Shao et al. BMC Bioinformatics 2013, 14(Suppl 15):S9
http://www.biomedcentral.com/1471-2105/14/515/S9

BMC
Bioinformatics

PROCEEDINGS Open Access

Sorting genomes with rearrangements and
segmental duplications through trajectory graphs

Mingfu Shao’, Yu Lin", Bernard Moret”

From Eleventh Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Com-

parative Genomics
Lyon, France. 17-19 October 2013

Abstract

rearrangements.

We study the problem of sorting genomes under an evolutionary model that includes genomic rearrangements
and segmental duplications. We propose an iterative algorithm to improve any initial evolutionary trajectory
between two genomes in terms of parsimony. Our algorithm is based on a new graphical model, the trajectory
graph, which models not only the final states of two genomes but also an existing evolutionary trajectory between
them. We show that redundant rearrangements in the trajectory correspond to certain cycles in the trajectory
graph, and prove that our algorithm converges to an optimal trajectory for any initial trajectory involving only

Introduction

Genome-scale evolutionary events can be divided into
two categories: genomic rearrangements and content-
modifying operations. Genomic rearrangements shuffle
gene orders and change gene orientations; they include
inversions, transpositions, block exchanges, circulariza-
tions, and linearizations, all of which act on a single chro-
mosome, and translocations, fusions, and fissions, which
act on two chromosomes. All of these operations can be
modelled in terms of the double-cut-and-join (DCJ)
operation [1,2], which has formed the basis for much
algorithmic research on rearrangements over the last few
years [3-6]. Content-modifying operations, which affect
both the number of gene copies and the gene orders,
include insertions, deletions, and duplications.

A basic problem in phylogenetic inference is to com-
pute an edit sequence between two genomes, i.e., a most
parsimonious series of evolutionary operations that can
transform one genome into the other. Many algorithms
have been proposed for various edit problems under dif-
ferent evolutionary models and different assumptions
about the genomes. Most of these algorithms use the

* Correspondence: mingfu.shaoc@epfl.ch; yulin@epfl.ch; bernard.moret@epfl.
ch

Laboratory for Computational Biology and Bioinformatics, EPFL, Lausanne,
Switzerland

(BioMVed Central

same underlying data structure, the breakpoint graph,
introduced by Bafna and Pevzner to study the edit pro-
blem under unsigned inversions [7,8]. In 1995, Hannen-
halli and Pevzner gave the first polynomial-time
algorithm to compute the edit distance (the length of the
edit sequence) under signed inversions for unichromoso-
mal genomes [9], which was later improved to linear
time [10]. For multichromosomal genomes, the edit dis-
tance under the Hannenhalli-Pevzner model (signed
inversions and translocations) has been studied through a
series of papers [9,11-13], culminating in a fairly complex
linear-time algorithm [3]. Under DC]J operations,
Bergeron et al. [1] gave a simple linear-time algorithm to
compute the edit distance, based on a slightly different
representation of the rearrangements, using an adjacency
graph. All of these algorithms consider only rearrange-
ments and thus also assume equal gene content and no
duplicate genes; consequently, their corresponding adja-
cency graphs have a very simple structure—a set of inde-
pendent cycles and paths, making it possible to design
efficient algorithms. Adjacency graphs have also been
extended to study rearrangements with insertions and
deletions [6,14,15], whole-genome duplications [16,17] as
well as incorporating sequence information [18].
Segmental duplications have long been recognized as
major driving forces of evolution [19,20]. In human

© 2013 Shao et al,; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:mingfu.shao@epfl.ch
mailto:yu.lin@epfl.ch
mailto:bernard.moret@epfl.ch
mailto:bernard.moret@epfl.ch
http://creativecommons.org/licenses/by/2.0

Shao et al. BMC Bioinformatics 2013, 14(Suppl 15):S9
http://www.biomedcentral.com/1471-2105/14/515/59

genomes segmental duplications are hotspots for non-
allelic homologous recombination leading to genomic
disorders, copy-number polymorphisms, and gene and
transcript innovations [21]. Kahn and Raphael gave an
efficient dynamic programming algorithm to compute
the duplication distance, in which rearrangement opera-
tions are not allowed [22], work later extended by intro-
ducing likelihood techniques and used to analyze the
evolutionary relationships between duplication blocks
[23]. Combining general segmental duplication with
rearrangements, however, has remained an open pro-
blem, in spite of considerable work on combining rear-
rangements with content-modifying operations.

