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Abstract

Background: Protein rigidity analysis is an efficient computational method for extracting flexibility information
from static, X-ray crystallography protein data. Atoms and bonds are modeled as a mechanical structure and
analyzed with a fast graph-based algorithm, producing a decomposition of the flexible molecule into
interconnected rigid clusters. The result depends critically on noncovalent atomic interactions, primarily on how
hydrogen bonds and hydrophobic interactions are computed and modeled. Ongoing research points to the
stringent need for benchmarking rigidity analysis software systems, towards the goal of increasing their accuracy
and validating their results, either against each other and against biologically relevant (functional) parameters. We
propose two new methods for modeling hydrogen bonds and hydrophobic interactions that more accurately
reflect a mechanical model, without being computationally more intensive. We evaluate them using a novel
scoring method, based on the B-cubed score from the information retrieval literature, which measures how well
two cluster decompositions match.

Results: To evaluate the modeling accuracy of KINARI, our pebble-game rigidity analysis system, we use a
benchmark data set of 20 proteins, each with multiple distinct conformations deposited in the Protein Data Bank.
Cluster decompositions for them were previously determined with the RigidFinder method from Gerstein’s lab and
validated against experimental data. When KINARI's default tuning parameters are used, an improvement of the B-
cubed score over a crude baseline is observed in 30% of this data. With our new modeling options, improvements
were observed in over 70% of the proteins in this data set. We investigate the sensitivity of the cluster
decomposition score with case studies on pyruvate phosphate dikinase and calmodulin.

Conclusion: To substantially improve the accuracy of protein rigidity analysis systems, thorough benchmarking
must be performed on all current systems and future extensions. We have measured the gain in performance
by comparing different modeling methods for noncovalent interactions. We showed that new criteria for
modeling hydrogen bonds and hydrophobic interactions can significantly improve the results. The two new
methods proposed here have been implemented and made publicly available in the current version of
KINARI (v1.3), together with the benchmarking tools, which can be downloaded from our software’s website,
http://kinari.cs.umass.edu.
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Introduction

As new generations of bioinformatics systems are
released with new features and updated methods, it is
vital to ensure that their results continue to match or
improve upon previous generations. A number of protein
rigidity analysis software systems have been built, includ-
ing MSU-FIRST (now ProFlex) [1], ASU-FIRST [2], and
our own KINARI [3]. All of these take as input a single
protein structure in a PDB file and output a decomposi-
tion of the protein into rigid clusters. Although all the
systems share the same general approach of mechanical
modeling and running a pebble-game algorithm, there
are substantial variations in both their modeling and in
the underlying algorithms.

The main goal in our research is to validate the predic-
tive power of rigidity analysis systems. Towards this goal,
we propose new modeling methods for incorporating non-
covalent interactions that may improve accuracy. We also
propose a general methodology for benchmarking protein
rigidity analysis systems. Included in this a method to
assign a score to a predicted cluster decomposition, com-
pared with decompositions produced by some other
method. This is an adaptation of the B-cubed score from
the information retrieval literature, which is used as a
comparative score on two clusterings of the same data [4].

We use this evaluation method to benchmark our soft-
ware, KINARI, against other previously available systems,
MSU-FIRST and ASU-FIRST. In our benchmarking we
use two data sets: the first is composed of several pro-
teins used to validate the MSU-FIRST software [1,5] and
the second is used in the Gerstein Lab to validate the
RigidFinder server [6].

Protein rigidity analysis. Rigidity analysis is a well-estab-
lished method, implemented in several software systems,
for analyzing flexibility of proteins. With this method, the
molecule is modeled as a mechanical framework, in which
distance and angle constraints are derived from chemical
bonds and other inter-atomic interactions. A fundamental
question in protein mechanics is to identify groups of
atoms that move rigidly together, called rigid clusters, and
the inter-connectivities that hold the protein together
while permitting flexing. The pebble games are a family of
combinatorial algorithms that work correctly and effi-
ciently on certain families of mechanical structures. They
has been implemented in several software packages [1-3]
and applied to a variety of protein studies, including iden-
tification of folding cores [7], dilution analysis [7], protein
motion [8], and improved flexibility simulations [9].

Prior to running the algorithm, the molecule is abstracted
as a mechanical model, where its stabilizing interactions
(covalent bonds, hydrogen bonds, hydrophobic interactions,
etc.) induce length or angle constraints between the con-
stituent elements. The constraints eliminate degrees of

Page 2 of 22

freedom and their cumulative effect leads to the creation of
rigid clusters, which are then identified by graph-based peb-
ble game algorithms.

Previous approaches. In previous work, hydrogen
bonds (H-bonds) were modeled as mechanically equiva-
lent to covalent bonds, fixing bond length and bond
angles at incident atoms [1-3,10]. It has been observed
early on that such a method may lead to inaccurate
results, such as an almost complete rigidification of the
protein model. Since it is known that not all H-bonds
have the same strength, an energy function was applied
to prune the weakest bonds and exclude them from the
model [1]. A universal H-bond energy cutoff, which
would produce biologically credible results for any pro-
tein input, has never been found. Wells et al. [11] point
out the discrepancies of the H-bond energy cutoffs in a
number of previous studies in the literature.

Also, in previous work, hydrophobic interactions were
identified with heuristic approaches [2], and, unlike H-
bonds, they had no associated energies. It has been
observed that the tuning of the hydrophobic interactions
can be just as important as for H-bonds. Gohlke et al.
[10] comment, in their study of flexibility changes dur-
ing Ras-Raf complex formation, “Finding the appropriate
balance between these interactions [H-bonds and hydro-
phobics] is thus crucial for an accurate representation of
the flexibility characteristics of proteins”.

Strength and geometries of H-bonds and hydrophobic
interactions. For covalent bonds, energy and geometry is
characterized by the identities of the two electron-sharing
atoms. The bond length and directionality (or bond-
angle) tend to be fully determined, as explained by mole-
cular orbital theory. For example, in ethane C,Hg, each C
atom is bonded to another C atom and 3 H atoms, form-
ing two overlapping, rigid tetrahedra (Figure 1). The
bond angles and bond lengths remain relatively fixed. In
mechanical modeling for rigidity analysis, covalent bonds
are incorporated as bond-length and bond-angle fixing
constraints. By contrast, H-bonds display large variations
in energies and geometries, even for those with the same
donor and acceptor atoms [12] (page 1, paragraph 2). A
strong H-bond behaves essentially as a covalent bond,
but weaker H-bonds behave more like electrostatic inter-
actions which have much more variance in length and
directionality [12]. Pairs of atoms that are packed closely
together engage in hydrophobic, or van der Waals, inter-
actions. The strength of these interactions depends on
the atom types and pairwise distances. Which H-bonds
and hydrophobic interactions to incorporate, and how to
model them, is crucial to obtaining accurate results in
rigidity analysis.

Summary of our contributions. We propose two new
methods for incorporating noncovalent interactions for
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Figure 1 Body-bar-hinge modeling of molecules. KINARI builds a body-bar-hinge mechanical model of the input molecule. For example, in
ethane, each C atom bonded to four neighbors forms a rigid body. The two bodies share a hinge along the center C-C bond.

protein rigidity analysis. First, rather than simply removing
weaker H-bonds, we propose varying the way that the H-
bonds are modeled, based on their strength. In this paper,
we investigate modeling the weak H-bonds as a rigid bar
which fixes the distance between the endpoints, but per-
mits full rotational freedom. We reveal the limitations of
the current mathematical theory for supporting this mod-
eling, and propose heuristics to approximate the rigidity
results. The second method we propose is in the inclusion
of hydrophobic interactions. We calculate these interac-
tions and assign to them an energy using the Lennard-
Jones potential. Then, as for H-bonds, we use an energy
cutoff to determine which interactions to include in the
modeling. As a proof-of-concept, we investigated the use
of a single, rigid bar to model these interactions. We have
implemented these extensions in our KINARI software,
and made it available for public use on the KINARI-Web
server [3]. In addition, we propose a method for evaluating
the tuning of the H-bond and hydrophobic energy cutoffs.
This is an adaptation of the B-cubed score from the infor-
mation retrieval literature, which is used to compare two
clusterings of the same data [4]. We perform an evaluation
on a curated ‘gold standard’ data set of proteins whose
cluster decompositions were computed by a different
method. We make the benchmarking scripts, written in
python, available at the KINARI web site for public use.

Background and literature review

We present relevant background material on hydrogen
bonds, hydrophobic interactions, rigidity theory, and
KINARI’s mechanical modeling core. We then provide
our literature review.

Hydrogen bonds in proteins
A hydrogen bond (H-bond) forms between an electrone-
gative acceptor (A) atom and a hydrogen atom (H) that

is covalently bonded to an electronegative donor (D)
atom (Figure 2) [13]. Schematically, we refer to the
donor-hydrogen-acceptor triplet as D-H-A.

Secondary structure elements in proteins, mainly alpha
helices and beta sheets, are held together by very regular
H-bonding patterns along the backbone. H-bonds also
form outside secondary structures, helping to interlace the
secondary structures or other pieces of the protein
together into the folded shape. Intermolecular H-bonds,
such as those between two proteins in a complex, or
between a protein and a non-protein ligand, play an
important role in stabilizing the complex [10,14,15].

Strong, moderate, and weak H-bonds. Energies for H-
bonds found in proteins are typically under 15 kcal/mol
[12] (pg 31-32, Sec. 2.4.2), significantly weaker than cova-
lent bonds with energies around 85 kcal/mol [16]. Weak
H-bonds are electrostatic in nature but increasingly
behave like covalent bonds as their strength grows [12].
The boundary between ‘weak’ and ‘strong’ is blurred. For
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Figure 2 Hydrogen bond definition. Hydrogen bond definition.
(@) A hydrogen bond forms between an electronegative acceptor
atom, A, and a hydrogen atom, H, that is covalently bonded to an
electronegative donor atom, D. AB is the acceptor base. (b)
Hydrogen bonds are calculated using geometric parameters.
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the modeling scheme proposed here, the boundary
between weak and strong is left to the user to determine,
as it is the case in all previously implemented methods.

