Rekapalli et al. BMIC Bioinformatics 2013, 14(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/14/59/S3

BMC
Bioinformatics

METHODOLOGY ARTICLE Open Access

PoPLAR: Portal for Petascale Lifescience
Applications and Research

Bhanu Rekapalli”", Paul Giblock', Christopher Reardon’

From 8th International Symposium on Bioinformatics Research and Applications (ISBRA"12)
Dallas, TX, USA. 21-23 May 2012

Abstract

Background: We are focusing specifically on fast data analysis and retrieval in bioinformatics that will have a direct
impact on the quality of human health and the environment. The exponential growth of data generated in
biology research, from small atoms to big ecosystems, necessitates an increasingly large computational component
to perform analyses. Novel DNA sequencing technologies and complementary high-throughput approaches—such
as proteomics, genomics, metabolomics, and meta-genomics—drive data-intensive bioinformatics. While individual
research centers or universities could once provide for these applications, this is no longer the case. Today, only
specialized national centers can deliver the level of computing resources required to meet the challenges posed
by rapid data growth and the resulting computational demand. Consequently, we are developing massively
parallel applications to analyze the growing flood of biological data and contribute to the rapid discovery of novel
knowledge.

Methods: The efforts of previous National Science Foundation (NSF) projects provided for the generation of
parallel modules for widely used bioinformatics applications on the Kraken supercomputer. We have profiled and
optimized the code of some of the scientific community’s most widely used desktop and small-cluster-based
applications, including BLAST from the National Center for Biotechnology Information (NCBI), HMMER, and MUSCLE;
scaled them to tens of thousands of cores on high-performance computing (HPC) architectures; made them robust
and portable to next-generation architectures; and incorporated these parallel applications in science gateways
with a web-based portal.

Results: This paper will discuss the various developmental stages, challenges, and solutions involved in taking
bioinformatics applications from the desktop to petascale with a front-end portal for very-large-scale data analysis
in the life sciences.

Conclusions: This research will help to bridge the gap between the rate of data generation and the speed at

which scientists can study this data. The ability to rapidly analyze data at such a large scale is having a significant,
direct impact on science achieved by collaborators who are currently using these tools on supercomputers.

Background

The data generated by various scientific and non-scientific
fields is growing exponentially with modern technologies.
This paper focuses on the exponential growth of data in
the life sciences, which has surpassed the rate at which

* Correspondence: brekapal@utk.edu

t Contributed equally

Joint Institute for Computational Sciences, The University of Tennessee, Oak
Ridge National Laboratory, 1 Bethel Valley Rd,, Bldg. 5100, Oak Ridge, TN
37831-6173, USA

() BiolVled Central

both processing power and storage technologies are grow-
ing [1]. In this work we focus on bioinformatics, a key area
of information processing that has a direct impact on the
quality of human life. Since the data in bioinformatics is
growing beyond the scope of a single computing architec-
ture, we are working on developing efficient, optimized,
and highly scalable parallel applications on the latest and
next-generation supercomputing architectures to meet the
rising demand. The previously mentioned challenges rela-
tive to data growth and large-scale knowledge discovery

© 2013 Rekapalli et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:brekapal@utk.edu
http://creativecommons.org/licenses/by/2.0

Rekapalli et al. BMIC Bioinformatics 2013, 14(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/14/59/S3

could be addressed in three phases: the first phase is the
development of parallel applications to analyze data at a
rapid rate; the second is the creation of methods for easy
access to these parallel applications; and the third is the
development of databases to host analyzed data for
quicker retrieval.

Development of parallel applications

The software parallelizations that can be explored to
address these gigantic problems are data parallelism,
functional parallelism, and a combination of both data
and functional parallelism. This paper discusses software
wrappers used for data parallelization to process large-
scale data in less time. These parallel wrappers aid us in
parallelizing the most widely used applications in bioin-
formatics. The development of parallel applications is not
the only aspect of the solution required for this data
growth problem. After these applications have been
developed, creating interfaces that will allow researchers
with limited computing expertise to access these tools to
solve their data analysis problems will also be essential.
For this reason, we are constructing a science gateway
with a web interface to expose these parallel applications
for easy access. Finally, we are also developing a suite of
tools to parse the outputs from all of the parallel applica-
tions and store the data in databases for faster retrieval
and knowledge discovery since few of these tools gener-
ate more output data than input data by an order of mag-
nitude or more.

Many parallel bioinformatics tools designed for large-
scale data analysis exists. These implementations range
from clusters to supercomputers and from grids to cloud
computers. Wide ranges of workflows, gateways, and
packages for various bioinformatics tools are also available,
but implementations of highly scalable parallel bioinfor-
matics applications with science gateways for large-scale
data analysis are few to non-existent.

To build workflows needed by bioinformatics labs in the
states of Tennessee and South Carolina as a part of an
NSF proposal, we have identified the most widely used
bioinformatics tools for sequence similarity searches, mul-
tiple sequence alignments, protein domain analysis, and
phylogenetic tree construction. These tools include NCBI
BLAST: Basic Local Alignment Search Tool [2]; HMMER
[3] by HMMI Janelia Farm; MUSCLE: Multiple Sequence
Comparison by Log-Exception [4]; ClustalW [5]; and
MrBayes [6]. Many parallel implementations of these tools
focused for clusters exist, such as mpiBLAST [7], Scala-
BLAST [8], mpiHMMER [9], ClustalW-MPI [10], and
Parallel MrBayes [11]. These tools achieve scalability by
selecting techniques such as database fragmentation,
parallel input and output (I/O), load balancing, and query
prefetching, but only a few highly scalable implemen-
tations capable of using tens of thousands of cores on

Page 2 of 12

supercomputers are available, such as BLAST on Blue
Gene/L implementation [12], pioBLAST [13], HSP-
HMMER [14,15], and HSPp-BLAST [16]. By creating
these highly scalable parallel tools and making them avail-
able to researchers through a science gateway, we are
making a significant contribution to solving the pressing
analysis needs in these areas.