El-Mabrouk [24] extended the HP approach to include
insertions and deletions, by providing an exact algorithm
to compute edit distances for inversions and losses and
also a heuristic to approximate edit distances for inver-
sions, losses, and nonduplicating insertions; this
approach was extended and refined by Marron et al.
[25]. Yancopoulos et al. [6] proposed a model for calcu-
lating the edit distance under DC]J, single-gene inser-
tions, single-gene deletions, and duplications. Lin et al.
[26] proposed a new evolutionary model that integrates
gene duplications and losses with genome rearrange-
ment. Shao et al. [27] gave an approximation algorithm
to compute the edit distance for two genomes with
duplicated genes under a model that includes DC]J,
insertions and deletions. A maximum likelihood
approach has also been proposed to infer the evolution-
ary tree on whole-genome data under a model that con-
siders both rearrangements and gene-content modifying
events [28]. Most of this work, however, focused on dis-
tance computations based on the final states of the gen-
omes and so cannot support identification of the actual
sequence and location of any segmental duplications.

In this paper, we propose an iterative algorithm to
refine any initial evolutionary trajectory between two
genomes with rearrangements and segmental duplica-
tions. We introduce a new graphical data structure, the
trajectory graph, to model any given evolutionary trajec-
tory between two genomes. We begin by defining and
illustrating the trajectory graph, then show correspon-
dences between redundant rearrangements in the initial
trajectory and certain cycles in the corresponding trajec-
tory graph, and provide an effective algorithm to remove
these redundant rearrangements by iteratively resolving
the active (will be defined in the next section) cycles in
the trajectory graph. We also prove that this algorithm
converges to an optimal trajectory from any initial tra-
jectory when the model is restricted to rearrangements.

The trajectory graph
We use the notation introduced by Bergeron et al. [1].
Each genome is represented as a set of chromosomes,

Page 2 of 8

while each chromosome is a linear or circular list of
genes. Each gene is represented by a nonzero integer,
where the sign of the integer codes the orientation of
that gene along the chromosome. The two ends of a
gene g are called extremities, the head denoted g;, and
the tail g;. A gene g always points from g; to g, i.e., we
have g = g, > g, and -g = g, > g,. Two consecutive
genes a and b can be connected by one adjacency,
denoted as (a, b). Each adjacency can also be repre-
sented by the set of the two adjacent extremities. For
example, adjacency (1, 2) can be written as {1, 2,}, and
adjacency (1, -2) can be written as {1, 2;}. Note that
(a, b) and (b, a) are two different adjacencies, while
(a, b) and (-b, —a) are the same. Each linear chromo-
some ends with two single-extremity sets, to which we
add a special null extremity, specified by 0, to form two
normal adjacencies [6,27]. Thus, a linear chromosome
with n genes has n + 1 adjacencies, while a circular
chromosome with n genes has #n adjacencies. The adja-
cency set of a genome is defined as the set of all adja-
cencies in the genome. If all genes in the genome are
distinct, the genome is uniquely represented by its adja-
cency set.

In our evolutionary model, we study two kinds of
operations: DCJ and segmental duplication. A DCJ
operation makes two cuts in the genome, producing
four cut ends, and then rejoins them to produce two
possible outcomes (a third “repairs” the cuts and thus
makes no change). We can view a DCJ operation as a
function of adjacencies: the input is two adjacencies
(a, b) and (c, d) and the output is two new adjacencies
(a, d) and (c, b), or (a, -c) and (-b, d). A segmental
duplication operation duplicates a segment (a substring
of the genome) and either creates a new circular chromo-
some out of the copy or inserts the copy in the genome at
some location outside the original segment. A segment
consisting of n genes g3, g, ..., g, can be represented by
its n - 1 adjacencies, (g1, £), (€2, £3), - (€n-1 £1)- To keep
notation shorter, we will simply write (g1, g2, ..., £&,) to
represent these # - 1 adjacencies and, when appropriate,
we simply use g’ to represent the copy of the original
gene g after a duplication.