H-bond energy functions. H-bonds display large varia-
tions in energies and geometries, even for those with the
same donor and acceptor atoms. This leads to difficulties
in identifying bonds and their strengths, leading to what
Gilli and Gilli [12] called the Hydrogen bond problem.
Despite the difficulty, efforts have been made to quantify
the energy, or potential, of individual H-bonds using
orientation information alone. The two versions of
FIRST and [1,2] and our own KINARI software use the
Mayo Lab’s energy function [17] for this purpose. This is
a closed-form equation, parameterized on H-bond angles
and distances, as in Figure 2. The energy function of Kor-
temme et al. is similarly parameterized by angles and dis-
tances, but rather than a closed-form equation, it sums
the independent energetic contributions from a database
of statistics from crystallography-determined protein
structures [18].

H-bond configurations. Gilli and Gilli [12](pg. 24) pre-
sent a review of a number of different configurations
that have been studied in the H-bond literature. Figure
3 shows several of them, which are relevant to our mod-
eling. We use the nomenclature from [14] for describing
furcated configurations.

In a simple, non-furcated configuration, the hydrogen
atom, which is covalently bonded to a donor atom, forms a
single H-bond with an acceptor atom, which is also cova-
lently bonded to only one atom, the acceptor base (Figure
3a). A furcated donor configuration is formed when a sin-
gle hydrogen atom engages in 2 or more H-bonds (Figure
3b). An acceptor which engages in multiple H-bonds is in
a furcated acceptor configuration (Figure 3c). These three
types of configurations have been identified and studied in
the literature. One additional configuration that we identify
here, that is not included in Gilli and Gilli’s listing, is the
multiple-base acceptor configuration where an acceptor
that is covalently bonded to more than one atom engages
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in a H-bond (Figure 3d). Later, in the Methods section, we
describe why this special configuration is of concern in
mechanical modeling.

The most stable configuration of a H-bond is linear,
with D-H-A (6 in Figure 2) forming a 180 angle, but
H-bonds are rarely found to be linear, and the most prob-
able value is 165 [13] (pg. 20). Because of geometric
constraints, H-bonds in furcated configurations will tend
to deviate even more from being linear.

Frequency of configurations in PDB data. Furcated
hydrogen bond configurations are not rare. Panigrahi
and Desiraju [14] performed a survey on H-bond config-
urations on a data set of structures of 251 proteinligand
complexes, using the HBAT software for determining
H-bonds. They found that overall 65% of acceptors and
34% of donors were in furcated configurations. Of the
furcated acceptor configurations, 66% were bifurcated,
25% were trifurcated, and the remainder engaged in 4 to
6 H-bonds. Of the furcated donor configurations, 39%
were bifurcated, 27% were trifurcated, and the remain-
der were tetrafurcated, pentafurcated, or hexafurcated.

Because KINARI uses HBPLUS (rather than HBAT),
the H-bonds identified will differ. Because of this, and
because the classification of Panigrahi and Desiraju did
not not contain multi-base acceptor configurations, we
performed our own examination of configuration fre-
quencies. We examine the 3 proteins from [15] which
probed the contribution of non-conventional H-bonds
to the rigidity of protein complexes: HIV-1 protease
(1htg), serine protease (1vgc), and bilin binding protein
(1bbp). The data are shown in Table 1. Multi-base A
configurations were found to be uncommon, occurring
in approximately 6% of H-bonds.

Configuration energies. We also calculated the energies
of the H-bonds in the 3 proteins, via the Mayo Lab
energy function [17]. In Figure 4, we collect together the
set of H-bonds from all three proteins, and show the dis-
tribution of energies for H-bonds in different configura-
tions. H-bonds in furcated configurations tend to be

(b) furcated donor

(a) simple

bodies determined by KINARI for the mechanical model.

Figure 3 Hydrogen bond configurations. Configurations of interest when building a mechanical model of the protein. The triangles show the

(c) furcated acceptor (d) multi-base acceptor
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Table 1 Prevalence of H-bonds in special configurations.

1htg Tvgc 1bbp
total 146 173 553
bifurcated D 1.3% 2.3% 5.8%
bifurcated A 15% 20% 21%
trifurcated A 0% 1.7% 3.8%
multi-base A 4.8% 6.4% 6.0%

We examined the H-bonds calculated with HBPLUS [36] on 3 example
proteins from [15]: HIV-1 protease (1htg), serine protease (1vgc), and bilin
binding protein (1bbp). We counted how many H-bonds were found in each
configuration type shown in Figure 3, which are of special interest in
mechanical modeling.

weaker than non-furcated because the angles tend to
deviate further from 180 .

Hydrophobic interactions in proteins

Hydrophobic cores are essential to protein domain stabi-
lity [16]. These cores are formed from hydrophobic groups
concentrating in the center of the protein, minimizing the
number of energetically unfavorable contacts with water
and maximizing the number of energetically favorable van
der Waals interactions. In order to incorporate these inter-
actions into rigidity analysis, the developers of ASU-FIRST
introduced a heuristic to to identify and model hydropho-
bic interactions as pairwise interactions between atoms,
that they named ‘hydrophobic tethers’ [2].

A major limitation of their method was that the identi-
fied interactions had no associated energies, and therefore,
it was not possible to tune the set of hydrophobic interac-
tions via an energy cutoff. Later, in the Methods section,
we will propose another way of calculating and assigning
energies to so-called hydrophobic interactions, based on
the Lennard Jones potential. A pair of neutral atoms are
subject to two distinct forces between them: an attractive
force at long ranges (van der Waals force), and a repulsive
force at short ranges (Pauli repulsion force). The Lennard-
Jones 6-12 potential, shown in the equation below, is an
approximation of the sum of these two forces involved in
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a hydrophobic interaction in proteins. The potential is in
standard use in molecular mechanics force fields packages,
such as the popular Amber-99 forcefield [19].

o12 46
V=4 — 1)
o( T T )

The ¢ and o values, which are the potential well depth
and the distance at which the inter-atomic potential is
zero, are experimentally determined and can be retrieved
from tables distributed with the Amber-99 forcefield.

Rigidity theory
A body-bar-hinge framework is a 3D mechanical struc-
ture made from rigid bodies, pairs of which are con-
nected through hinges and bars. The hinges admit only a
rotation of the two incident bodies around the hinge axis.
The fixed-length bars connect the bodies at universal
joints which allow full rotational freedom. If the only
motions of the framework are the trivial rigid motions
(those which move the whole system rigidly, maintaining
all the pairwise distances between all points), then the
framework is said to be rigid. Otherwise it is flexible. The
top row of Figure 5 shows a few such examples.
Combinatorial algorithms for rigidity of body-bar-hinge
frameworks. A rigid body in isolation has 6 trivial degrees
of freedom (DOFs): all rigid motions can be generated by
translations along the %, y, and z axes, and by rotations
around each of the %, y, and z axes. Two disconnected
rigid bodies have a total of 12 DOFs; k disconnected rigid
bodies have a total of 6k DOFs. We associate a multigraph
to a body-bar-hinge framework, where each body is repre-
sented by a vertex. When two bodies are connected by a
bar one DOF is removed. This is represented in the asso-
ciated multigraph as one edge between the corresponding
graph vertices. Adding additional bars between the two
bodies can remove up to 6 DOFs, at which point the two
rigid bodies are rigidly attached to each other and form a
single rigid body. It is not possible to remove the remain-
ing trivial 6 DOFs by placing additional bars or hinge

8 =5 ;7 g N «
28 8% - 82 8; sN_ 1.
: ﬁ S
i e . W a0l @il . [T
8 b 4 2 0 8 6 4 2 0 8 6 -4 0 4 6 -4 2 0 B8 b 4 2 0
kcal/mol keal/mol kecal/mol keal/mol kcal/mol
(a) all (b) simple (c) furcated D (d) furcated A (d) multi-base A

Figure 4 Histograms of hydrogen bond energies, by configuration. The distributions of H-bond energies varies based on configuration.
H-bonds and associated energies were calculated via HBPLUS [36] software and the Mayo Lab energy function [17] on 3 example proteins from
[15]: HIV-1 protease (1htg), serine protease (1vgc), and bilin binding protein (1bbp).
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Figure 5 Examples of generic and non-generic body-bar-hinge frameworks. Examples of generic and non-generic body-bar-hinge
frameworks (a,b,c) and associated graphs (d,e/f). (@) shows a generic body-bar-hinge framework. The bar endpoints, and the continuous sets of
points along the hinge axes, are all distinct. Its associated graph, shown in (d), is completely defined. The frameworks of (b,c) contain non-
generic features described in this paper: a bar-bar concurrency (b) and a bar-hinge concurrency (c). These two types of degeneracies may occur
in mechanical models of proteins when modeling H-bonds or hydrophobic interactions with a bar. Using our heuristic, we build associated
graphs for the non-generic frameworks (ef). Although for these two examples the pebble game will produce the correct result, there is no

guarantee for non-generic cases.

constraints. If two rigid bodies are connected by a hinge
joint, 5 DOFs are removed, and 7 DOFs remain. These are
the 6 trivial DOFs, and the 1 internal DOF, from the rota-
tion permitted around the hinge axis.

