distribution. Thus the expression
level of gene i after considering both biological and
technical variations can be expressed as:

E; ~ Pois(%;;) (2)

The number of short reads generated from each gene
was assumed to be proportional to the expression level
and the length of the gene:

Ni=C><Ei)<Li (3)

where N; is the number of short reads generated for
gene i, L; is the length of gene i, and ¢ is a constant to
make desired amount of total reads in the experiment.
For this study, we set the total number of short reads to
be approximately 23 million for each replicate.

Differential gene-calling methods compared

One of our foci in this study was to examine how different
methods perform when there was no replicate as it is the
case still in many RNA-Seq experiments. DESeq, edgeR,
and baySeq are all based on negative binomial models, and
DESeq has a straight-forward option to handle experimen-
tal data when replicates are not available. We thus chose
DESeq (version 1.2.1) [22] as a representative of para-
metric methods and a relatively newly introduced
non-parametric statistics method NOISeq (R script down-
loaded on Feb 21, 2012 from [23]).

When testing the performance of each method without
replicates, for DESeq, the option “method” for variance
estimation was set to “blind”. For NOISeq, we used the
recommended parameter values n = 5 and pnr = 0.2, but
for the parameter v, we used 0.2 based on our prelimin-
ary results. We used the default parameter values for
DESeq and NOISeq when replicates were available.
DESeq takes raw count data as input. We used RPKM as
the normalization method for NOISeq input data.

Test statistics

In our simulations, as shown in Table 1, types-A and -B
genes were set to be differentially expressed ("actual posi-
tives”), and type-C genes were set to be non-differentially
expressed ("actual negatives”). We compared the list of
these genes with those determined to be differentially
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expressed by DESeq and NOISeq at various thresholds.
Results were classified as follows:

« True Positive (TP): genes set to be differentially
expressed and called as differentially expressed by
the method,

» True Negative (TN): genes set to be non-differen-
tially expressed and not called as differentially
expressed by the method,

« False Positive (FP): genes set to be non-differen-
tially expressed but called as differentially expressed
by the method, and

« False Negative (FN): genes set to be differentially
expressed but not called as differentially expressed
by the method.

The performance of the methods was evaluated as fol-
lows:

Sensitivi P (4)
ensitivity =
ty TP + FN
False Di Rate (FDR) P (5)
alse Discovery Rate =
4 TP + FP
TP
Precision = 1 — FDR = (6)
TP + FP
TP
Recall = Sensitivity = (7)
TP + FN

Equation (5) is used to calculate the empirical false dis-
covery rate from the observed data. For simplicity, we call
it as “False Discovery Rate” or FDR.

Real RNA-Seq datasets used

Sultan et al.’s dataset

Sultan et al. [24] performed differential gene expression
analysis between human embryonic kidney- and Ramos B-
cell lines using both RNA-Seq and microarray experiments.
We extracted the short-read count data for 13,118 human
genes from their RNA-Seq study considering only the hits
on the exons (total read numbers ranging from around 5
to 7 millions). Although their experiments included two
biological replicates, these data were combined in their
study due to high correlation between replicates within
each cell line. Thus we treated their experiment as having
no replicates. We analyzed this RNA-Seq data using both
DESeq and NOISeq. The accuracy of these methods was
tested against the results based on their microarray analysis
(using g-value = 0.05 as the cutoff) for the same set of
genes. We considered the microarray results as bases of
comparison, defining the “actual” positives and negatives.

Page 4 of 10

Then the precision and recall were calculated following the
equations (6) and (7).

Chlamydomonas and pea aphid datasets

Two unpublished RNA-Seq datasets were also included: a
green alga Chlamydomonas reinhardtii dataset (Cerutti
et al. in preparation) and a pea aphid Acyrthosiphon pisum
dataset (Brisson et al. unpublished). The Clamydomonas
dataset compared the expression of 16,865 C. reinhardtii
genes between the control and the nitrogen-starvation
experiment (144-hour time point). Each condition
included two replicates (total read numbers ranging from
around 20 to 30 millions). This dataset had a moderate
level of variation (CV = 0.33). The pea aphid (A. pisum)
dataset compared 35,884 genes between the control
and solitary conditions (8-hour time point). For this data-
set, three replicates were included for each condition (total
read numbers ranging around 2 to 3 millions). The level of
variation was twice larger than that of the Clamydomonas
dataset (CV = 0.67).