We now define the two types of segmental duplica-
tions in term of adjacencies. The first type of the seg-
mental duplication [19,20] inserts a copy of a segment
(g1, g2» --» g») to a position specified by the adjacency
(a, b); thus it takes (g1, g2, --» &) and (a, b) as input, and
outputs (a, &), (81, &+ &), (& b) and (g1, g2, -
g or (a, —8,), (=8 —8—1:""*+ 8n_1): (&, b) and
(¢» g - gu). Note that (g, 8 ---,8,) and
(—%, —8. 1+, —&,) represent the same adjacency
set. The second type of the segmental duplication [29]
creates a new circular chromosome with the copy of the
segment (g1, €2, -.» g), thus it takes only (g1, g2, --» &) as

Shao et al. BMC Bioinformatics 2013, 14(Suppl 15):59
http://www.biomedcentral.com/1471-2105/14/515/59

input and outputs (g, £). (81, 8 -, &) and (g1,

22 v Gn)-

Each operation can be represented as a directed sub-
graph, composed of one operation node representing the
operation itself, a number of input adjacency nodes (one
for each of its input adjacencies), a number of output
adjacency nodes (one for each of its output adjacencies),
one directed edge from each input adjacency node to
the operation node, and one directed edge from the
operation node to each output adjacency node. Figure 1
illustrates these graph components for DCJ and the two
types of duplication.

We say that an edge is active if the adjacency asso-
ciated with the node to which it is attached has been
changed by the operation, inactive otherwise. In the
graph for a DCJ operation, all four edges are active. In
the graph for the first type of duplication, only the edge
from (a, b) to the operation node and the two edges
from the operation node to the output adjacencies
(a, &) and (g, b), or (a, —g,) and (=g, , b) are active,
while the other edges are inactive. In the graph for the
second type of duplication, only the edge from the
operation node to (g, &) is active; all other edges are
inactive. We say that a cycle in the trajectory graph is
an active cycle if all of its edges are active and define
the size of a cycle as the number of the operation nodes
it contains.

Given two adjacency sets X and Y, a sorting path
P = {py, po, ... py} from X to Y is a series of operations
that transform X into Y. The trajectory graph G(P)
with respect to P naturally delineates the input and
output of each operation and the dependency relation-
ships between them. Let S; be the adjacency set after
sequentially performing operations p;, p, ..., pi starting
from X. The trace from X to Y with respect to P is

Page 3 of 8

(X = So, S1, S, ..., S, = Y). To construct G(P), the
initial step is to draw one adjacency node for each
adjacency in X. Then we sequentially handle each
operation in P, ensuring that, before tackling operation
Pr all adjacency nodes of outdegree 0 in the current
graph are exactly Si_;. To add operation p;, we connect
the component graph for operation p; to the current
graph by replacing all the input adjacency nodes with
their counterparts in the current graph. After all
operations are added, the set of all adjacency nodes of
outdegree 0 is then exactly Y. Figure 2 illustrates the
construction.

By construction, the trajectory graph has the following
two properties. First, the adjacency nodes of indegree 0
form the adjacency set of X and the adjacency nodes of
outdegree 0 form the adjacency set of Y, while all other
adjacency nodes have indegree 1 and outdegree 1. Sec-
ond, the trajectory graph is a directed acyclic graph and
any topological sorting of all the operation nodes is a
valid sorting path from X to Y.

An iterative algorithm to improve any trajectory
Given any two genomes and initial evolutionary trajec-
tory P between them, we build the trajectory graph G(P)
and give the following sufficient condition in G(P) to
identify and resolve redundant rearrangements in P.

Theorem 1. Let P be a sorting path from X to Y. If G
(P) contains active cycles, then we can find another sort-
ing path P’ from X to Y with fewer DCJ operations and
an equal number of duplications.

Proof. Let C be an active cycle in G(P). Since G(P) is
directed, we can represent C as two node-disjoint direc-
ted paths starting from the same fop node and ending at
the same bottom node. Clearly, neither of these two
nodes can be an adjacency node: the top node must

‘(a>b)] ‘{C7d)| |(ab)| |(C,d)| ‘(a’b)l |(g11 ‘g’lj
@d] [0 @) 54 |@e) L —.ea) (gt @ o)
(a) (b) (c)
|(a!b)‘ |(gj'g“) (gls"'vg”)
l(a:_g:!.)H(_g-:n‘"te—gi)”(_g;vb).lr‘fglr'“-g"” l(q:,gi)“(givqi,)ﬂ(y;,.gn)‘

(d)

edges are drawn with dotted lines.