Science gateways

Many research groups have active science gateway portals
as part of the state-of-the-art Extreme Science and Engi-
neering Discovery Environment (XSEDE) NSF program.
These gateways focus on fields such as biochemistry
[17,18], biomedical computation [19], protein structure
and interaction [20], and systemic and population biology
[21]. These portals offer multiple tools for their respective
areas and run a subset of those tools on machines that are
best suited for HPC computational resources. For exam-
ple, of the dozens of phylogenetic tools available on
CIPRES, versions of MrBayes, RAxXML, GARLI, and
BEAST use XSEDE resources [21], and Robetta is
designed to run on computer clusters distributed as mir-
rors [22].

Many portals have workflow capabilities for bioinfor-
matics tools, such as Galaxy [23]. Some XSEDE infor-
matics tools have available workflows, like ChemBioGrid
[18], which has web-based computational workflows built
on the Taverna [24] workflow tool. Currently, no portals
exist that combine workflow between highly scalable
bioinformatics tools on HPC resources with gateway
access, along with tools for output data analysis. Our
science gateway, the Portal for Petascale Lifescience Appli-
cations & Research (PoPLAR), will provide easy access to
this unique combination of powerful, highly scalable paral-
lel bioinformatics applications, output analysis tools, and
knowledge-discovery resources. Our efforts to provide a
new solution to this important problem are described in
the section on development of parallel applications.

Methods

In this section, we focus on describing the process to take
a desktop bioinformatics application, scale it to tens of
thousands of cores on supercomputers, and expose it to a
science gateway for easy access. We look at the complexity
of the code and various profiling options. We also identify
the computationally intensive and data intensive sections
of the code, and examine parallelizing the code with no
change in the functionality of the application as described
in following sections.

Profiling for parallelization

The unique design of petascale supercomputers, with
performance exceeding one petaflop, tens of thousands
of computing cores, low per-core systems memory, and

Rekapalli et al. BMIC Bioinformatics 2013, 14(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/14/59/S3

a reliance on networked distributed filesystems makes
the architecture different from clusters and desktop
machines. Efficient use of these machines requires spe-
cial operating systems and carefully designed and tuned
applications. One possible way to improve the perfor-
mance of tools that run on petascale computers is by
changing the actual algorithms to better suit the charac-
teristics of supercomputers; this approach involves the
tedious process of recoding already complex and specia-
lized tools. The alternative approach that we have taken
is to profile the code so as to identify the computation-
ally intensive functions and I/O intensive functions.

We use CrayPat [25], PAPI [26], gprof [27], and our own
timing code to analyze the runtime of the tools and even-
tually our own optimizations as well. The CrayPat profiler
was useful in determining possible improvements to the
data output scheme and improvements to the overall MPI
communication. A second profiler, gprof, was used to ana-
lyze the runtime of the tools themselves. A great deal of
source code is involved with each application; for example,
NCBI's BLAST code base is approximately 1.3 million
lines, HMMER at 35,000, and MUSCLE with nearly
28,000 lines. Because of the extensive code base of these
tools, as few changes as possible should be made to the
code so as to avoid the need to maintain millions of lines
of forked software.

After profiling and examining thousands of lines of code,
we decided not to alter the functional part of any of these
tools so we could avoid the time investment necessary for
understanding and parallelizing the tool for advanced
architectures. Instead, we created a software wrapper that
requires only a very small number of changes to each
tool’s original source code. The architecture of the wrap-
per solution is shown in Figure 1. The wrapper is an
executable that runs outside of BLAST, HMMER, and
MUSCLE, but serves to handle the I/O of these tools in an
efficient manner, leaving the core of the application as an
untouched “black box”. The main difficulty in scaling
these tools is management of I/O access patterns. The
wrapper uses shared memory to redirect the tool’s I/O to
the wrapper process, so that it may handle the I/O more
efficiently. We chose shared memory segments as the
means of inter-process communication due to its low
overhead, the ease with which pseudo file I/O can be
implemented, and the optimization opportunities it pro-
vides as described later. Many supercomputers use a dis-
tributed filesystem, such as the Lustre distributed
filesystem [28], for I/O data storage. Each instance of the
tool needs to load a copy of the database, but the file sys-
tem does not perform well if thousands of processes are
trying to read the same files from it simultaneously. A bet-
ter design is to load all of the data needed with one reader
and then broadcast the data to all of the worker nodes.
This ensures that the data is only read from disk once.

Page 3 of 12

In our solution, we load data from the file system to the
master node, and use MPI's MPI_Bcast function to broad-
cast data from the master node to all worker nodes that
require the input databases and configuration files. This
broadcast is more efficient, scaling logarithmically in the
number of nodes. Additionally, the use of shared memory
allows for a single image of the database to be shared by
multiple processing cores. The worker nodes prefetch
query sequences from the master node in order to hide
input latency while achieving dynamic load balancing,
which is essential due to the variance in query runtimes
[16].