To summarize: the associated graph of a body-bar-hinge
framework has 1 vertex for each body, 1 edge for each bar,
and 5 edges for each hinge. A simple counting rule, due to
Tay [20] (see also [21]) and rigorously proven to be valid
by Tay’s theorem, can then be used on this graph to deter-
mine the rigidity and the DOFs of the framework. The
(6,6)-pebble game algorithm of [22] runs in O(r*)-time
and permits the efficient analysis of this graph, by decom-
posing it into maximal rigid regions called rigid clusters.

Generic and non-generic mechanical models. Tay’s the-
orem applies to almost all geometric body-and-bar fra-
meworks, but it fails on a statistically insignificant
('measure-zero’) set of situations which are called
non-generic due to the existence of certain algebraic
dependencies between the geometric data. Identifying

non-generic frameworks is in general a very difficult
problem, but it is sometimes possible to state whether
certain combinatorially described configurations are gen-
eric. A famous example is the Molecular conjecture,
which states that molecular frameworks still obey Tay’s
theorem, generically, even when the set of hinges inci-
dent at an atom are concurrent. This conjecture, essen-
tial in establishing the validity of the combinatorial
approaches for rigidity analysis of molecular structures,
has been proven only recently [23], more than 25 years
after it has been raised.

In this paper, we discuss a number of situations,
described in combinatorial (rather than geometric) terms
and detected from the connectivity of the set of points and
constraints, for which a similar genericity theorem would
be needed. For practical purposes, we will have to work
for now under the assumption that the conjecture holds,
as this is what allows for the extension of the pebble game
algorithm to such cases; otherwise, our implemented
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method will have to be, for the time being, considered as
an unproven heuristic. We point out, however, that such
statements are sometimes notoriously difficult to prove;
the first result of this kind, due to Maxwell (1864) and
Laman (1970) took over 100 years to become a theorem.
We will have to resort for now to empirical validation
while waiting for the rigorous proofs.

To summarize: 3-dimensions only generic body-bar-
hinge frameworks can be analyzed using Tay’s theorem
with theoretical guarantees of correctness. Moreover, in
some situations the very definition of the associated graph
fails to be well-defined. For example, when the endpoints
of two bars coincide, there is no guarantee of them being
in a generic position. We call this type of degeneracy a
bar-bar concurrency (Figure 5b). If one endpoint of a bar
lies on a hinge, we have a bar-hinge concurrency degener-
acy (Figure 5c). How to place the edges in the associated
graph for frameworks with this latter type of degeneracy is
ambiguous. In the Methods section, we discuss where
these degeneracies turn up in protein modeling, and pro-
pose a heuristic so that rigidity analysis can be performed.

Modeling molecules for rigidity analysis

We describe now the modeling core of our software
KINARI [3]. It associates to a molecule a body-bar-
hinge framework. The bodies, made of rigid groups of
atoms, are determined first, then bar and hinge con-
straints are placed between them. Figure 1 shows how
bodies are determined from atoms connected by strong
bonds. Strong bonds include covalent bonds, disulfide
bonds, and strong H-bonds. Each multi-valent atom,
together with its strongly-bonded neighbors, forms a
rigid body. The multi-valent atom is the central atom
for the body, and each body has one unique central
atom; the single-valent atoms are non-central atoms.
When two bodies overlap, as shown in the ethane mole-
cule in Figure 1, the overlap consists of two bonded
atoms; they determine an axis which acts as a hinge.
When two atoms share a non-rotatable bond, such as a
peptide or double covalent bond, an additional bar is
placed between the two bodies in the mechanical model
to lock the hinge, prohibiting rotation. By default,
H-bonds are modeled in the same way as covalent
bonds. Hydrophobic interactions are modeled with the
heuristic of ASU-FIRST [2], placing an interaction
between C-C, C-S, or S-S pairs when when their van
der Waals surfaces are within a cutoff distance of 0.25
A. By default, for each hydrophobic interaction, 2 bars
are placed into the mechanical model.

For the remainder of the paper, we refer to our pre-
viously released system, with its default options for cura-
tion and modeling, as KINARI v1.0 [3]. The KINARI v1.0
results on our data sets will will serve as a baseline in our
evaluation.
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Literature review

KINARI is not the only software performing protein rigid-
ity analysis, but there are substantial modeling differences
between it and previous ones. We briefly survey their fea-
tures here.

Historical perspective. Protein rigidity analysis, using a
pebble game algorithm, was pioneered by Jacobs and
Thorpe, and implemented as the MSU-FIRST software
[1,24]. The system was upgraded to ASU-FIRST [2],
based on a different underlying modeling methodology
and on a variation on the pebble game, and was made
available on the Flexweb server [25]. The two FIRST ver-
sions determined H-bonds using an in-house implemen-
tation of geometric criteria and modeled them in the
same way as covalent bonds, fixing bond length and
angles [1,2]. The software calculated an associated energy
for each bond, using an energy function proposed in the
Mayo Lab [17], and provided an energy cutoff as a tun-
able parameter, in order to exclude weaker bonds from
the analysis [1]. Later, identification of hydrophobic
interactions using a heuristic function was included in
the ASU-FIRST software [2].

Validation of rigidity analysis software. A few
approaches have been taken to validate the biological
relevance of the rigidity analysis results. In some of the
first studies applying rigidity analysis to proteins, results
were qualitatively compared for four proteins: lysine-argi-
nine-ornithine (LAO) binding protein (1lst, 2lao); HIV1-
protease (1hhp, 1htg); adenylate kinase (1aky; 1dvr), and
dihydrofolate reductase (1ral, 1rx1, 1rx6). Each of them
had multiple structures from unique conformations
deposited in the PDB [1,5]. A thorough analysis was pro-
vided, comparing their own proposed residue-based flex-
ibility index with PDB B-values, RMSD values, and
changes in @ and ¥ angles. The cluster decomposition
itself was analyzed qualitatively, by comparing known
flexible domain-level hinge regions with those identified
by the software. A later study did not attempt to compare
the rigidity results with two conformations, but instead
verified the similarity of the rigid cluster decompositions,
computed at different H-bond energy cutoffs, of three
cytochrome c proteins from three different species (1hrc,
lycc, 1c06 a) [26]. A more quantitative approach was
taken to validate dilution, confirming that the folding
core identified by dilution agreed with the experimentally
determined folding cores of 10 proteins: BPTI, 1bpi;
ubiquitin, 1ubi; CI2, 2ci2; ribonuclease T1, 1bu4; cyto-
chrome ¢, 1hrc; barnase, 1a2p; a-lactalbumin, 1hml;
apo-myoglogin, laém; interleukin-f, 1ilb; T4 lysozyme,
3lzm [7]. The StoneHinge method and server for
domain-level hinge prediction, developed in the Gerstein
Lab, used the MSU-FIRST software as a module [27]. In
their study they concluded that the MSU-FIRST-based
method over-predicted the occurrence of hinges when
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compared with a set of literature-annotated hinges. The
StoneHinge developers resorted to a consensus-based
approach, combining the rigidity analysis results with
another independent method, in order to achieve better
precision in their predictions. Their data set was com-
posed of: CAPK, 1ctp, latp; Bence-Jones protein, 4bjl;
LAO-binding protein, 2lao, 1lst; adenylate kinase, 2ak3,
lake; glutamine binding protein, 1ggg, 1wdn; DNA poly-
merase f3, 2bpg, 1bpd; calmodulin, 1cfd, 1cll; inorganic
pyrophosphatase, 1k23, 1k20; ribose binding protein,
lurp, 2dri; Ig domain of protein G, 1pdb; hydropterin
pyrophosphokinase, 1hka; cyclophilin A, 1bck; rhizopus-
pepsin, 2apr, 3apr; chloramphenicol acetyltransferase,
2cla, 3cla; and proteinase A, 2sga, 5sga. A more recent
study to validate a heuristic version of the pebble game
used a decomposition similarity measurement called the
Rand Measure [28], which uses counts of the number of
items that match and differ between two decompositions,
to analyze a data set of 272 proteins with 3 domains or
fewer from the SCOP database [29].

Critical H-bonds and dilution. Although not included
as an option in their software, the makers of MSU-
FIRST suggested a H-bond inclusion criterion by deter-
mining the set of H-bonds from two conformations of
the same protein, and including only those that
occurred in both [1] (pg 157, paragraph 3). Kurnikova et
al. proposed an extension, using snapshots from molecu-
lar dynamics simulation data; rather than an energy cut-
off, they used the duty cycle, defined as the fraction of
time that a particular interaction is present over a num-
ber of MD snapshots [30]. Another extension is to per-
form rigidity analysis at all possible cutoffs, leading to
what is called a dilution analysis [7]. It can be inter-
preted as a simulated unfolding because H-bonds are
broken one-by-one, by order of energy. The rigid clus-
ters of the protein are computed at each step, with the
most stable part, called the folding core, remaining at
the end [7].

How the present work differs. To summarize: validation
of rigidity analysis as a predictive tool for native state
rigid cluster decomposition was previously limited to
case studies [1]. Although it was shown that accuracy
could be improved by tuning the input set of hydrogen
bonds with an energy cutoff, no systematic analysis was
performed in order to determine when rigidity analysis
worked best and when it fell short. Also, all hydrogen
bonds were treated equally and the set of hydrophobic
interactions were not varied. In the next section, we
introduce our new methods for addressing these
limitations.

Methods
We now describe the three new methods proposed in
this paper. We also describe the benchmarking toolkit
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we wrote for our evaluations and the benchmark data
set which we use in our evaluation.