Figure 1 lllustration of the DCJ and the segmental duplication as functions of adjacencies. Part () and (b) are the DCJ, part (c) and (d)
are the first type of the duplication, and part (e) is the second type of the duplication. Active edges are drawn with solid lines while inactive

(e)

Shao et al. BMC Bioinformatics 2013, 14(Suppl 15):S9
http://www.biomedcentral.com/1471-2105/14/515/59

Page 4 of 8

edr

1,2,3,4,5,2, 8 4
R

[(0,D)] [(1,2)] [2,3)] [(3,4)] [(4,5)] [(5,0)]

! 23 [3.4)

Y

5.2 [(273)]

#,0)]

1,2,3,-2,—5,—4,3,4

>

! QDeD

—2,-1,3,-2',—5,—4,3 . 4'

(0, —2)[[(-1,3)][(3, -2)]

|(74v3,)]

(a)

Figure 2 A trajectory graph. The initial genome consists of one linear chromosome of 5 genes, (1, 2, 3, 4, 5). The duplication operation inserts
a copy of (2, 3, 4) to the right end, which transforms the genome into (1, 2, 3, 4, 5, 2/, 3, 4). Then two DCJ operations, one inverting the
segment of (4, 5, 2') and the other inverting the segment of (1, 2), generate the final genome as (-2, -1, 3, -2, -5, -4, 3/, 4'). Adjacency nodes (1, 2)
and (4, 5) form two trivial connected components, while the rest of the graph forms a nontrivial connected component. Figure legend text.

(b)

have outdegree 2 and the bottom node must have inde-
gree 2. Moreover, the bottom node must be a DC]
node, since there is at most one active edge pointing to
each duplication node. We now show how to exchange
the bottom operation node with one of the two parent
operation nodes, thereby moving one operation node
out of C, until there are only two operation nodes left
in C, which we can always replace with at most one
operation.

We choose one of the two parent operation nodes to
guarantee that the exchange will not create any directed
cycles. If both parent nodes are independent (there is no
directed path from one to the other), then we arbitrarily
choose one; otherwise, we always choose the one that is
on the directed path from the other to the bottom node.

Figure 3 shows how to exchange the bottom DC]
node with a parent DCJ] node. We view the two DC]J
nodes as a single supernode, with three input adjacen-
cies and three output adjacencies. We replace the cur-
rent two DCJ nodes with two new ones, keeping the

inputs and outputs of the supernode unchanged. The
new top DCJ node takes the two input adjacencies of
the supernode that are linked in C as its inputs and out-
puts two adjacencies, one of which is among the outputs
of the supernode. The new bottom DC]J node takes the
other output adjacency of the new top DCJ node and
the remaining input adjacency of the supernode as
inputs and outputs the other two output adjacencies of
the supernode. After the exchange, the new bottom DCJ
node is out of the new active cycle, while the new top
DC]J node becomes the bottom node of the new active
cycle.

Figure 4 shows how to exchange the bottom DC]
node with its parent duplication node. Again, we con-
sider these two operation nodes as a single supernode.
The new DC]J node takes the two adjacency nodes
linked in C as inputs and outputs two adjacencies, one
of which is among the outputs of the supernode while
the other is the insert position of the new bottom dupli-
cation node. After the exchange, the new bottom

Y] Y
(a,0)] (e, f)] |(c, d)] [(a,)]
l QDO QCD
|(C7 dﬂ |(G’:f)| ’(6, b)‘ = |(C, *LL)| |(7d b)‘ Hev f)|
DD DCD
J(Cv _a)| |(_d>f)‘ L ‘(_dv‘f” ‘(87 b)L
(a) (b)
Figure 3 Exchanging two DCJ nodes to reduce the size of the active cycle. Edges in the active cycle are in bold.

Shao et al. BMC Bioinformatics 2013, 14(Suppl 15):S9
http://www.biomedcentral.com/1471-2105/14/515/59

Page 5 of 8

—
—

@

l(a, b)|

I(C: 7“)

[(=d.b)]

|(31:52: T Sﬂ)l

[Ca s Gad G s[5t 5m)]

Figure 4 Exchanging the bottom DCJ node with its parent duplication node.

(b)

duplication node will be out of the new active cycle and
the new parent DCJ node will be the bottom node of
the new active cycle.

Through these exchanges, C will be reduced to just
two operation nodes, the top one and the bottom one.
Now we show that we can always replace these two
operations with at most one operation.

Consider first the case in which the two operation
nodes are both DCJ operations. If the input and output
of the supernode are different, then we can use one new
DCJ node to connect them, as shown in Figure 5(a, b);
otherwise, we do not need any operation node, as
shown in Figure 5(c, d).

Next consider the case in which the top node is a
duplication and the bottom node is a DCJ]. Assume the
top duplication inserts a copy of the segment to position
(a, b). If (a, b) is not one of the output adjacencies of the
bottom DCJ node, then these two operations can be
replaced by one duplication which inserts the inverted
segment to the same position, as shown in Figure 6(a, b);
otherwise, these two operations can be replaced by one
duplication which creates a circular chromosome from
the copy of the segment, as shown in Figure 6(c, d).