We used these datasets to test “consistency” in the
results obtained by DESeq and NOISeq between when
replicates were available and when no replicates were
available. Differentially expressed genes were first identi-
fied using all replicates. These results were used as the
“standards” for the comparative purpose. We next ana-
lyzed the RNA-Seq data assuming no replicate. Then the
precision and recall were calculated following the equa-
tions (6) and (7). Since there are multiple replicates for
both control and experimental conditions, we took the
average statistics from all pairwise comparisons and
reported the “average precision” and the “average recall”.

Note that these “average precision” and “average recall”
were used to measure the consistency in the results
obtained with and without having replicates. Since for
these actual RNA-Seq data, we do not know the “true
positives” and “true negatives”, these statistics are used by
no means to indicate the accuracy of the methods.

Results and discussion

Effect of uncertain read-mapping

Our simulation process reproduced read-mapping uncer-
tainty. Approximately 90% of short reads were uniquely
mapped back to the mouse reference sequences, while 10%
of reads were mapped to multiple locations on the reference
and discarded from the analysis. Comparisons of the results
based on the two simulation processes, simulating the entire
RNA-Seq process and simulating count data directly,
showed, for both DESeq and NOISeq, equal or slightly bet-
ter performance when count data were simulated directly
as many previous studies have done (data not shown).
Uncertainty in read-mapping, therefore, could affect differ-
ential gene-calling performance. With increased numbers of
non-uniquely mapped reads, this effect would be larger.
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Effects of gene expression-level and gene length on
differential gene calling
We first examined if differential gene-calling performance
depends on gene-expression levels. We used the simulated
dataset with the moderate variation (CV = 0.33) for this
analysis. Using ranges of thresholds, sensitivities were cal-
culated separately for two groups of genes: over-expressed
(type A in Table 1) and under-expressed (type B in Table
1) genes. For DESeq, g-value (FDR adjusted p -value) was
used for the threshold. For NOISeq, the probability of a
gene being differentially expressed provided by the method
was used for the threshold. We call this probability Py,
When both being used as a threshold, g-value is roughly
comparable to the probability of equivalent expression
(1- Pnoy) (see [25] for discussion). As shown in Table 2,
we observed expression-level dependent results with both
DESeq and NOISeq. Both methods showed slightly but
consistenly higher sensitivities for the over-expressed
genes than for the under-expressed genes. Over-expressed
genes were slightly more likely to be called correctly as
differentially expressed than under-expressed genes. This
is consistent with the results reported by Wu et al. [9].
Oshlack and Wakefield pointed out that gene-length
dependency is shown with differential calling based on
RNA-Seq [4]. We examined if such length-dependency
exists in the results obtained by DESeq and NOISeq using
again our simulated dataset with the moderate variation.
As shown in Figure 1A, DESeq had length-dependency
where longer transcripts were more likely to be called as
differentially expressed, whereas NOISeq did not exhibit
such dependency. In order to examine the proportion of
true positives among the genes called as differentially
expressed, in Figure 1B, precisions are plotted. Precision
decreased with gene length for DESeq whereas NOISeq
showed consistently very high precision (very close to 1.0).
It indicates that for longer genes, DESeq calls more genes
as differentially expressed, but their results include more
false positives. In contrast, NOISeq calls a smaller number
of genes as positives, but with very high accuracy, regard-
less of the lengths.

Table 2 Sensitivity of DESeq and NOISeq gene-calling
and gene-expression levels

Threshold values®

005 0.1 02 03 04 05

Gene group 0.005 0.01
[DESeq]

Over-expressed 021 026 036 044 051 057 063 066

Under-expressed  0.19 023 032 039 046 052 057 062
[NOISeq]

Over-expressed 000 000 000 005 0.17 028 038 047

Under-expressed 000 000 000 003 014 025 035 046

2g-value for DESeq and 1- P g, for NOISeq.
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Gene-calling performance and biological variation
Biological variation can be quite large in RNA-Seq data.
In order to study if and how the variation in the data
affects the performance of differential gene calling, we
analyzed two simulated datasets that modeled two levels
of biological variation: moderate (CV = 0.33) and large
(CV = 0.67). The sensitivities and false discovery rates
were calculated using the equations (4) and (5).