Optimization for improved data access

Another common issue related to file access patterns is
the reliance on sequential loading of files. In this model, a
file is memory-mapped into the process’s virtual address
space and then read sequentially. A page fault occurs each
time the program attempts to read data that has not yet
been loaded from the filesystem. Then this next page of
data is loaded into memory. This results in many small
requests for data from the networked file system, which is
slower than loading larger blocks of data. Our solution to
this problem is to preload the database into memory with
a single system call. The database typically consumes the
most memory during a run. The large size of the database
could be larger than the area addressable by the system’s
translation look-aside buffer (TLB) when standard-size
pages are used. Therefore, we increase the page-size of
this preloaded region so that it requires fewer entries in
the system’s TLB, which decreases the number of TLB
cache misses. We found that the use of 2 MB page sizes
instead of the standard 4 KB can reduce the processing
time of the BLAST tool by 15% to 60% depending on the
parameters used [16].

The performance of output operations was also
improved in several ways. Originally, data would be writ-
ten to disk immediately when available, resulting in many
individual writes to the file system and plaguing perfor-
mance. Our improvement consists of a two-stage buffer-
ing technique. In this scheme, the tools write output to
an in-memory buffer instead of directly to disk. The data
is flushed from in-memory buffers to disk by a back-
ground process when the buffers are nearly full, rather
than on demand. This increases the output bandwidth
and also results in more uniform output time. Writing to
disk in the background also reduces blocking in the tool
itself. Additionally, we distribute the output files across
multiple directories to optimize the common scenario of
architectures with a distributed file system. This optimi-
zation works because it increases the likelihood that the
file system will locate the data on multiple hardware
devices, resulting in higher bandwidth for parallel I/O. In
addition to writing data in blocks, we provide the option

Rekapalli et al. BVIC Bioinformatics 2013, 14(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/14/59/S3

Page 4 of 12

Main Memory
Input
Queries - Query Block 1
J Query Block M
/\ " Preload -
_/ ”| Database = Database
Database Master Node
(NR, ¥ v
SEEEP -
Main Memory § v
Results 1 Compressed Output Data- Query
. Buffer Buffer base Block
f 1 1
Y y
Results 2 Tool Process 1
R Compression [« (BLAST, HMMER,
ver MUSCLE, ...)
Results N Tool Process P
L — (BLAST HMMER,
i MUSCLE, ...
Lustre FS | Worker Nodes [1..N])
Figure 1 HSP wrapper architecture. The parallel wrapper used to scale widely used bioinformatics tools on HPC architectures.

of compressing the actual output blocks. Allowing output
to be transferred and stored in compressed form helps to
increase the throughput of output records. Compression
occurs in the background so that no additional latency is
introduced when the tool writes data. These output
enhancements have shown an increase in output band-
width of 2809% [16]. All the above optimizations are per-
formed by a single wrapper [16], shown in Figure 1.

Output analysis tools

We have also developed large-scale output data analysis
tools, because the data generated by these massive runs
of query sequences could vary from gigabytes to terabytes
and sometimes accessing and analyzing such large data-
sets is prohibitive. We have generated parsers to parse
the XML [29] and other output formats into tab-delim-
ited and user friendly outputs, along with generating SQL
databases for easy retrieval of results. The user will have
access to his or her data either in raw data formats that
the tools generated or the parsed data formats if desired.
All the results will then be made accessible through
science gateways. Figure 2 illustrates this approach,
where the user interfaces with the science gateway portal
and initiates a job that is run through parallel modules

on an HPC resource. Based on the user’s needs, either
the raw results are delivered back to the user, or the out-
put is parsed and prepared for easier use before it is
made accessible through the gateway.

Science gateway: challenges and solutions

The usefulness of science gateways, which provide the
ability to submit jobs to HPC resources remotely via a
defined service, is well established [22]. By allowing scien-
tists, researchers, and students to use HPC resources in
this way, we can provide a user interface that is highly cus-
tomized to the user’s purpose. This saves time and effort
on the researcher’s part, and by regulating and standardiz-
ing the input interface, we use computing resources more
efficiently through the streamlining of complex workflows
and the reduction of obstacles caused by deficiencies of
expertise and experience with computational resources.

In the process of creating the PoPLAR science gateway,
we were faced with several design decisions that directly
affected the performance and functionality of our end pro-
duct. To provide a single experience accessible to the
broadest audience, we have implemented PoPLAR as a
web-based portal, rather than an alternative solution such
as a thick client or desktop application. This also allows us

Rekapalli et al. BVIC Bioinformatics 2013, 14(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/14/59/S3

(7 ¥ ™ (
4+ Web Portal

Parallel modules
on HPC resource

v

_ Gateway Y,

Subselected Data

‘-_._____‘k________/

Post-
process?

Parser tools
(parse, filter, sort)

Figure 2 The gateway approach. The user interfaces with the
science gateway portal and initiates a job that is run through
parallel modules on an HPC resource. Based on the user's needs,
either the raw results are delivered back to the user, or the output
is parsed and prepared for easier use before it is made accessible
through the gateway.

to better centralize management and data flow, and to
enforce requirements and best practices such as those for
XSEDE resources.