Note that the trajectory graph remains a directed
acyclic graph. Thus we can retrieve one sorting path
from any topological sorting of the operation nodes in
the final trajectory graph; since we also showed that the
number of DCJ operation nodes has reduced by at least
one and the number of duplication nodes is unchanged,
the theorem is proved. O

Given the trajectory graph G(P) constructed from two
input genomes and an initial trajectory P, our algorithm
iteratively applies Theorem 1 to reduce the number of
operations until there is no active cycle in G(P). This
algorithm will always terminate since resolving each
cycle will reduce the number of operation nodes in G(P)
and such number is always non-negative.

The trajectory graph restricted to rearrangements
We study the trajectory graphs with only DCJ operations.
We show that the above iterative algorithm always con-
verges to an optimal trajectory for any initial trajectory.
We first investigate the structure of the trajectory
graphs under a rearrangement-only model and illustrate
the close relationship with adjacency graphs. Recall that
given two adjacency sets X and Y, the adjacency graph

Figure 5 Resolve the active cycle consisting of two DCJ operations.

—(e.b)] [(cd)]
(d)

Shao et al. BMC Bioinformatics 2013, 14(Suppl 15):S9
http://www.biomedcentral.com/1471-2105/14/515/S9

Page 6 of 8

ﬂl _S‘l’i Sll || na"'

(b)

Figure 6 Resolve the active cycle consisting of one DCJ operation and one duplication.

(d)

is defined as a bipartite multigraph A = {X, Y, E}, in
which # € X and v € Y are linked by one edge if # and
v share one extremity and by two edges if they share
two extremities. If X and Y have the same extremity set
and each extremity appears only once, the adjacency
graph consists of node-disjoint cycles and the minimum
number of DC]J operations needed to transform X into
Y is |X] - ¢, where c is the number of cycles in A [1].

Let a trajectory P consist of only DCJ operations. For a
connected component C of the trajectory graph G(P), we
use /(C) to denote the set of adjacency nodes of indegree
0 in C, O(C) to denote the set of adjacency nodes of out-
degree 0 in C, A(C) to denote the set of adjacency nodes
with indegree 1 and outdegree 1, and D(C) to denote the
set of DC] nodes in C. We say that a connected compo-
nent is ¢rivial if it is a single adjacency node and nontri-
vial otherwise (for examples see Figure 2).

Lemma 1. Let C be a connected component in the trajec-
tory graph G(P) where P consists of only DCJ operations.
Then we have C is a tree if and only if |[D(C)| = |I(C)] -

Proof. If C is trivial, it is a tree, and we have |D(C)| =
0 and |/(C)| = 1, hence the lemma holds. Assume then
that C is nontrivial. The number of edges equals the
sum of indegrees, which is |O(C)|+ |A(C)|+ 2 - |D(C)[;
the number of nodes is |I(C)| + |O(C)| + |A(C)| + |D
()|, since I(C) and O(C) are disjoint when C is nontri-
vial. C is connected, so it is a tree exactly when it has
one more vertices than it has edges, hence we can write
|0(C)|+]A(C)]+2/D(C)] = [I(C)]+]0(C)|+|A(C)|+|D(C)]-
1, which yields |D(C)| = |I(C)|-1, as desired. ©

The following lemma shows that there is one-to-one
correspondence between trees in the trajectory graph
and cycles in the adjacency graph.

Lemma 2. Let C be a tree in the trajectory graph G(P)
where P consists of only DC] operations. The correspond-
ing adjacency graph A = {I(C), O(C), E} consists of
exactly one cycle.

Proof. If C is trivial, then A is a cycle of length 2,
hence the lemma holds. For a nontrivial C, we proceed
by contradiction. Since C is nontrivial, we have that /(C)
and O(C) are disjoint. Besides, I/(C) and O(C) have the
same extremity set. Thus, A = {{(C), O(C), E} consists of
node-disjoint cycles. Now suppose that A consists of
two or more cycles. We partition A into two parts by
taking one arbitrarily chosen cycle as the first part and
the remaining cycle(s) as the second part. We then label
all extremities in the first part as e; and all extremities
in the second part as e,. We divide the adjacency nodes
in C into three categories: if its two extremities are both
labeled e, then label the node a;; if its two extremities
are both labeled e,, then label the node a,; otherwise,
label the node a3. Now we can classify any DCJ opera-
tion into one of the following 7 types:

{ﬂlr al} - {611, 611}, or
{ay, ax} — {ay, ay}, or
{ar, as} — {as, a3}, or
{ay, as} — {a1, a3}, or
{as, as} — {ay, as}, or
{as, as} — {as, as}, or
{613, 43} g {611, 612}'

N W

Note that the labels on the adjacency nodes in I(C) U
O(C) must be either a; or a,, since these adjacencies are
the nodes of the adjacency graph, whose two extremities
have the same type. Note also that there must exist at

Shao et al. BMC Bioinformatics 2013, 14(Suppl 15):S9
http://www.biomedcentral.com/1471-2105/14/515/59

least one adjacency node in C that is labeled as aj:
otherwise the DCJ operation can be only of type (1) or
(2) and C can be divided into two disconnected sub-
graphs, one defined by adjacency nodes labeled a; and
DC]J nodes of type (1), which contradicts the fact that C
is connected. Now, remove all adjacency nodes labeled
a; or a, and their adjacent edges: the remaining nodes
must have even total degree—see Figure 7. The reason is
that all adjacency nodes in I(C) U O(C) are removed,
while adjacency nodes in A(C) either are removed or are
labeled as a3 and have degree 2. Moreover, all operation
nodes must have even total degree, as easily verified by
checking the 7 types. Hence there must be one cycle in
C, a contradiction since C is a tree. O

Theorem 2. A trajectory P consisting of only DCJ
operations is optimal if and only if the corresponding
trajectory graph G(P) consists of trees.

Proof. If G(P) contains at least one cycle C, then this
cycle C must be an active cycle since all edges in G(P)
are active for the DCJ-only model. Thus, according to
Theorem 1, we have that P is not optimal.

We now prove that, if G(P) consists of only trees, then
P is optimal. Now assume that G(P) consists of m trees,
Ty, Ty, ..., Tar. Applying Lemma 1 to each tree, we find
that the total number of DCJ nodes in G(P) is

Y ID(T)| = Y (Tl = 1= [I(Ti)| —m
k=1 k=1 k=1

On the other hand, according to Lemma 2, there
are exactly m cycles in the adjacency graph
A = (UL, I(Tr), UL, O(T), E}, which implies that the

Page 7 of 8

minimum number of DC]J operations needed is
> ey II(Tk)| — m. Thus P is optimal, as desired. O

Corollary 1. The iterative algorithm converges to an
optimal trajectory from any initial trajectory.

Proof. The iterative algorithm terminates when there is
no active cycles in the trajectory graph. According to
Theorem 2, any trajectory retrieved from the trajectory
graph is optimal. O

Discussion and conclusion

Theorem 1 gives us a means to reduce the cost of a
given sorting path. Unfortunately, the converse of the
theorem does not hold: it is not hard to see how to
take advantage of duplication nodes to produce a coun-
terexample. Thus repeated applications of the con-
structive proof of Theorem 1 do not ensure optimality.
However, the iterative improvement procedure can
form the basis for strong heuristics or good approxima-
tion algorithms.

The trajectory graph naturally combines rearrange-
ments and segmental duplications (or, in general, con-
tent-modifying operations) in a single model. Such a
basis is crucial to the development of strong characteri-
zations and good algorithms. We also took a step in
that direction by showing that the trajectory graph is a
proper augmentation of the adjacency graph, in terms of
that both graphs can be used to obtain an optimal sort-
ing scenario when only DCJ operations are considered,
and by describing an efficient iterative algorithm that
can be used on a more general model. Our current
work focuses on using this improvement method within
a large optimization framework (e.g. incorporating

(1023 [£20,307] [0, 4] [(4, 1]

‘{1}1’ 2'5}1‘ ‘{2“73"}2‘ |{3h’4t}1| ‘{4”-1 1/-}2‘

¢

|{2_;H 3}1}3' |{3:,, 4t}3|

[{1n, 36} [{26, 2,17 [{4¢, 1e}7] [{3+,4n}7

26,4} [{20, L]

{1n, 3u)" [{2¢, 46} [{20, 137 [{3:, 40}

(b)
[{24,3u}"] ({3, 4:)]
{2, 24} {4+, 1}

(a)

Figure 7 An example for the proof of Theorem 2. Part (a) shows a non-trivial connected component C of a trajectory graph. Part (b) is the
corresponding adjacency graph A = {/(0), O(C), £}, which has two cycles. All extremities in the first cycle are shown bold. The superscripts 1, 2
and 3 on each adjacency represent labels of a, a, and as respectively. After removing all adjacency nodes in (a) labeled as a; or a5, the
remaining part is shown in part (c), in which all nodes have even total degree.