False discovery rate (FDR) control

DESeq calculates g-values (FDR adjusted p -values) for
each gene. If the method controls the FDR well, the g-value
threshold used to identify differentially expressed genes
should equal to or greater than the observed FDRs. As
shown in Figure 2A, DESeq controlled FDRs more reliably
when the biological variation was moderate compared to
when it was large. With the large variation, observed FDRs
were significantly larger than reported g-values especially
for those smaller than 0.2. This result is consistent with the
one reported by Kvam et al. [20]. FDR was not controlled
in their “Simulation 4” where variation was large.

NOISeq uses the probability (Pyo;) to identify differen-
tially expressed genes. As mentioned before, we can con-
sider 1-Pyoy to be equivalent to g-value [25]. As shown in
Figure 2B, although observed FDRs were consistently lar-
ger when the biological variation was large, NOISeq
roughly controlled the FDR regardless of the level of varia-
tion. In fact, when the variation is moderate, observed
FDRs were much lower than 1-Py; values.

Effect of biological variation on differential gene-calling
Next we compared the effect of biological variation on the
performance of differential gene-calling by DESeq and
NOISeq. As shown in Figure 3A, with the moderate varia-
tion, the sensitivity of DESeq was significantly better than
NOISeq when the g-value threshold was greater than
0.005. NOISeq performed better than DESeq when the
Py threshold was greater than 0.8. With the larger varia-
tion, as shown in Figure 3B, the sensitivity of NOISeq was
significantly better than DESeq with large Py, thresholds
(Pnor > ~0.7). DESeq performed better only when the
g-value threshold greater than 0.3 was used. As mentioned
above, especially for DESeq observed FDRs are much
larger than the g-value thresholds when the biological
variation was large.

Effect of replications on differential gene-calling

We next examined the performance of DESeq and
NOISeq on the simulated datasets where no replicates
were used. Compared to the results shown in Figure 3,
when no replicates were available, as shown in Figure 4,
the overall accuracy for both methods decreased dramati-
cally as expected and the FDRs were very large at all
thresholds. DESeq found hardly any truly differentially
expressed genes when no replicates were available. For
example, while, at the g-value threshold of 0.05, DESeq
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had sensitivity about 0.25 in Figure 3A, it was 0 in Figure
4A. NOISeq still found truly differentially expressed genes,
however, at a cost of having many false positives. For
example, NOISeq had sensitivity ~ 0.1 and FDR ~ 0.03 at
Pror = 0.8 in Figure 3A, while sensitivity ~ 0.22 and FDR
~ 0.4 in Figure 4A at the same threshold. DESeq was con-
servative in calling differentially expressed genes when no

replicates were available, whereas NOISeq was much more
aggressive. Similar to when replicates were available, when
the variation was large, both methods performed worse as
shown in Figure 4B. These results confirmed the impor-
tance of having replicates in RNA-Seq experiments. If no
replicates are available, however, NOISeq may serve better
as a starting point of analysis.
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Combining the results of DESeq and NOISeq to improve thresholds (g-value for DESeq and Py, for NOISeq). At
differential gene-calling each threshold combination, positives (differentially
We examined if we could improve the accuracy in identi-  expressed genes) were identified when called by both
fying differentially expressed genes by combining DESeq  methods (i.e., taking the intersection of results). In order
and NOISeq. We tested ranges of combinations of to find the best performing combination, in addition to
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sensitivities and FDRs, we calculated their ratios (sensi-
tivity/FDR). As described before, NOISeq tends to have
lower sensitivities as well as FDRs compared to DESeq at
equivalent thresholds (Figures 1 and 3). Therefore, by
combining both results, we expected to achieve lower
FDRs (fewer false positives). With lower sensitivities
given by NOISeq, on the other hand, in order to keep the
level of sensitivities given by DESeq, we need to use
relaxed thresholds with NOISeq. Our grid-search results
showed such patterns (see Additional file 1). For the
moderate-variation data, the combination (g, Pyo;) =
(0.005, 0.6) generated the highest sensitivity/FDR (60),
which was significantly higher than the highest such ratio
obtained by using a single method (5.67 by DESeq).
Using even more relaxed thresholds for both DESeq and
NOISeq, e.g., (¢, Pnor) = (0.05, 0.5) or (0.1, 0.5), we can
obtain sensitivities similar to the levels obtained by
DESeq and maintain FDRs significantly lower. When var-
iation is large, the combination (g, Pno; ) = (0.4, 0.5) gen-
erated the best performance in terms of the sensitivity to
FDR ratio (0.37). Although using NOISeq with Pyo; = 0.5
generated a slightly higher ratio (0.38), FDR was too high
(0.56) for any practical use. The combination method
provided a much lower FDR compared to the single use
of either DESeq or NOISeq. However, we should note
that sensitivities are all very low even with such relaxed
thresholds when variation is very large. In Figure 3,
results of some combination strategies are compared
against the results obtained by single methods. It shows
that in most cases the observed FDRs obtained by the
combination method were lower than the threshold
values used. It also shows that the combination strategy
can improve the performance (higher sensitivity and
lower FDR) in identifying differentially expressed genes
compared to using either DESeq or NOISeq alone for
both moderate- and large-variation data. When no repli-
cation data are available, the combination strategy did
not improve the accuracy of calling differentially
expressed genes (data not shown).