Modeling weak H-bonds as bars

For our new modeling option for H-bonds, we choose a
cutoff energy value, but instead of discarding the weak
bonds [1,3], we model them with a weaker constraint than
the one used for a covalent bond. In this work, we have
chosen to model them mechanically with a bar (described
in the Background section), which fixes the distance but
permits angles to vary. This bar concept is distinct from
the multibar modeling introduced in ASU-FIRST for mod-
eling hydrophobics, where bodies and multiple bars are
placed in the model to approximate a pseudo-atom chain
[2]. The mechanical models produced may contain degen-
eracies, as discussed next. Furthermore, we survey where
the problems occur for the different types of H-bond con-
figurations we defined in the previous section (Figure 3).
For the different H-bond topologies described earlier in
the Background section, we describe how they are
included in the mechanical modeling and the heuristics
needed in order to build a graph for the pebble game
algorithm.

Non-furcated configurations. Because H and A are both
covalently bonded to only one other atom, during the
body-building phase of modeling, they each are placed in
one, and only one body. Placing the bar between the two
bodies introduces no degeneracies because the endpoints
are unique. No other bar is attached at the endpoint.

Furcated configurations. When the configuration is a
furcated one, either at H (Figure 3b) or A (Figure 3c), then
the mechanical model will contain two bars which share
an endpoint. This bar-bar concurrency is combinatorially
non-generic, but the multigraph associated to the resulting
body-bar-hinge framework is well defined and the usual
pebble game can be used in this situation.

Multiple-base acceptor configurations. A can be cova-
lently bonded to multiple bases (Figure 3d). In the result-
ing mechanical model, A lies on a hinge and is in more
than one body. The mechanical model will contain a bar-
hinge concurrency, and the multigraph associated to the
resulting body-bar-hinge framework is not uniquely
defined.

Our heuristic. We propose a heuristic for building the
associated graph in the combinatorially non-generic situa-
tions identified above. See the Background section for pre-
liminaries. For each bar, if one of its end-points is a non-
central atom, then it belongs to only one body and there is
no ambiguity: we place an edge in the associated graph
that is connected to the vertex corresponding to that
body. If a bar’s endpoint is attached to a central atom,
then, in the multigraph associated to the mechanical struc-
ture, we place the edge on the vertex corresponding to the
body of the central atom.
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Calculating hydrophobic interactions with energies and
modeling as bars

Our study is the first to evaluate the effect of varying
the hydrophobic interactions on the accuracy of the
rigidity results. To provide a tuning parameter for inclu-
sion, we assign an energy to each interaction based on
its Lennard-Jones potential, described earlier in the
Background section of this paper. The ¢ and o values
are taken from the Amber-99 forcefield [19]. Interac-
tions with hydrogen atoms were excluded because these
atoms take part in H-bonding. Otherwise, all pairs of
atoms, and not just those identified with the heuristic
method for hydrophobics as introduced by ASU-FIRST,
are considered as candidates for hydrophobic interac-
tions. Figure 6 shows 51 hydrophobic interactions, with
energies ranging between -0.15 and -0.2 kcal/mol calcu-
lated on an 18-residue alpha helix. The previous version
of our software, KINARI v1.0, would determine no
hydrophobic interactions in the helix.

To model the hydrophobic interactions, we have cho-
sen the single bar constraint described in the previous
section on weak hydrogen bond modeling. This con-
straint models the atoms’ propensity to remain a fixed
distance from each other, while permitting angles to vary.

Comparative cluster decomposition scoring

To evaluate our new methods for including and model-
ing H-bonds and hydrophobic interactions, we propose
the application of a method, borrowed from the infor-
mation retrieval literature, called B-cubed scoring [4].
The resulting score is a measurement of how well the
clusters in the predicted decomposition match some
other decomposition determined by some other, differ-
ent method. For each ‘item’ (data point, document, resi-
due, etc), the precision is the fraction of items in its
predicted cluster that also lie in its cluster in the gold
standard. The recall is the fraction of items in its gold
standard which are also in its predicted cluster. The F1-
score combines the precision and recall into one score.

Clustering comparison methods. Quite a number of
methods for comparing clusterings have been previously
proposed and compared [31], including Rand Measure
[28] and partition-distance [32]. We have chosen B-cubed
scoring because it was designed to address shortcomings
in prior methods in the treatment of singletons (items
which lie in their own unique cluster) [4]. Proper credit
for identifying singletons is crucial because in a residue-
level rigid cluster decomposition of a protein, flexible
regions are composed of such singletons.

Calculating B-cubed score. We describe how to compute
the B-cubed score. For each item i, GS(i) is the cluster it
belongs to in the gold standard decomposition. Similarly,
M(i) is i’s cluster in the model’s predicted decomposition.
Pr(i) and Re(i) are, respectively, i’s precision and recall.
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Figure 6 Calculated noncovalent interactions in an alpha helix.
Hydrogen bonds (green) and hydrophobic interactions (blue)
computed on a section of alpha helix. In the 18 residue alpha helix,
14 hydrogen bonds, with energies ranging between -2 and

-7 kcal/mol, and 51 hydrophobic interactions, with energies ranging
between -0.15 and -0.2 kcal/mol, were identified. With the previous
version of calculating hydrophobic interactions in KINARI v1.0, no
hydrophobic interactions would be identified within the alpha helix.

The precision and recall of a decomposition D, Pr(D) and
Re(D), are simply the mean precision and recall of the
items. F1(D), the F1-score of D, is the harmonic mean of
Pr(D) and Re(D). The following five equations show how
Pr(i), Re(i), Pr(D), Re(D), and F 1(D) are calculated.

|GS(i) N M(i)|

Py = ) ®
Re(i) - |GS|(28r2il)v|1(i)| 3
pr(o) - L 3" ety @
Re(D) - ifRe(i) )
D) - 2 Pr(D) % Re(D) ©

Pr(D) + Re(D)

All-floppy and all-rigid baselines. For a set of items,
the two most extreme ways of naively decomposing are
the all-floppy prediction (placing each item into its own
unique cluster) or all-rigid prediction (placing all items
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into the same cluster). These two methods result in 100%
precision and 100% recall, respectively. We will use the
all-floppy and all-rigid decompositions as baselines to
compare KINARI’s decompositions on real proteins.

These baselines might seem rudimentary, but are quite
powerful in showing that the higher level of sophistica-
tion built into our system provides provably better
results. For example, single domain proteins such as
dihydrofolate reductase may be mostly rigid, with a small
flexible region at the active site. In the KINARI v1.0
decomposition of the open conformation (1ral), 93% of
the residues are contained in the largest rigid cluster. For
such cases, the all-rigid baseline will perform better than
other methods which err toward a more flexible model.

Example of calculated B-cubed scores. Figure 7 depicts
the predicted decompositions for an abstract molecule,
compared with a gold standard decomposition (GS). The
decompositions are D1: produced by some predictive
method, D2: all-rigid, and D3: all-floppy. The B-cubed
scores for D1, D2, and D3, compared with GS, are
respectively 0.65, 0.55, and 0.46 (see Table 2 for calcula-
tion). This shows that the decomposition of D1, which
visually seems to better match the cluster distribution of
GS, achieves a higher score than either the all-rigid or
all-floppy decomposition.

Benchmarking toolkit
We have developed scripts for benchmarking protein
decompositions sytems (not just those that rely on peb-
ble game rigidity analysis). The main scripts are:
scoreRigidityResults.py : takes as input gold standard
and predicted decompositions and outputs the B-cubed
precision, recall, and F1-score
getNaiveBCubedScores.py : takes as input a gold stan-
dard decomposition and outputs the B-cubed precision,
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recall, and Fl-score for the all-rigid and all-floppy
decompositions to use as baselines.

The ingredients for using the benchmarking toolkit are,
first, a data set of PDBs with some associated gold stan-
dard cluster decompositions and, second, predicted
decompositions on the same data set of proteins. As
input, the scripts support the file format produced by
RigidFinder for defining the decompositions into sets of
residues. The scripts, data sets, and baselines are available
at the KINARI website Downloads page [3].

Benchmark data set
Gerstein Lab RigidFinder data set. To apply B-cubed
scoring to real proteins, ‘gold standard’ reference decom-
positions are needed. The Gerstein Lab’s data set, listed
in Figure 8, was used to validate the RigidFinder method,
which determines rigid cluster decompositions using two
conformations of the same protein [6]. The decomposi-
tions for these are readily available from the RigidFinder
website, and have been well tested and validated against
evidence from the biochemistry literature. The data set
has good coverage over small (fewer than 200 residues),
medium (between 200 and 500 residues), and large
(greater than 500 residues) proteins. Due to limitations in
the PDB format, we have excluded GroEL-GroES from
our study. The RigidFinder-computed decompositions
for the 16 proteins are used as the gold standard to com-
pare our results using KINARL

MSU-FIRST data set. In order to compare the new
modeling options against previous results, we include four
proteins used in the validation of the MSU-FIRST soft-
ware: the LAO binding protein (closed, 1lst; open, 2lao),
HIV-1 protease (closed, 1hhp; open, 3phv), dihydrofolate
reductase (open, 1ral; closed, 1rx1; occluded, 1rx1), and
adenylate kinase (open, 1dvr; closed, laky) [1,5]. There is

D1

0.46, and 0.55. See Table 2 for calculations.