The initial challenge when establishing a portal is the
selection of an architecture that can fulfill the require-
ments of a science gateway and the needs of the project
and its users. The different components have mostly out-
of-the-box solutions. While many possible options exist,
we identified three that most closely met our needs: the
HUBzero [30], Galaxy [29], and CIPRES [27] platforms.
HUBzero and Galaxy were the first two platforms we
examined. They were both attractive solutions for a
front-end, because they are feature rich, with built-in
capabilities that fulfill many of the XSEDE gateway best
practices (e.g., user registry with permissions, logging of
users and usage, job monitoring, statistics tracking, sys-
tem logging), and have powerful administrative inter-
faces. HUBzero is a general science collaboration
environment that is very focused on allowing users to
contribute tools, whereas Galaxy is more focused on bio-
logical sciences and has strong workflow construction
functionality. Both have some version of submitting jobs
to remote computational resources. From our perspec-
tive, the strength of HUBzero and Galaxy was also their
weakness in that extra development time would be neces-
sary to make them usable for our purposes; and general-
izability could detract from our more focused research.
The time investment was our primary concern for both
relative to adapting and supporting the packages.

The third solution we examined and chose is an adap-
tation of the CIPRES Science Gateway (CSG) platform
[31]. The CSG platform combines powerful, built-in

Page 5 of 12

capabilities and a focus on computational biology appli-
cations in such a way that it meets most of our feature
requirements without over-scoping and requiring exten-
sive customization. Some of the most attractive aspects
of CSG included (a) a focus on HPC applications, speci-
fically adapted to both XSEDE and academic resources;
(b) a scalable architecture designed for fully exposing
multiple applications (such as our Highly Scalable Paral-
lel [HSP] tool suites) to users via an easy-to-use graphi-
cal interface; and (c) total customizability and
parameterization of these tools.

CSG uses the Workbench Framework, which is a “gen-
eric distributable platform to access and search remote
databases and deploy jobs on remote computational
resources” [31]. The Workbench Framework implementa-
tion provides a scalable mechanism of XML descriptions
that map to graphical user interfaces (GUIs); and furnishes
a schema for constructing command line statements with
the user input entered into those GUIs [21]. This approach
offers scalability via ease of development, a robust mechan-
ism for specifying, capturing, and error-checking user para-
meters, and abstracting presentation from content to allow
for separate manipulation and development of both.

For those reasons and because CSG so closely matches
our application needs, we selected it and thus were able to
reduce initial implementation time and focus on customiz-
ing and extending the framework.

One of the biggest challenges we aim to address is the
transfer of data. Our system allows for multiple runs of
jobs—in parallel-on very large bioinformatics data sets.
When using these tools locally on an HPC resource, the
resulting output is stored to the file system. The design of
this project requires the delivery of that output to the end
user who has submitted the job via a web interface that is
not physically co-located with the computation machine’s
file system. Therefore, scaling presents major challenges
relative to handling large transfers and meeting local sto-
rage requirements. The synchronization of other job infor-
mation with the user, such as job status, completion,
errors, and so forth, also presents an issue. We have
implemented a system and run jobs of moderate size via
PoPLAR, and are continuing our efforts to improve the
scalability of the system.

Science gateway: architecture overview

PoPLAR, our science gateway, uses the CSG framework
[31] and incorporates a Java Struts2 [32] based web por-
tal running on Linux and Apache Tomcat with a MySQL
database and employs Python job management scripts on
remote computational resources. Our implementation
supports only registered users and restricts job submis-
sion to only verified users with activated accounts. The
web interface allows users to upload data sets; and create,
configure, and submit jobs using specific tools, with their

Rekapalli et al. BVIC Bioinformatics 2013, 14(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/14/59/S3

uploaded input data and tunable per-tool parameter set-
tings. After job submission, the system populates the
results into the portal and notifies the user of job com-
pletion. Screenshots showing the login interface, an
example user-configurable parameter setup for the HSP-
BLAST tool, and output after a successful job, are shown
in Figures 3, 4 and 5.

The system uses a community account for job submis-
sion and allows for individual user registration, authori-
zation and authentication, detailed logging of portal and
computation usage, submission of user attributes to com-
pute resources, the ability to restrict or deny access to
individual users, as well as system logging and other fea-
tures. Our adaptations after implementation include
restriction of access to registered users, the addition of a
verification process for account activation, the enforce-
ment of country of citizenship restrictions on access to
computational resources, the adaptation of remote

Page 6 of 12

resource job maintenance scripts to the National Insti-
tute for Computational Sciences supercomputer, and
changes in branding. We have incorporated several of
our highly parallel scalable tools into the toolkit. We are
working to extend the framework by incorporating inte-
grated workflows across multiple tools, adding parsing
and analysis tools as discussed above, and scaling data
handling to hundreds of gigabytes for 1/O.

Results and discussion

Scaling of parallel applications

Kraken supercomputer, an NSF-funded Cray XT5
machine consisting of 9,408 nodes with 112,896 AMD
Opteron compute cores operating at 2.6 GHz with 147
TB of memory, was used for testing our HSP tools.
Figure 6 shows the weak scaling results of running our
HSP versions of BLAST (blastp) as compared to the
unwrapped NCBI BLAST. The input database for

Or NICS PoPLAR Science Gateway | Login
€

poplar.nics.tennessee.edu/

* PoPLAR

\

Toolkit

My Workbench

My Profile

Fnrst Time Users: Please review the
More information about t

More mformatmn about Us

. Portal for Petascale Lifescience Applications & Research

How to Cite Us Statistics

Login
*Username:

*Password

s

got Password?