(€)

Shao et al. BMC Bioinformatics 2013, 14(Suppl 15):S9
http://www.biomedcentral.com/1471-2105/14/515/59

methods to find good initial trajectories) to derive fast
and accurate approximations.

Different trajectories may correspond to the same tra-
jectory graph, if they can be retrieved by different ways
of topological sorting in the same graph. Thus the tra-
jectory graph is useful in representing equivalent trajec-
tories as well as characterizing the space of all optimal
trajectories under both rearrangements and content-
modifying operations (like the cases under inversions
[30,31] and DC]J operations [32] on adjacency graphs),
and thus forming a basis for future statistical analysis.

Under the DCJ model, if the two cuts are in the same
linear chromosome, one of the two nontrivial outcomes
is to circularize a segment of DNA as a circular chro-
mosome (also called circular intermediate), which has
recently been inferred in the evolution of cow genomes
[33]. Recent evidence also showed that segmental dupli-
cations may also be mediated by circular intermediates
in fish genomes [29]. The proof of Theorem 1 makes
natural use of the connection between rearrangements
and segmental duplications through circular intermedi-
ates, and thus may be useful to identify possible circular
intermediates in the evolutionary trajectory.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements

This work is supported by a grant from EPFL and a fellowship of the Swiss
National Science Foundation to YL (grant no. 146708). The authors would
like to thank the reviewers and editors for their helpful comments.

This article has been published as part of BMC Bioinformatics Volume 14
Supplement 15, 2013: Proceedings from the Eleventh Annual Research in
Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcbioinformatics/supplements/
14/S15.

Published: 15 October 2013

References

1. Bergeron A, Mixtacki J, Stoye J: A unifying view of genome
rearrangements. Proc 6th Workshop Algs in Bioinf (WABI'06), Volume 4175 of
Lecture Notes in Comp Sci Springer Verlag, Berlin; 2006, 163-173.

2. Yancopoulos S, Attie O, Friedberg R: Efficient sorting of genomic
permutations by translocation, inversion and block interchange.
Bioinformatics 2005, 21(16):3340-3346.

3. Bergeron A, Mixtacki J, Stoye J: A new linear-time algorithm to compute
the genomic distance via the double cut and join distance. Theor
Comput Sci 2009, 410(51):5300-5316.

4. Chen X: On sorting permutations by double-cut-and-joins. Proc 16th Conf
Computing and Combinatorics (COCOON'10), Volume 6196 of Lecture Notes in
Comp Sci Springer Verlag, Berlin; 2010, 439-448.

5. Chen X, Sun R, Yu J: Approximating the double-cut-and-join distance
between unsigned genomes. BMC Bioinformatics 2011, 12(Suppl 9):S17.

6. Yancopoulos S, Friedberg R: Sorting genomes with insertions, deletions
and duplications by DCJ. Proc 6th RECOMB Work on Comp Genomics
(RECOMBCG'08). Lecture Notes in Computer Science 5267, Volume 5267 of
Lecture Notes in Comp Sci Springer Verlag, Berlin; 2008, 170-183.

7. BafnaV, Pevzner P: Genome rearrangements and sorting by reversals.
Proc 34th Ann IEEE Symp Foundations of Comput Sci (FOCS'93) 1993, 148-157.

Page 8 of 8

8. Bafna V, Pevzner P: Genome rearrangements and sorting by reversals.
SIAM J on Computing 1996, 25:272-289.

9. Hannenhalli S, Pevzner P: Transforming cabbage into turnip (polynomial
algorithm for sorting signed permutations by reversals). Proc 27th Ann
ACM Symp Theory of Comput (STOC'95) ACM Press, New York; 1995, 178-189.

10. Bader D, Moret B, Yan M: A fast linear-time algorithm for inversion
distance with an experimental comparison. J Comput Biol 2001,
8(5):483-491.

11. Jean G, Nikolski M: Genome rearrangements: a correct algorithm for
optimal capping. Inf Proc Letters 2007, 104:14-20.