Figure 7 Example rigid cluster decomposition comparison. Decompositions on the same example 10-residue protein to demonstrate the
cluster decomposition score. GS represents the gold standard decomposition against which predicted decompositions D1-D3 are compared. D2
and D3 are the all-rigid (100%-recall) and all-floppy (100%-precision) decompositions. D1, D2, and D3 receive B-cubed scores, respectively, of 0.65,
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Table 2 Example B-cubed scoring calculations.
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D1 D2 D3
Residue Re Pr Re Pr Re Pr
1 5 5 5 5 1 1
5 8 5 10 5 1
) 5 5 5 5 1 1
5 8 5 10 5 1
3 5 5 5 1 5
8 5 10 5 1 5
4 5 5 5 5 1 1
5 8 5 10 5 1
5 5 5 5 5 1 1
5 8 5 10 5 1
6 2 2 2 2 1 1
2 8 2 10 2 1
; 2 2 2 2 1 1
2 8 2 10 2 1
g 1 1 3 3 1 1
3 8 3 10 3 1
9 2 2 3 3 1 1
2 3 3 10 3 1
10 2 2 3 3 1 1
2 3 3 10 3 1
Avg 093 0.51 1.0 038 030 1.0
F1 0.65 055 046

Shown are the calculations of B-cubed precision, recall, and F1-scores for the small examples shown in Figure 7. The scoring method is described in the Methods
section. The B-cubed score (shown as F1) for decomposition D1 is higher than the all-rigid (D2) and all-floppy (D3) decompositions. In the all-rigid baseline, all 10
residues are placed into the same cluster (D2), resulting in 100% recall but low precision. To contrast, in the all-floppy baseline, each residue is placed in a

unique cluster resulting in 100% precision but low recall.

an overlap between these proteins and those in the Rigid-
Finder data set because these are standard, well-studied
proteins for which multiple conformations are known. We
used RigidFinder to determine our gold standard rigid
cluster decompositions, choosing the decomposition
according to the established convention, choosing the first
sensitivity cutoff at a local maximum [6].

Converting to residue-level clusters. KINARI employs
an all-atom model to determine rigid clusters of atoms.
Because the decompositions for the Gerstein Lab’s
benchmark data are instead at the residue level, the
KINARI output must be transformed. To do this, we
examine the body-bar-hinge model output by KINARI.
For each atom-level rigid cluster of determined by
KINARI, we first create an empty residue-level cluster
and then collect the residues whose CA atoms belong to
the cluster. Note that because rigid clusters can overlap,
the CA atoms do not necessarily belong uniquely to
that cluster. For each such CA atom, we examine the C-
CA and CA-N bonds. If neither corresponds to a hinge
in the body-bar-hinge model, meaning that the rotation
is inhibited by the network of chemical constraints, we

add the CA atom’s residue to the residue cluster. Finally,
the residue-level cluster is added to the decomposition
to be compared with the benchmark.

Results and discussion
First, in order to validate whether the results match
those previously published for MSU-FIRST, we have
provided case study analyses to compare the results of
KINARI v1.0 with the four proteins published in the
MSU-FIRST studies [1,5].

Then, in the sections that follow, we will discuss the
results applying the B-cubed scoring benchmarking
methodology to methods 3 through 7, summarized in
Table 3. All scores and their associated cutoffs are listed
in Figure 8. The bar-plots in Figure 9 show the compari-
sons between each of the methods with method 2 (com-
pletely rigid decomposition) and method 3 (KINARI
v1.0). The plots show the means of differences and the
p-values. We have also included two in-depth case stu-
dies on pyruvate phosphate dikinase and calmodulin, in
order to demonstrate the sensitivity of the B-cubed eva-
luation method.
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1 2 3 ) 5 6 7
KINART, default F-
all floppy | all rigid [ KINARI KINARI, remove KINARI, weak H- bonds, vary KINARI, vary both cutoff
baseline | baseline v1.0 weak H-bonds bonds as bars Hydrophobics by energies
energy
Protein Size PDB B-cubed | B-cubed | B-cubed | B-cubed | HB cutoff | B-cubed | HB cutoff [ B-cubed | HP cutoff | B-cubed | HB cutoff | HP cutoff
(#Res) score score score score | energy | score | energy | score | energy | Score | energy | energy
MSU-FIRST Data Set
THHP | 0.03 072 072 073 | 025 | 073 | 025 | 074 | 0.175 | 079 2 0.175
HIV-1 protease 198 | ih1G | 003 072 0.71 0.71 0.75 0.71 0.75 0.74 0.15 0.77 - -0.15
1RA1 | 0,03 0.94 0.92 0.92 0 092 | 025 | 094 | -0.125 | 094 6 0.125
Dihydrofolate Reductase | 159 | 1RX1 | 0.03 0.94 0.85 0.86 0 0.86 15 094 | 0125 | 094 6 0.125
1RX6 | 0.03 0.94 0.82 0.82 0 0.82 0 094 | 0125 | 0094 6 0125
. 1AKY | 0.06 0.68 0.65 0.65 A 065 | 225 | 068 0.1 0.68 0 201
Adenylate Kinase 220 | 1pvr | 006 0.68 0.74 0.74 0 0.74 0 078 | 015 | o078 0 01
o . 1LST | 003 0.72 0.90 091 | 175 | o091 2 0.83 0.2 0.83 A 02
Lysine-binding Protein 28 |2a0 | 008 | 072 | o065 | o065 | -05 | 065 | -075 | 094 | 045 | 094 0 -0.15
RigidFinder Data Set
- TKC7 | 0.02 043 045 0.66 5 067 | 275 06 02 0.64 5 015
Pyruvate Phosphate Dikinase| 872 | gy | go2 0.43 0.66 0.66 0 0.66 0 066 | 0175 | 066 0 0.175
1QLN | 0.25 0.53 0.62 0.62 0 0.62 0 059 | 015 | 063 4 -0.15
T7 RNA Polymerase 843 | imsw | 025 0.53 0.57 0.57 0 0.57 0 065 | 045 | 070 4 -0.15
150 | 0.11 0.60 0.70 0.7 0 0.70 0 066 | 045 | o068 0 0175
RNA Polymerase Il 3519 | onva | 011 0.59 0.55 0.55 0 0.55 0 066 | 045 | 067 A -0.15
' M1y | 0.01 0.62 0.87 0.87 0 0.87 0 089 | 045 | 0389 3 -0.15
Nitrogenase 3074 | 2aF1 | 001 0.62 0.67 0.72 1 0.69 2 088 | -0175 | 088 0 0175
. 1F8s | 0.20 0.26 0.58 0.6 15 0.61 3 057 | 0175 | 057 0 0.175
Rhodopsin 627 | acap | 022 0.26 0.48 0.61 3 0.57 5 059 | 0175 | 059 0 -0.175
2ECK | 0.07 0.57 0.41 0.41 0 0.41 0 057 | 0125 | 057 7 0.125
Phosphotransferase 214 | 4akE | o007 0.57 0.41 0.41 0 0.41 0 057 | -0125 | 060 | -625 | -0.15
) . 1BRD | 0.3 0.53 0.60 0.6 275 | 064 4 057 | 0125 | o067 7 0.125
Bacteriorhodopsin 170 | 2BrRD | 041 0.38 0.56 0.66 -4.25 0.67 575 0.63 0.7 0.63 075 07
2FMa | 0.07 0.54 0.57 0.62 05 0.62 A 056 | 0175 | 063 | 625 | -0.15
DNA Polymerase Beta 328 | “gicr | 0.07 0.54 0.61 0.61 0 0.61 0 071 | 045 | o071 0 -0.15
6ADH | 0.07 0.63 0.46 0.46 0 0.46 0 065 | 045 | 067 2 -0.15
Alcohol Dehydrogenase | 374 | gapy | p.07 0.63 0.66 0.66 0 067 | 175 | 086 | -0.175 | 086 0 0.175
1BMD | 0.1 0.68 0.69 0.69 05 0.69 0 069 | 045 | 072 25 | 015
Malate Dehydrogenase 333 | 4mpH | 0.3 0.67 0.66 066 | 025 | 066 0 072 | 045 | 074 45 | 015
. 1DQY | 007 0.91 0.88 0.88 0 0.88 0 091 | 045 | 092 65 | -0.15
Antigen 85C 280 | 1paz | 005 0.92 0.89 0.89 A 0.89 A 093 | 045 | 093 45 | 015
) 1AMA | 0,02 0.72 0.68 0.68 0 0.68 0 074 | 0415 | 074 45 | 015
Aspartate Aminotransferase | 401 | gaaT | 0.02 0.72 0.66 0.66 A 0.66 1 075 | 0415 | 075 | -425 | 045
S10086 e | 1K9K [ 013 0.34 0.35 0.63 25 0.68 25 0.62 0.7 068 | 225 | -02
1KoP | 013 0.34 0.65 0.65 A 0.65 A 0.65 07 0.74 55 | -0.175
5CRO | 0.09 0.88 0.45 0.45 0 0.45 0 095 | -0.125 | 095 7 0125
Cro repressor 61 | 6crO | 0.06 0.90 0.47 0.47 0 0.47 0 096 | -0125 | 0.96 7 0.125
4HVP | 0.04 075 | 052 0.52 0 0.52 0 075 | 005 | 075 7 -0.05
HIV-1 protease 9 | 3nvp | 004 0.75 0.49 0.49 0 0.49 0 0.75 | -0.075 | 075 7 0.075
Calmodulin a1 | 1CLL | 019 0.56 0.55 056 | 075 | 055 0 057 | 0175 | 062 7 -0.15
1CTR | 0.5 0.57 0.48 0.48 0 0.48 0 081 | 045 | 090 7 0.125
. 1DG | 041 0.31 0.46 0.46 0 0.46 0 041 | 045 | 041 | -525 | -0.15
Bungarotoxin 4 1DI_| 041 0.31 0.46 0.46 7 0.46 7 0.41 07 0.42 7 -0.125

Figure 8 Results of B-cubed scoring evaluation on benchmark data set. We determined rigid cluster decompositions for each PDB file in
the benchmark data set, using the 7 methods listed in Table 3. The data set comes from publications by two different software for performing
rigid cluster decompositions. The MSU-FIRST portion of the data set consists of 4 proteins used to validate the MSU-FIRST software [1,5]. The
RigidFinder portion of the data set is categorized, from top to bottom, into large (greater than 500 residues), medium (between 200 and 500
residues) and small (fewer than 200 residues) proteins. Decomposition methods 1 through 7 are summarized in Table 3. For each method, the
maximum B-cubed score and corresponding hydrogen bond and hydrophobic energy cutoffs (where relevant) are shown. See Figure 9 for
barplots comparing each method against methods 2 and 3.