[a Report an Issue (B) Request a Feature

RECE:

S

1. Ability to save and retrieve data;
2. Ability to organize jobs into different folders;
3. Ability to see history of your job submissions

Reaister Now

NICS - University of Tennessee - Oak Ridge National Laboratory
PO Box 2008, BLDG 5100 - Oak Ridge, TN 378316173
Vaiid: xhimi | css

Figure 3 PoPLAR science gateway login. Example screenshot of the login interface.

ur &

Rekapalli et al. BMC Bioinformatics 2013, 14(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/14/59/S3

Page 7 of 12

-

tennessee.edu/ hspbl

PoPLAR

poplar.nic ast_tgiinput.action

A @

Home

Toolkit My Workbench My Profile

Folders

) Task Summary
= & Foldert

(1 Data(2

€

Portal for Petascale Lifescience Applications & Research

Select Data

i HSP BLAST on Kraken: Highly Scalable Parallel BLAST run
on Kraken (B. Rekepalli, A. Vose, and P. Giblock)

N

Pl B~

How to Cite Us Statistics

Select Tool Set Parameters

Hours) (c

0PEN 7 OLOSE

correctiy)®* 10

0PEN / OLOSE

Save Parameters ” Reset][Cancel

Advanced Help

[a Report an Issue %) Request a Feature

B e

value, and BLAST type (protein or nucleotide).

-

NICS - University of Tennessee - Oak Ridge National Laboratory
PO Box 2008, BLDG 5100 - Cak Ridge, TN 378316173 1
|

Valid: xnim

Figure 4 PoPLAR science gateway tool parameters. Example screenshot of the user configurable parameter setup options for the HSP-BLAST
tool. In this figure, the user can specify runtime, number of nodes, and tool-specific parameters such as output format, threshold expectation

OPEN / CLOSE

BLASTP runs was NCBI’s non-redundant (nr) protein
database of March 2012. This database contains 17,577,257
protein sequences, and the total size of the formatted data-
base is 11 GB. The query sequences are all 200 amino
acids in length, and the number of sequences chosen is
equal to 16 times the number of cores. The XML output
format was used, and all other parameters were set to the
default values established by the blastall tool. We tested the
unwrapped BLAST by dividing the set of input sequences
into a unique file for each compute core. Output is written
to an individual file per core, arranged in a directory.

Figure 6 shows the execution time (wall time) of HSP-
BLAST compared to NCBI BLAST as the workload is
increased in proportion to the number of compute cores.
HSP-BLAST achieves near linear scaling performance
while the NCBI version experiences scalability issues near
3000 cores. The original NCBI implementation does out-
perform HSP-BLAST at low core counts due to the lower
startup cost. We also ran scaling studies of our wrapped
Position Specific Iterative (PSI)-BLAST [16], whose perfor-
mance was near linear. This is a significant accomplish-
ment, as no parallel PSI-BLAST is currently available that

Rekapalli et al. BVIC Bioinformatics 2013, 14(Suppl 9):S3 Page 8 of 12

http://www.biomedcentral.com/1471-2105/14/59/S3

(3
€ poplar.nics.tenr edu/setTaskOutput!displayOutput.action?id=124 4 -:.'- Google P B~

g; PoPLAR

Portal for Petascale Lifescience Applications & Research

\

My Workbench My Profile How to Cite Us Statistics
Folders
View Task Output
E & Foldert
[Data (8 Click on an output file below to review its contents.
[Tasks (94)

= Tool Output File Name File Size

Select all (Bytes)

a PROCESS_OUTPUT STDOUT 43 View Download)
B all_results COMMANDLINE 45 View "Download)
B infile.fasta 260259118 View (Download)
] scheduler.conf 81 View . Download .
B _JOBINFO.TXT 297 View. (Download)
B balch_command.cmdline 58 View (__Download)
] batch_command.run 931 View Download)
] batch_command.status 26 View Download .
] scheduler_stdout bt 6 View Download
] scheduler_stderrtxt 677 View (Download)
B startix 44 View (_Download)
] stdouttdt 43 View Download)
B stderrbd 0 View Download
] outputfasta 5205182360 View (Download)
a done bt 137 View _W

View Current Task Return to Task List

Figure 5 PoPLAR science gateway output. Example screenshot of a job output showing files available for the user to download. Here, the

user can download results files (outputfasta) as well as other intermediate files generated during the job.
- J

scales to a large number of cores. We have run millions of
BLAST searches in hours using ~240,000 cores on the Kra-
ken supercomputer that would take weeks on a cluster or
in a cloud environment.

Figure 7 shows the scaling results of the wrapped
hmmscan function of the HMMER 3.0 package. The Pfam
24 database was used, and input sequences were chosen
so that each computation core would align approximately
760 sequences each. The simple tabular output format
was used. There is noticeable fluctuation in the execution
time; particularly at 768 cores. This is due to the unpre-
dictable performance of the shared Lustre file system. The
load generated by other users of Kraken cause contention
for the file system and directly affects the performance.

Another scaling study that was published in the TG’11
conference scaled the wrapped HMMER tool to ~100,000
cores on the Kraken supercomputer [15], with near linear
speedups; the tool is scalable up to a full capability mode
run on parallel supercomputers such as Kraken. With
HMMER, we were able to identify domain models for
10 million protein sequences in 10 minutes by using
100,000 cores on Kraken.

The performance of the wrapped version of the MUS-
CLE multiple sequence alignment tool was also evaluated
on Kraken. We chose 10 input data sets for each core
used in the experiment. Each data set consisted of a
number of sequences returned previously by a BLAST
alignment search. Figure 8 shows the scaling results up

Rekapalli et al. BVIC Bioinformatics 2013, 14(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/14/59/S3

Page 9 of 12

to 12,288 cores or 1024 nodes on the Kraken supercom-
puter. We foresee only few users going beyond the core
count. We scaled NCBI BLAST and HMMER to full
machine runs on the Kraken supercomputer, and we
scaled MUSCLE to 40,000 cores. These tools are accessi-
ble through our PoPLAR gateway.