Performance analysis on the real RNA-Seq data
Comparing the results between RNA-Seq and microarray
analyses

We tested the performance of DESeq and NOISeq on the
real RNA-Seq datasets published by Sultan et al. [24].
Using the corresponding microarray result as the refer-
ence, precision and recall were calculated as described
before. As shown in Table 3, both methods had close to or
higher than 90% of precision for a wide range of thresh-
olds. However, their recall (sensitivity) values were very
low (lower than 0.05 for DESeq and lower than 0.12 for
NOISeq). The performance of DESeq and NOISeq are
comparable at stringent thresholds (0.005 or lower).
NOISeq showed slightly higher precision with more
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Table 3 Performance of DESeq and NOISeq compared
against the microarray study.

Threshold values®

0.001 0.005 0.01 0.05 0.1 0.2
[DESeq]
Precision 094 093 0.90 0.90 0.89 0.88
Recall 0.01 0.02 0.02 0.04 0.04 0.05
[NOISeq]
Precision 0.94 0.93 0.94 0.94 092 0.86
Recall 0.002 0.01 0.01 0.03 0.05 0.12

2g-value for DESeq and 1- P 5o, for NOISeq.

relaxed thresholds. It should be noted that although the
RNA-Seq data by Sultan et al. [24] did not contain a repli-
cate, their data had a low level of variation (Pearson’s cor-
relation coefficients are 0.98-0.99) between original
replicates.

Consistency analysis between with and without biological
replications

Using the two sets of real RNA-Seq data, we tested the
“consistency” in the results given by DESeq and NOISeq.
We compared the results from DESeq and NOISeq using
no replicate with those using replicates on the same data-
sets. Two datasets are: the Chlamydomonas dataset that
have moderate variation and the pea aphid dataset that
have large variation. The objective here is to see if DESeq
and NOISeq can yield somewhat consistent/reliable results
when no replicates are available.

As shown in Table 4, DESeq was found to be very con-
servative in finding differentially expressed genes when no
replicates were available. This was indicated by very high
precision (fewer false positives) and very low recall (more
false negatives). In other words, with no replicates, while
DESeq found only a small number of genes as differentially
expressed, many of these identified genes were what it
would have found if there were replicates. NOISeq was
found to be more aggressive in finding differentially
expressed genes when no replicates were available, indi-
cated by relatively low precision (more false positives) and
high recall (fewer false negatives). Without replicates,
while NOISeq could find almost all genes that would have
been found if there were replicates, many of genes identi-
fied would not have been found if replicates were available
(possible false positives). When the data included much
larger variation as in the case of the pea aphid datasets
(Table 5), as expected, results obtained from single repli-
cates were not consistent with those obtained when repli-
cates were available. Interestingly, precisions of NOISeq do
not seem to be affected by the level of variations. Regard-
less of the amount of variation, with NOISeq we expect to
find the same proportion of false positives (inconsistently
identified genes). However, the recall values were severely
affected with the larger variation, dropping to the level
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Table 4 Performance consistency with DESeq and NOISeq
on the Chlamydomonas data

Threshold values®

0.001 0.005 0.01 0.05 0.1 0.2
[DESeq]
Average precision 1.00 0.99 0.99 099 099 099
Average recall 0.03 0.04 005 007 007 008
[NOISeq]
Average precision 0.02 0.08 0.12 015 017 024
Average recall 1.00 1.00 100 09 095 094

2g-value for DESeq and 1- P yo, for NOISeq.

almost the same as found with DESeq, indicating the
increased proportion of false negatives (many differentially
expressed genes were not identified without replicates).