Table 3 Decomposition methods.

Decomposition Description

Method
1 All-floppy decomposition
2 All-rigid decomposition
3 KINARI v1.0, default options
4 KINARI, vary hydrogen bond energy cutoff and exclude weak hydrogen bonds
5 KINARI, vary hydrogen bond energy cutoff and model weak hydrogen bonds as bars
6 KINARI, use default options for hydrogen bonds. compute hydrophobics and assign energy with LJ-potential. Exclude weak
hphobes and model the rest as bars
7 KINARI, same as Method 6, but vary the hydrogen bond energy cutoff and model the weaker hydrogen bonds as bars

We evaluate the 6 decomposition method variants. The first three serve as baselines against which the new modeling options, proposed in this paper, are
compared. The data set and results of of our evaluation of the 7 methods are listed in Figure 8.
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Figure 9 Baseline comparison of B-cubed scores of RigidFinder data set. Mean of differences and p-values for each decomposition method
(listed in Table 3), compared with all-rigid baseline (method 2) and KINARI v1.0 (method 3). Results include only the RigidFinder portion of the
data set (see Figure 8). The mean of differences measures the change in B-cubed score between the two methods; a better-performing method

will have a higher associated mean of differences. The p-value indicates whether the improvement is significant (p-value< 0.05 is deemed
significant). The greatest improvement in B-cubed scores, most significantly in the small to medium sized proteins, resulted when both the
modeling of hydrogen bonds and hydrophobic interactions were varied (method 7).

Evaluation of KINARI v1.0 in case studies
We describe the results of KINARI v1.0, with default
options, compared with those reported in the MSU-FIRST
software on the 4 proteins [1,5]. We found that overall,
the cluster decompositions produced by the two methods,
visually, had high overlap in the rigid clusters and flexible
regions identified. The MSU-FIRST report confirms litera-
ture annotated flexible loops with those identified by the
software. For most of the cases, KINARI identifies the
same flexible loops as does MSU-FIRST. Table 4 sum-
marizes the counts of loops detected by MSU-FIRST and
matched by KINARI.

Next, we provide in-depth case studies on the four
proteins in the MSU-FIRST study [1,5].
Case study of Lysine-Arginine-Ornithine Binding Protein
The lysine-arginine-ornithine binding protein (LAO),
which transports important substrates in bacteria, has a
bi-lobal or ‘clam-shell’, structure. The two LAO crystal
structures used in the original MSU-FIRST study were an
open (2lao) and closed (1lst) structures [5]. It is composed
of two stable domains shown in Figure 10a: domain 1
(residues 1-87, 195-237, containing N- and C- terminals)
and domain 2 (residues 94-181). The remaining region
consists of loops forming a domain-level hinge.

The MSU-FIRST results report that the residues of
domain 1 lie in a single rigid cluster. It was observed that
domain 2 is more flexible. Smaller rigid cluster, mainly
composed of a-helices, form within the domain, but the
B-sheet remains flexible. There are slight differences in
the distribution of the rigid clusters between the open
and closed conformations, but for both conformations,
the MSU-FIRST software predicts domain 2 to be rather
flexible. The main difference between the two decompo-
sitions was that for the open conformation, the flexible
domain-level hinge region is larger, extending further
into domain 2 than for the closed conformation. The
open conformation is expected to be more flexible than
the closed conformation because the interfaces are sepa-
rated and there are fewer opportunities for hydrogen
bonding and hydrophobic interactions.

In the KINARI decompositions, the difference in flexibil-
ity between the open and closed conformations is more
stark. The KINARI decomposition on the closed confor-
mation (2lao, Figure 10c) reflects the same level of flexibil-
ity as that produced by MSU-FIRST. Like the MSU-FIRST
decomposition, domain 1 lies in a single rigid cluster while
domain 2 is composed of smaller, mainly a-helix, rigid
clusters and a flexible 3-sheet. The decomposition for the
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Table 4 Comparison of flexible loops detected by MSU-FIRST, KINARI v1.0, and RigidFinder on four proteins.

Protein PDB MSU-FIRST KINARI v1.0 RigidFinder
LAO-binding 1 1lst 1 1
LAO-binding 2 2lao 1 1 1
HIV-1 Protease 1 Thhp 3 3 2
HIV-1 Protease 2 Thtg 4 3 2
Dihydrofolate Reductase 1 Tral 2 2 2
Dihydrofolate Reductase 2 1rx1 2 1 2
Dihydrofolate Reductase 3 1rx6 2 2 2
Adenylate Kinase 1 Taky 6 3
Adenylate Kinase 2 Tdvr 4 4 3

A comparison of the flexible loop regions detected by KINARI v1.0, MSU-FIRST, and RigidFinder. The four proteins, with annotated flexible loops, were used in the
validation of MSU-FIRST [1,5]. The table data for MSU-FIRST was taken from the same publications. For KINARI v1.0 and RigidFinder, flexible loops were
determined visually. Because RigidFinder computes decompositions based on multiple conformations, the results shown will match for all conformations of the
same protein.

closed conformation (1lst, Figure 10b) does not show the For another comparison, we used RigidFinder [6] to
same flexibility in the 2nd domain. The two domains are =~ decompose the protein into rigid domains, based on the
both placed into their own rigid clusters. Thuse, the varia- open and closed conformations. RigidFinder decomposes
tions within the two systems results in some subtle differ-  the protein into exactly three domains: one that matches
ences for the cluster decompositions between the open  domain 1, another that matches domain 2, and a third
and closed structures. composed of the domain-level hinge region (Figure d).

Domain 2 Domain 1

- .
(c) KINARI v1.0, 2lao (b) RigidFinder

Figure 10 Rigid cluster decomposition of lysine-arginine-ornithine binding protein. All of the decompositions are depicted on 2lao. (a)
LAO-binding protein is composed of two functional domains. (b,c) Decompositions for 1Ist and 2lao computed via KINARI v1.0. (c)
Decomposition produced by RigidFinder computing using both conformations.

\
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The RigidFinder decomposition does not identify the
flexibility within domain 2.

Case study of HIV-1 Protease For the open and closed
forms of HIV-1 Protease (1hhp, 1htg), the results reported
by MSU-FIRST and KINARI have good correspondence.
The KINARI v1.0 decompositions for the two conforma-
tions are shown in Figure 11a-b. For the closed conforma-
tion, the KINARI residue-level cluster decomposition was
the same whether the ligand was present or removed from
the analysis. For 1hhp, both MSU-FIRST and KINARI
identify the single, dominating rigid cluster and the three
flexible regions (labeled as a, 8, and ), Figure 11a. The
large rigid cluster contains the base and walls of the bind-
ing cavity. For the closed form (1htg), KINARI and MSU-
FIRST results both reflect the increase in rigidity upon
binding. The large rigid cluster now includes the o and 8
regions, but not the y region.

One interesting difference is in the J region (the dimer
interface) composed of residues at the N- and C-termini
that do not belong to a secondary structure. Although the
KINARI results show flexibility in the  region in chain A,
chain B has maintained rigidity. In the MSU-FIRST
decomposition, the entire o region is flexible. The loops
above the J region is the catalytic site, containing the char-
acteristic Asp-Thr-Gly sequence (Asp25, Thr26 and
Gly27) common to aspartic proteases, lie within the rigid
core for both the open and closed conformations (com-
puted both by KINARI v1.0 and ASU-FIRST). Function-
ally, the o region is where the two monomers are held
together; none of the many known drug resistance muta-
tion sites are located within ¢ [33]. The importance of the
findings on the different levels of flexibility within the
regions is unclear.

The RigidFinder decomposition for HIV-1 Protease
(taken from the RigidFinder data set described in the
Methods section of this paper), depicted in Figure 11c, has
some interesting differences from the either of the KINARI
or MSU-FIRST decompositions. The o and y regions, the
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B-sheet that both regions share, as well as loops forming
the wall of the binding cavity, have been placed into a sin-
gle cluster. The rest of the protein, including y and ¢
regions compose a second rigid cluster.

Case study of Dihydrofolate Reductase We compare
the MSU-FIRST decompositions of 3 conformational
states of dihydrofolate reductase (open, 1ral; closed,
1rx1; occluded, 1rx5) with those from KINARI v1.0. The
KINARI v1.0 decompositions, depicted in Figure 11a-c,
were overall much more rigid than those reported by
MSU-FIRST. The labeled M20 and BEF-BG loops are of
key importance to binding specificity and should be
flexible. Overall, the KINARI results report a larger
dominating rigid cluster. Even with the exclusion of the
ligand from the analysis, the entire protein, other than
the 2-3 flexible loops reported, is included in a single
rigid cluster. We now compare in further detail the
results reported by MSU-FIRST and KINARI in detect-
ing flexibility in the loop regions.

For 1ral, MSU-FIRST correctly detects flexibility in the
M20 loop and captures the flexibility of a subsection of
the BF-BG loop. KINARI detects the same regions of flex-
ibility as MSU-FIRST on 1ral.

For 1rx1, part of the M20 loop is detected by MSU-
FIRST to be flexible, while most of the BF-SG loop is
detected to be flexible. KINARI does not detect any flex-
ibility in the M20 loop, but detects the same flexible
region as MSU-FIRST in the BF-G loop.