The PoPLAR gateway
We have generated modules for our wrapped tools on the

Kraken supercomputer along with documentation for
submitting jobs through command line. As discussed in

700 S — .
[HSP-HMMER —— |
600 | i// .
B 500 |- — i
Q
Q
@
@ 400 - .
@
£
‘" 300 | |
2
5
o
e 200 + .
i
100 .
0 P L n | - P "
48 192 768 3072 12288
Compute Cores
Figure 7 Scaling study of HMMER on Kraken. Weak scaling
results for protein domain identification using the hmmscan
function of HMMER are performed up to 1,024 nodes (12,288 cores)
on the Kraken supercomputer.

N
T T T T 1000 — ———— .
7000 -THSP-BLAST —— 7 [HSP-MUSCLE —+ | '
NCBI-BLAST ---x--- / |
/| _—
6000 - 800 | P |
3 / g —
S 5000 - /4 =
5] { o
8 8 ool :
S 4000 | . o
= / £
= / =
§ 3000 [i & 400 - -
5 X 2
€ 2000 = %
x B J 7 w
u] 200 .
kT
—— o
1000 = Ememe o S S X -
0 1 n P I
0 — i —l e 48 192 768 3072 12288
48 192 768 3072 12288
Compute Cores
Compute Cores
: . . Figure 8 Scaling study of MUSCLE on Kraken. Weak scaling
Figure 6 Scaling comparison of HSP-BLAST and NCBI BLAST on results for MUSCLE multiple sequence alignments are performed up
Kraken. Weak scaling results for BLAST Protein sequence similarity to 1,024 nodes (12,288 cores) on the Kraken supercomputer.
searches are performed up to 2048 nodes (24,576 cores) on the
Kraken supercomputer.

the Implementation section, we have also developed our
science gateway called PoPLAR. We have incorporated
our parallel tools into the PoPLAR gateway and plan to
add other bioinformatics tools during the development
process. We present these tools via a science gateway so
that researchers can use web portals to access supercom-
puters and further develop workflows of parallel tools
that could analyze very large-scale life sciences data,
without the need to learn command-line scripting. For
example, we are developing a systems biology workflow
for a bioinformatics lab at the University of Tennessee,
Knoxville (UT-Knoxville), as shown in Figure 9. This
workflow results from combining HSP bioinformatics
tools currently available on PoPLAR to generate novel
protein domain models at a massive scale. This workflow
illustrates a real-world application that is commonly used
by biologists at UT-Knoxville, as well as elsewhere, but
must be run in a disjointed fashion, one tool at a time,
which is difficult and demanding to perform on large
data sets. Examples of currently implemented tools
include BLAST, HMMER, and MUSCLE.
In this scenario, the researcher has a newly generated set
of genomes or sequences to be annotated for domain
models that determine the function, structure, and evolu-
tion of the proteins. First, the HMMER tool hmmscan is
used to identify domain models in those sequences and
those without domain matches. Ones with domain
matches are identified and documented. To find sequences
similar to those without domain matches, the next step is
to use the NCBI PSI-BLAST tool. If similar sequences are
found using PSI-BLAST to contain known domains, the
models for those domain matches can be updated; thus,
the next time HMMER should be able to identify the

Rekapalli et al. BVIC Bioinformatics 2013, 14(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/14/59/S3

Page 10 of 12

Known Domains
(Pfam)

Newly
Sequenced

HMMER
(hmmscan)

Sequences with
Domain Matches

Sequences without
Domain Matches

01" s '
+ » PsSIBLAST Known Similar
Sequences
Improvement
Yes Domain No
Matches
Exist?
L MUSCLE Muitip[e Sequence
Alignment
> HMMER New Domain
(hmmbuild) Model
> HMMER Known Matching
NR Database (hmmsearch) Sequences
Yes Domain No
Matches

tools to generate novel protein domain models on a massive scale.

Figure 9 An automated workflow for the discovery of novel domain models. An example workflow created by combining bioinformatics

Exist?

New Model
Discovered

proper domain matches. If PSI-BLAST does not find
sequences with domain matches, the next step is to build
novel domain models. Before building a model, the match-
ing domains are aligned with using tool like MUSCLE,
which generates a multiple sequence alignment (MSA).
The MSA is then used to build a new domain model with
hmmbuild, part of the HMMER package. That domain
model is checked against the known nr database using the
HMMER tool hmmsearch. If hmmsearch generates
domain matches, the existing models can be improved. If
not, the researcher has confirmed that the model created
is new and can now be added to domain databases around
the world. By making a system where the I/O of each tool
are reconfigurable, all the bioinformatics tools, result-par-
sing tools, and data-conversion tools of the workflow

could be used in various combinations to solve different
problems in biology.

The data transfer in our current system takes place
between the end user and the gateway and between the
gateway and the compute resource. A typical sequence
begins with the user uploading an input set to the gateway.
We note here that once uploaded, an input set is saved
indefinitely for reuse, so the sequence may also begin with
using a previously uploaded data set. Then, after the user
selects a tool and configures its parameters, the gateway
copies the input data to the compute resource using Globus
tools. After the job completes, the gateway copies the results
back, and the end user can view or download the data.