These results were consistent with our results using
simulated data described earlier. When no replicate is
available for both moderate- and large-variation datasets,
DESeq is very conservative in finding differentially
expressed genes, whereas NOISeq is more aggressive but
more error prone.

Suggested strategies of using DESeq and NOISeq

This study clearly showed that biological variation
affects significantly and differently how the two methods
we studied, DESeq and NOISeq, perform in differential
gene-calling. Therefore, it is highly recommended to
have replications in RNA-Seq experiments and deter-
mine the variation in the data. Large variation will cause
more false positives for both DESeq and NOISeq. We
also showed that it is possible to improve the accuracy
by combining the results of both methods. Based on the
results we obtained in this study, the following are our
suggested strategies of using DESeq and NOISeq
depending on the level of biological variation:

1. If the biological variation is moderate, e.g., CV~0.33,
to control the FDR at around 0.05 or lower, we can
take advantage of combining results by taking the inter-
section of both methods using g=0.1 threshold for
DESeq and Ppo;=0.5 threshold for NOISeq.

Table 5 Performance consistency with DESeq and NOISeq
on the pea aphid data

Threshold values?

0.001 0.005 0.01 0.05 0.1 0.2
[DESeq]
Average precision 0.52 0.52 0.53 052 051 048
Average recall 0.27 0.29 029 032 032 033
[NOISeq]
Average precision 0.00 0.02 0.03 0.17 022 025
Average recall 0.00 033 033 038 039 043

2g-value for DESeq and 1- P yo, for NOISeq.

Page 9 of 10

2. If the biological variation is large, e.g., CV=0.67, we
may need to consider a higher FDR control, e.g.,, ~0.2,
in order to find a good number of differentially
expressed gene candidates. We can use the combined
results using the thresholds g=0.3 or 0.4 for DESeq
and Pyoy =0.5 for NOISeq. Note that only a very small
number of differentially expressed genes can be found
in order to control the FDR smaller than 0.2. With
such high FDRs, the results obtained should be consid-
ered as preliminary and further analysis is required.

It is advisable to have replications in RNA-Seq experi-
ments. Based on our analysis on simulated as well as real
datasets, when there is no replicate, DESeq is very conser-
vative and finds a very small number of differentially
expressed genes. However, its results are more consistent
with the results obtained using replicates. On the contrary,
NOISeq is more aggressive and finds more candidates of
differentially expressed genes, which, however, include a
large number of false positives. When the results of DESeq
and NOISeq are compared to the results based on a
microarray analysis, in general NOISeq showed better per-
formance. Our recommended strategy for analyzing no-
replicate datasets, therefore, is to use NOISeq with Py,
thresholds 0.8-0.95 as a starting point of further analysis.

Conclusions

In this study, we presented a comparison between a para-
metric method, DESeq, and a nonparametric method,
NOISeq, for differential gene-calling using RNA-Seq data.
The level of variation clearly affected the performance of
both methods. It is important to have replications in
RNA-Seq experiments and understand the level of varia-
tion in the data. Both DESeq and NOISeq performed
much better on data with moderate biological variation
than with large biological variation. They both found
slightly more truly over-expressed genes than under-
expressed genes. DESeq showed length-dependent results
where longer transcripts were called more as differentially
expressed, whereas NOISeq did not show this trend. We
showed that it is possible to obtain improved differential
gene-calling results by combining the results obtained by
the two methods. We suggested strategies to use these
two methods individually or combined according to the
characteristics of the data. It would be useful to explore
combination strategies further including more methods.

Additional material

Additional file 1: Analysis of combination strategy with the
moderate- and large-variation data. Performance of combination
strategies for differential gene-calling was examined based on the
sensitivity, FDR, and sensitivity to FDR ratio. Tables ST and S2 show the
resuls for simulated datasets with moderate and large varitions,
respecitvely.
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