The MSU-FIRST results for 1rx6 are similar to those it
reports for 1rx1, but an even larger region of flexibility is
detected in the BF-BG loop. The flexible region of the
M20 loop is more extensive (labeled J) and the entire SF-
BG loop is detected to be flexible.

The RigidFinder decomposition, based on 1ral and
1rx1 and shown in Figure 12d, places most of the
protein into a single domain, except for a piece of the
M20 loop and a small segment of loop adjacent to the

BE-BG loop.

(8) KINARI v1.0, 1hhp

(b) KINARI v1.0, 1htg

Figure 11 Rigid cluster decompositions of HIV-1 Protease. All of the decompositions are depicted on the Thhp dimer. (a,b) Decompositions
for Thhp and Thtg computed via KINARI v1.0. (c) Decomposition produced by RigidFinder computing using both conformations.
A

(c) RigidFinder
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MZ20 loop

() KINARI v1.0, 1rai

() KINARI'v1.0, 1rx6

Figure 12 Rigid cluster decompositions of Dihydrofolate Reductase. All of the decompositions are depicted on 1ral. (a,b,c) Decompositions
for 1ral, 1rx1, and 1rx6 computed via KINARI v1.0. (d) Decomposition produced by RigidFinder computing using Tral and 1rx6 conformations.

(b) KINARI v1.0, 1rx1

(d) KINARI v1.0, 1rat

Case study of Adenylate Kinase Adenylate kinase
undergoes a domain-level hinge motion upon ligand bind-
ing. Figure 13 shows decompositions of adenylate kinase,
depicted on the ATP-bound, open conformation (1dvr).
The domain containing the binding domain is labeled as
the lid-domain. The APsA-bound, fully-closed conforma-
tion (laky, not shown) was analyzed.

For laky, MSU-FIRST and KINARI v1.0 decomposi-
tions match quite closely, with a nice alignment between
the clusters and flexible regions between the two decom-
positions. However for the open conformation (1dvr),
there are some subtle differences between the two
decompositions. MSU-FIRST identifies 6 flexible loop
regions (labeled a-e). Of these, KINARI's flexible regions
match with all but 2 of them. Instead, KINARI includes
these two loop regions (labeled as e and f) in rigid clus-
ters. KINARI identifies the entire lid region as rigid,

while in MSU-FIRST, the loops on the tip of the region
have been identified as flexible. The KINARI v1.0 decom-
positions are shown in Figure 13a-b.

Figure 13c shows the RigidFinder decomposition, deter-
mined using both conformations (laky, 1dvr). RigidFinder
detects more flexibility in the LID region than KINARI
v1.0. The method captures flexibility at the labeled loops
a-c, but he loop regions d-f are contained in the largest
rigid cluster.

Cluster decomposition evaluation with decomposition
method 3, KINARI v1.0

We applied the B-cubed scoring method to the decomposi-
tions produced by KINARI v1.0 on the benchmark dataset.

Because the RigidFinder decompositions for the 4 pro-
teins studied by MSU-FIRST were not readily availab, we
used the RigidFinder server to generate a residue-level
cluster decomposition for each of the four proteins in the
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() KINARI v1.0, 1aky

(b) KINARI v1.0, 1dvr

Figure 13 Rigid cluster decompositions of Adenylate Kinase. All of the decompositions are depicted on 1dvr. (a,b) Decompositions for 1aky
and 1dvr computed via KINARI v1.0. (c) Decomposition produced by RigidFinder computing using both conformations.

(c) RigidFinder

J

MSU-FIRST study [1,5], using the two conformations for
each protein as input. Figure 8 shows the results of our
evaluation using the B-cubed evaluation method. For 3 of
the proteins, KINARI v1.0’s score matched or performed
better than the all-rigid baseline, for either the open or
closed conformations. The RigidFinder decomposition for
dihydrofolate reductase is quite rigid, with over 90% of
residues lying in the largest rigid cluster. Although
KINARI v1.0 detected the flexible loops for 1ral (see
Figure 12), the RigidFinder decomposition detected only
one of them. A different tuning value for the RigidFinder
method, with a more flexible decomposition, may result in
improved B-cubed scores for KINARI v1.0.

Next, we used KINARI v1.0 to compute a rigid cluster
decomposition for the 32 PDBs in the Gerstein Lab data
set. For 11 of the 17 proteins, the B-cubed score for at
least one of the conformations was higher than that of the
completely rigid baseline. For some of the proteins, there
was a large discrepancy between the B-cubed scores. For
example, the closed (1kc7) and open (2r82) conformations
of pyruvate phosphate dikinase received scores of 0.45 and
0.66, respectively.

We performed a paired t-test on the results from the
RigidFinder data set in order to evaluate whether improve-
ment was significant over a crude baseline (method 2).
The means of differences and p-values are shown in Figure
9. This was indeed the case for the large proteins in the set
(p-value, 0.0077), but overall, the improvement over the
baseline was not statistically significant. For the PDBs of
medium and small proteins, the mean of the differences in
B-cubed was negative, showing that a completely rigid
decomposition was a better method prediction of the true
decomposition. For example, the KINARI v1.0 decomposi-
tion on antigen 85C (1dqz) received a B-cubed score of
0.89, the highest among the Gerstein Lab data set. But
method 2 received an even higher score, 0.92.

In summary, KINARI v1.0 can produce significant
results for large proteins, but for medium and small pro-
teins in the data set, the results are not significant. In the
next sections, we explore different parameterizations of
the rigidity analysis and how these may improve accuracy.
Cluster decomposition evaluation with decomposition
method 4, discarding weak H-bonds
For each of the PDBs, we compute the cluster decomposi-
tion score for the rigidity results produced at each H-bond
energy cutoff, excluding weaker H-bonds. This is the con-
ventional tuning parameter used in previous studies using
rigidity analysis [11]. The highest score was determined
with its associated cutoff. If multiple cutoffs achieved the
same score, the strongest (most negative) cutoff was the
one used. The values are listed in Figure 8.

For 11 of the PDBs (1hhp, 1rx1, 1lst, 1kc7, 2afi, 1f88,
3cap, 2brd, 2fmq, 1k9k, 1cll), excluding weaker H-bonds
resulted in higher B-cubed scores than KINARI v1.0, in a
few cases, quite substantially. This seemed to be the case
when there was a large discrepancy in the KINARI v1.0
between two conformations of the same protein, as is
typical for open and closed conformations. Removing
H-bonds from the more rigid conformation results in a
decomposition that more closely matches those of Rigid-
Finder and the other conformation in the pair. The case
study of pyruvate phosphate dikinase described in the next
section will illustrate this situation.

Cluster decomposition evaluation with decomposition
method 5, modeling weak H-bonds as bars

We reran our rigidity analysis experiments with KINARI,
with the new proposed modeling method for weak
H-bonds described in the Methods section. For those
PDBs for which using a cutoff did not lead to a higher
score, the results were the same. For the 12 which bene-
fited from the cutoff, 5 PDBs received higher scores, three
did worse, and the rest remained unchanged.
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The MSU-FIRST and Gerstein Lab’s benchmark data

sets of 21 proteins are insufficient for inferring general
conclusions on whether the new modeling H-bond
method is significantly better than the default modeling
method (removing weak H-bonds). One of the tasks
that should be undertaken in the future is to collect and
validate a larger benchmarking data set; this task is
beyond the scope of this paper.
Case study of pyruvate phosphate dikinase Pyruvate
phosphate dikinase (PPDK) is a catalytic-enzyme which
binds with ATP, pyruvate, and phosphate. The cluster
decomposition produced by RigidFinder and KINARI v1.0
on the open (2r82) and closed (1kc7) conformations, are
shown in Figure 14a-c. Visually, the 2r82 decomposition
(Figure 14b) shows better agreement with that of Rigid-
Finder’s. A segmentation of the PEP/Pyruvate and His
domains has been correctly identified. The ATP-grasp
domain does not appear in its own cluster. The decompo-
sition for the closed conformation (Figure 14c, 3D depic-
tion of conformation not shown) placed most of the
protein into the same rigid cluster. A small fragment, a
single alpha helix, of the ATP-grasp domain, has been
determined to lie in a different rigid cluster. The all-floppy
and all-rigid decompositions have scores of 0.02 and 0.43.
Both the KINARI decompositions attained better scores:
0.65 for 2r82 and 0.45 for 1kc7. The difference in scores
between the two KINARI decompositions reflects the bet-
ter accuracy of the decomposition for 2r82. The more
rigid prediction for 1kc7 is not surprising, given that it had
10% more H-bonds and 14% more hydrophobic interac-
tions than 2r82.

By excluding weaker H-bonds from 1kc7, as in method
4, a decomposition which more closely matches the Rigid-
Finder decomposition is attained. Figure 14f shows the F1-
scores for the decompositions produced by method 4 for
each H-bond energy cutoff. For 2r82, the match is optimal
at a cutoff of 0 kcal/mol, where all H-bonds are retained.
For 1kc7, excluding H-bonds weaker than -1.5 kcal/mol
results in the optimal score of 0.66. The corresponding
decomposition is shown in Figure 14d, which places the
important functional domains into separate rigid clusters.
Applying method 5 (bar modeling) to 1kc7 results in a
higher B-cubed score of 0.67 at the optimal cutoff of -2.75
kcal/mol, see Figure 14e.

This example on PPDK shows that by calculating the
B-cubed score, the optimal cutoff can be determined
automatically. Although there is no universal parameter-
ization for rigidity analysis, future studies should explore
under what conditions, such as conformational state or
active temperature, the same cutoff best applies.