To examine the scalability of data transfer, we con-
ducted a series of tests to determine the current limits

Rekapalli et al. BMIC Bioinformatics 2013, 14(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/14/59/S3

of our system. We tested a variety of I/O file sizes, from
100MB to 5GB. Our results showed that for input, we
are currently limited by our data upload capability; the
maximum input size accommodated by our system is
approximately 500MB. For output, we tested output
sizes incrementally up to 5GB, without finding a size
limitation. In the future we plan to address the upload
limitation through software and hardware changes. We
are also investigating methods to improve data transfer
speeds and to eliminate the need to copy output back to
the science gateway for user access. Finally, we are also
adapting the gateway to allow users to easily apply out-
put data as input into another tool.

The PoPLAR gateway provides an easy-to-use graphical
interface that is more efficient than using the command
line, for example, in several ways. It is worth noting that
because the tools being run via PoOPLAR and via the com-
mand line are identical, there is absolutely no difference
from a processing perspective in the efficiency between
methods of the tools themselves. Rather, the benefits
PoPLAR provides are through the ease-of-use of the gra-
phical interface as well as several functional advantages,
including:

+ The GUI replaces the command line interface,
which frees the user from needing experience with
the command line.

« Likewise, knowledge of each specific tool’s syntax
is not necessary, as each tool’s parameters are bro-
ken out and presented via a web form with help text.
« The portal presents the user with one location for
data (inputs and results), easy organization of data
into folders, and a history of all jobs submitted.

» Users can submit and move on to other tasks, as
notification of a job’s completion is sent to the user
via email.

« Different tools can be configured to run transpar-
ently on different computation resources, all made
available to the user via the same interface.

+ The computation-resource-agnostic interface does
not require the user to know anything about the
specifics of different systems (e.g., job submission
engines, distributed filesystems, or command shells);
the same tool running on different resources can be
configured to present the same interface.

+ Jobs submitted via the portal do not require the
user to have an account on and log in to each compu-
tation resource (although the portal does allow users
to charge their existing allocation)—only a browser is
required to access the portal from anywhere.

By addressing the challenges described above and
developing a web-portal science gateway for highly paral-
lelized tools for large-scale data analysis, we look forward

Page 11 of 12

to having a substantial positive effect on these fields. Our
approach allows for easy, user-friendly access to super-
computing resources. With that access, users can more
easily submit large-scale jobs. By facilitating rapid large-
scale analysis, we are able to help fulfill the significant
demand created by the growing volume of data analysis
needs in bioinformatics.

The system we have implemented is easily extended to
incorporate similar highly scalable parallel tools for
other domain sciences. By design, tools located on any
computational resource can be made available easily and
seamlessly through the science gateway. This combina-
tion makes our tools-plus-gateway approach powerfully
scalable across both computational resources and
science application domains.

Conclusions

This paper provides a model for the development of highly
scalable parallel bioinformatics applications on HPC archi-
tectures along with an increase in availability and usability
through science gateways. The model directly enhances
large-scale data analysis and knowledge discovery capabil-
ities. This work revealed the following points: (a) Signifi-
cant time and skills are required to change the entire code
of an application to a specific architecture, and avoiding
such an endeavor is the best practice; (b) a superior
approach is to wrap the code of the bioinformatics appli-
cation without changing functionality, identify the inten-
sive I/O part of the code, and optimize communications
to scale the code well, thus generating accurate results; (c)
even though parallel tools are available at supercomputing
facilities, many researchers are reluctant to use them due
to a lack of expertise operating on the command line; (d)
for these reasons mentioned here, developing science gate-
ways with easy access to the parallel tools is a better way
to facilitate and encourage the use of supercomputing
resources by biologists. This research will have a direct
impact on life sciences data and the rate of knowledge dis-
covery. Still, many issues exist—such as job scheduling,
load balancing, and fault tolerance—that need to be
addressed with science gateways. We want our users to
have total control over the type and size of data that can
be analyzed, and we are addressing those issues in the life
sciences gateway, as well as developing automated work-
flows for large-scale data analysis.

Availability and requirements

Project name: PoPLAR
Project home page: http://poplar.nics.tennessee.edu/
Operating system(s): Web based / Platform independent
Programming language: Java
Other requirements: No
License: Contact author
Any restrictions to use by non-academics: None

http://poplar.nics.tennessee.edu

Rekapalli et al. BMIC Bioinformatics 2013, 14(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/14/59/S3

List of abbreviations used

CSG: CIPRES Science Gateway; GUI: graphical user interface; HPC: high-
performance computing; HSP: Highly Scalable Parallel (tool suites); 1/0: input
and output; MPI: Message Passing Interface; MSA: multiple sequence
alignment; NCBI: National Center for Biotechnology Information; nr: non-
redundant; NSF: National Science Foundation; POPLAR: Portal for Petascale
Lifescience Applications and Research; PSI: Position Specific Iterative; SQL:
Structured Query Language; TLB: translation look-aside buffer; UT-Knoxville:
University of Tennessee, Knoxville; XML: Extensible Markup Language; XSEDE:
Extreme Science and Engineering Discovery Environment

Authors’ contributions

BR conceived and served as principal investigator for the project, created
the layout of the project, analysis tools, gateways and authored sections of
the manuscript. PG developed the highly scalable parallel tools and
authored sections of the manuscript. CR implemented the PoPLAR science
gateway, developed workflow tools, authored sections of the manuscript. All
authors read and approved the final manuscript.