12. Ozery-Flato M, Shamir R: Two notes on genome rearrangement. J Bioinf
Comp Bio 2003, 1:71-94.

13. Tesler G: Efficient algorithms for multichromosomal genome
rearrangements. J Comput Syst Sci 2002, 65(3):587-609.

14. Braga M, Willing E, Stoye J: Genomic distance with DCJ and indels.
Algorithms in Bioinformatics 2010, 90-101.

15. El-Mabrouk N: Genome rearrangement by reversals and insertions/
deletions of contiguous segments. Proc 11th Ann Symp Combin Pattern
Matching (CPM00), Volume 1848 of Lecture Notes in Comp Sci Springer
Verlag, Berlin; 2000, 222-234.

16. Alekseyev M, Pevzner P: Whole genome duplications and contracted
breakpoint graphs. SIAM J on Computing 2007, 36(6):1748-1763.

17. El-Mabrouk N, Sankoff D: The Reconstruction of Doubled Genomes. SIAM
J Computing 2003, 32(3):754-792.

18. Paten B, Diekhans M, Earl D, John J, Ma J, Suh B, Haussler D: Cactus graphs
for genome comparisons. J Comput Biol 2011, 18(3):469-481.

19. Bailey J, Eichler E: Primate segmental duplications: crucibles of evolution,
diversity and disease. Nature Reviews Genetics 2006, 7(7):552-564.

20. Lynch M: The Origins of Genome Architecture Sinauer; 2007.

21. Jiang Z, Tang H, Ventura M, Cardone M, Marques-Bonet T, She X, Pevzner P,
Eichler E: Ancestral reconstruction of segmental duplications reveals
punctuated cores of human genome evolution. Nature Genetics 2007,
39(11):1361-1368.

22. Kahn C, Raphael B: Analysis of segmental duplications via duplication
distance. Bioinformatics 2008, 24(16):i133-i138.

23. Kahn C, Hristov B, Raphael B: Parsimony and likelihood reconstruction of
human segmental duplications. Bioinformatics 2010, 26(18):1446-i452.

24. El-Mabrouk N: Sorting signed permutations by reversals and insertions/
deletions of contiguous segments. Journal of Discrete Algorithms 2001,
1:105-122.

25. Marron M, Swenson K, Moret B: Genomic distances under deletions and
insertions. Proc 9th Conf Computing and Combinatorics (COCOON03)
Springer; 2003, 537-547.

26. Lin'Y, Moret B: A new genomic evolutionary model for rearrangements,
duplications, and losses that applies across eukaryotes and prokaryotes.
J Comput Biol 2011, 18(9):1055-1064.

27. Shao M, Lin Y: Approximating the edit distance for genomes with
duplicate genes under DCJ, insertion and deletion. BMC Bioinformatics
2012, 13(Suppl 19):513.

28. LinY, Hu F, Tang J, Moret B: Maximum likelihood phylogenetic
reconstruction from high-resolution whole-genome data and a tree of
68 eukaryotes. Proc 18th Pacific Symp on Biocomputing (PSB'13) 2013,
285-296.

29. Fujimura K, Conte M, Kocher T: Circular DNA Intermediate in the
Duplication of Nile Tilapia vasa Genes. PLoS ONE 2011, 6(12):e29477.

30. Bergeron A, Chauve C, Hartman T, St-Onge K: On the properties of
sequences of reversals that sort a signed permutation. Proceedings of
JOBIM, Volume 2 Citeseer; 2002, 99-108.

31. Braga M, Sagot MF, Scornavacca C, Tannier E: Exploring the solution space
of sorting by reversals, with experiments and an application to
evolution. ACM/IEEE Trans on Comput Bio & Bioinf 2008, 5(3):348-356.

32. Braga M, Stoye J: The solution space of sorting by DCJ. J Comput Biol
2010, 17(9):1145-1165.

33. Durkin K, et al: Serial translocation by means of circular intermediates
underlies colour sidedness in cattle. Nature 2012, 482(7383):81-84.

doi:10.1186/1471-2105-14-S15-S9

Cite this article as: Shao et al: Sorting genomes with rearrangements
and segmental duplications through trajectory graphs. BMC
Bioinformatics 2013 14(Suppl 15):59.

http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S15
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S15
http://www.ncbi.nlm.nih.gov/pubmed/15951307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15951307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22373004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22373004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11694179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11694179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21385048?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21385048?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16770338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16770338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17922013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17922013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689814?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689814?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20823306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20823306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23282098?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23282098?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22216289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22216289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20874401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22297974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22297974?dopt=Abstract

	Abstract
	Introduction
	The trajectory graph
	An iterative algorithm to improve any trajectory
	The trajectory graph restricted to rearrangements
	Discussion and conclusion
	Competing interests
	Acknowledgements
	References