Prevalence of degeneracies in mechanical models.
Because they are usually less linear, H-bonds in furcated
configurations tend to have weaker energies. They are
more likely to be left-out from the mechanical model if an
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energy cutoff is used. Furcated bonds are bundled together
(by definition), so removing them can have a drastic
impact on the rigidity of a local area. By modeling them as
a bar, we can more realistically capture them in the model
as weaker then covalent bonds. Although individually the
bars make a smaller contribution, when taken together,
they have a significant effect on the rigidity.

Furcated configurations do introduce bar-bar concur-
rency degeneracies into the model, and depending on the
boundary chosen between weak and strong, bar-bar
degeneracies may be in abundance in the mechanical
model. There is a sterically-imposed bound on the number
of H-bonds in a furcated configuration. Although [14]
found examples of up to hexafurcated configurations,
these were rare, and most configurations were bifurcated
or trifurcated.

All bar-hinge concurrencies in the mechanical model
are introduced when modeling H-bonds in multi-base
acceptor configurations. These H-bonds tend to be less
common (about 6% of the H-bonds in our analysis, see
Figure 4 and Table 1) and when they do occur, they are
stronger (Figure 4).

Cluster decomposition evaluation with decomposition
method 6, when using hydrophobic interaction energy
cutoff

We repeated the evaluation, but this time, we used our
new methods for hydrophobic interaction identification
and modeling, as described in the Methods section. All
identified H-bonds were included and modeled with the
default modeling option, but the hydrophobic interaction
energy cutoff was varied.

For the RigidFinder data set, the improvement in the B-
cubed scores over the baselines, methods 2 and 3, was sig-
nificant. Compared with method 3, the mean of differences
over the set of PDBs was 0.11 overall, and the p-value in
the paired t-test was 0.00071 (Figure 9). The improvement
was near-significant for the large proteins (p-value 0.051),
and significant for the medium and small-sized proteins
(p-values 0.0015 and 0.015). For the majority of proteins,
the change in the hydrophobic modeling improved
B-cubed scores. There was no consensus in the best energy
cutoff value, but the median was -0.15 kcal/mol.

Cluster decomposition evaluation with decomposition
method 7, varying both hydrogen bond energy and
hydrophobic interaction energy cutoff

We next varied the energy cutoffs for both H-bonds and
hydrophobic interactions. Hydrophobics were included and
modeled with the same scheme as in the method 6. For
H-bonds, we modeled bonds weaker than the cutoff with a
‘bar’ constraint (rather than excluding), as in method 5.

Compared with the highest scores attained on each PDB
over all previous methods, method 7 achieved an improve-
ment in over 70% of the 43 PDB files. The average change
in score over method 6 was 0.02, and for a few cases, such
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Figure 14 Case Study of Pyruvate Phosphate Dikinase. In this case study, we demonstrate how B-cubed scoring may be used to determine
the parameter settings for rigidity analysis. (@) shows the RigidFinder decompositions of PPDK, which was validated against literature-annotated
functional domains [6]. The KINARI v1.0 decompositions of the open (2r82) and closed (1kc7), shown in (b) and (c), have B-cubed scores of 0.66
and 045 respectively. By varying the H-bond energy cutoff (method 2 in Table 3), decompositions with higher B-cubed scores for 1kc7 could be
generated. The KINARI decomposition for 2r82 was optimal at cutoff energy 0, meaning all H-bonds were included. For 1kc7, the maximum
score, 0.66, was attained at -1.5 kcal/mol when excluding weak H-bonds from the modeling (d). By using a bar to model weak H-bonds, a
slightly better score (0.67, cutoff -2.75 kcal/mol) was achieved (e). The B-cubed score plots for the two conformations, using method 7, are
shown in (f). As the cutoff is varied, the precision and recall are monotonically increasing and decreasing, shown in (g). An optimal B-cubed
score is achieved when the F1-values combining the precision and recall is optimized.

as S100A6 and calmodulin, the increase in score was quite
significant. As with the previous method, the median cut-
off for hydrophobic interactions was again -0.15 kcal/mol.
For the medium and large proteins in the data set, includ-
ing some or all H-bonds achieved the best score, confirm-
ing what has been stated in the literature [10] that the best
results come from a balance between the two types of

stabilizing interaction. For 4 out of 5 of the small proteins,
including no H-bonds (shown with a cutoff energy of -7
kcal/mol), but still excluding some hydrophobic interac-
tions, produced the best decompositions.

We have introduced a method for identifying hydropho-
bic interactions and assigning energies, using the Lennard-
Jones potential. This is the first study to formally evaluate
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how the set of hydrophobics included can impact the
rigidity results. Although it has been mentioned in papers
from the Gohlke lab [10,34] that the hydrophobic identifi-
cation function was insufficient for achieving valid rigidity
results for some classes of molecules (for example, RNA),
there has been no thorough study in order to determine
the best parameterization for hydrophobics. Ours is the
first study to try to improve upon the inclusion of hydro-
phobic interactions.

Case study of calmodulin. Figure 15d shows the results
of varying both hydrogen bond energy and hydrophobic
energy cutoff for calmodulin (1ctr). By removing H-bonds
and adding hydrophobic interactions (energy histograms
shown in Figure 15e,f), an improved fit with the gold stan-
dard decomposition (shown in 15a) is achieved. Run with
KINARI v1.0 (using its default options, Figure 15b), the
B-cubed score of 0.48 was worse than the score of the all-
rigid baseline. By removing some or all H-bonds and
including some hydrophobic interactions (decomposition
in Figure 15c), a score of 0.90 is attained.
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Further discussion
Gold standard data sets. A major challenge in evaluating
the performance of a rigidity analysis system is in finding a
high quality data set, grounded in laboratory experimental
results, to serve as the gold standard. Within the Rigid-
Finder data set which we used as our gold standard
decompositions, we found that there is some disagreement
in the rigid and flexible domains as compared with those
annotated by the authors of MSU-FIRST [1]. RigidFinder
is very effective at determining course-grained domain
decompositions, but lacks the sensitivity to identify smaller
flexible loops that may be functionally very important.
This issue can be observed in decompositions of adenylate
kinase (laky, 1dvr), which has 6 functionally important
flexible loop regions as annotated in [1] (see also Table 4
and Figure 13). RigidFinder places the loops into their
adjacent rigid clusters.

Atom-level decomposition. The evaluations were per-
formed only on backbone flexibility, not taking advantage
of the atom-level decompositions produced by KINARI.

(a) RigidFinder

(c) KINARI, new modeling
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Figure 15 Case study of Calmodulin (1ctr). In this case study, we demonstrate how varying the H-bonds and hydrophobic interactions
included can produced a cluster decomposition that better matches with the ‘gold standard'’. (a-c) Rigid cluster decompositions of 1ctr by
RigidFinder, KINARI v1.0 (method 3), and by varying hydrogen bonds and hydrophobic interactions (method 7). Using the RigidFinder
decomposition as the gold standard for comparison, the decompositions of (b) and (c) attained, respectively, B-cubed scores of 048 and 0.90.
(d) shows a plot of the B-cubed score as the energy cutoffs for H-bonds and hydrophobic interactions are varied, via method 7. To show how
the H-bond and hydrophobic interaction energies are distributed, we include figures (e) and (f). The KINARI-Web server provides the functionality
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If such a benchmarking data set were available, it is
within the power of our evaluation framework to com-
pare sidechain flexibility as well.

H-bond classification. Our H-bond identification and
classification method, using HBPLUS and the Mayo
energy function, has its limitations. It would also be inter-
esting to use different criteria to classify the bonds as weak
and strong, for example, the duty cycle of Kurnikova et al.
[30] or our classification of H-bonds as critical and redun-
dant [35].

Evaluating the heuristic approach to handle degenera-
cies in the model. We have proposed a heuristic for pla-
cing the edges into the associated graph for non-generic
bars in the mechanical model. To analyze, empirically
and mathematically, when the heuristic works and when
it fails is a problem for future investigations.

Conclusions

As has been iterated through the literature and demon-
strated in this paper, a one-size-fits-all parameterization
for rigidity analysis does not deliver good across-the-
board performance. Some tuning may be required to
attain a rigid cluster decomposition for a protein that
most closely agrees with data from experimental studies.
In this paper, we proposed three new methods: one for
for inclusion and modeling of hydrogen bonds, a second
for the inclusion and modeling of hydrophobic interac-
tions, and third, a cluster decomposition evaluation
method. We showed on a benchmarking data set that the
new modeling in KINARI can produce rigid cluster
decompositions, computed on single conformation, that
better match gold standard decompositions than previous
methods. To do this, we applied a comparative decompo-
sition scoring algorithm, first used in information retrie-
val, called the B-cubed score.

The power of a benchmark lies in fast hypothesis testing,
which we demonstrated first by proposing new modeling
methodologies for hydrophobic interactions and weak
hydrogen bonds. The greatest improvement in B-cubed
scores, most significantly in the small to medium sized
proteins, resulted when both the modeling of hydrogen
bonds and hydrophobic interactions were varied. This sup-
ports an earlier insight made by Gohlke et al. that “Finding
the appropriate balance between these interactions
[H-bonds and hydrophobics] is thus crucial for an accu-
rate representation of the flexibility characteristics of
proteins”.

Because we had access to decompositions that were
well-validated against experimental studies, we were able
to find combinations of parameters which maximized
the B-cubed score and therefore the matching with the
gold standard. Computing the B-cubed score at multiple
cutoffs helps in choosing the best cutoff, so the score
can be used to automatically tune parameters using a
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training set. To improve pebble game rigidity analysis as
a predictive tool, the next steps should be toward finding
the relevant features of a protein and its PDB structure
which will lead to the best tuning of the parameters to
capture biologically important characteristics in the
decomposition. At a minimum, the features should
include the size of the protein and whether the confor-
mation is open or closed.
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