Authors’ information

BR is the research scientist at the Joint Institute for Computational Sciences
(UT-Knoxville-Oak Ridge National Laboratory) who is developing parallel
bioinformatics applications on HPC machines and next-generation
architectures, along with collaborating with researchers from various
universities on large-scale data analysis in life sciences. PG and CR are
graduate research assistants from the electrical engineering and computer
science department at UT-Knoxville who are participating in BR's projects,
and both bring expertise from computer science areas to this research.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements

This research used resources at the Joint Institute for Computational
Sciences; Extreme Science and Engineering Discovery Environment (XSEDE),
funded by the National Science Foundation (NSF); and also supported in
part by the NSF grants EPS-0919436 and OCI-1053575. We would like to
thank Mark Miller and Terri Schwartz for guidance during code
development, and also thank Suresh Marru for technical assistance in adding
the PoPLAR science gateway to XSEDE.

Declarations

Publication of this article is supported by the National Institute for
Computational Sciences, XSEDE funded by NSF and also supported in part
by NSF grants EPS-0919436 and OCI-1053575.

This article has been published as part of BMC Bioinformatics Volume 14
Supplement 9, 2013: Selected articles from the 8th International Symposium
on Bioinformatics Research and Applications (ISBRA'12). The full contents of
the supplement are available online at http://www.biomedcentral.com/
bmcbioinformatics/supplements/14/S9.

Published: 28 June 2013

References

1. Kahn SD: On the future of genomic data. Science 2011, 331:728-729.

2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25:3389-3402.

3. Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14:755-763.

4. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Research 2004, 32:1792-1797.

5. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA,
McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al: Clustal W and
Clustal x version 2.0. Bioinformatics 2007, 23:2947-2948.

6. Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic
trees. Bioinformatics 2001, 17:754-755.

7. Darling A, Carey L, Feng W: The Design, Implementation, and Evaluation
of mpiBLAST. Proceedings of ClusterWorld 2003.

8. Oehmen C, Nieplocha J: ScalaBLAST: A Scalable Implementation of BLAST
for High-Performance Data-Intensive Bioinformatics Analysis. IEEE Trans
Parallel Distrib Syst 2006, 17:740-749.

Page 12 of 12

9. Walters JP, Qudah B, Chaudhary V: Accelerating the HMMER Sequence
Analysis Suite Using Conventional Processors. 20th International
Conference on Advanced Information Networking and Applications - Volume
07 IEEE Computer Society; 2006, 289-294.

10. Li K-B: ClustalW-MPI: ClustalW analysis using distributed and parallel
computing. Bioinformatics 2003, 19:1585-1586.

11. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics 2003, 19:1572-1574.

12. Rangwala H, Lantz E, Musselman R, Pinnow K, Smith B, Wallenfelt B:
Massively parallel BLAST for the Blue Gene/L. High Availability and
Performance Computing Workshop 2005.

13. Heshan L, Xiaosong M, Chandramohan P, Geist A, Samatova N: Efficient
Data Access for Parallel BLAST. Parallel and Distributed Processing
Symposium, 2005 19th IEEE International 2005, 72b-72b.

14. Rekapalli B, Halloy C, Zhulin 1B: HSP-HMMER: a tool for protein domain
identification on a large scale. 2009 ACM symposium on Applied Computing
Honolulu, Hawaii: ACM; 2009, 766-770.

15. You H, Rekapalli B, Liu Q, Moore S: Autotuned parallel I/0 for highly
scalable biosequence analysis. Proceedings of the 2011 TeraGrid Conference:
Extreme Digital Discovery Salt Lake City, Utah: ACM; 2011, 1-8.

16. Rekepalli B, Vose A, Giblock P: HSPp-BLAST: Highly Scalable Parallel PSI-
BLAST for Very Large-scale Sequence Searches. In 3rd International
Conference on Bioinformatics and Computational Biology (BICoB). Las Vegas,
NV;Saeed F, Khokhar A, Al-Mubaid H 2012:37-42.

17. Li L, Bum-Erdene K, Baenziger PH, Rosen JJ, Hemmert JR, Nellis JA,

Pierce ME, Meroueh SO: BioDrugScreen: a computational drug design
resource for ranking molecules docked to the human proteome. Nucleic
Acids Res 2010, 38:D765-773.

18. CHEMBIOGRID: All Cheminformatics Web Services. [http://www.
chembiogrid.info/projects/proj_ws_all.html].

19. National Biomedical Computation Resource. [http.//www.nbcr.net].

20. Kim DE, Chivian D, Baker D: Protein structure prediction and analysis
using the Robetta server. Nucleic Acids Research 2004, 32:W526-W531.

21, Miller MA, Pfeiffer W, Schwartz T: Creating the CIPRES Science Gateway
for inference of large phylogenetic trees. Gateway Computing
Environments Workshop (GCE) New Orleans, LA;1-8.

22. Wilkins-Diehr N, Gannon D, Klimeck G, Oster S, Pamidighantam S: TeraGrid
Science Gateways and Their Impact on Science. Computer 2008, 41:32-41.

23. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y,
Blankenberg D, Albert |, Taylor J, et al- Galaxy: a platform for interactive
large-scale genome analysis. Genome Res 2005, 15:1451-1455.

24. Missier P, Soiland-Reyes S, Owen S, Tan W, Nenadic A, Dunlop |, Williams A,
Oinn T, Goble C: Taverna, reloaded. In Scientific and Statistical Database
Management. Volume 6187. Heidelberg, Germany: Springer,Gertz M,
Ludascher B 2010:471-481.

25. Cray Inc: Performance Tools. Optimizing Applications on the Cray X1 System
2003.

26. Browne S, Dongarra J, Garner N, Ho G, Mucci P: A Portable Programming
Interface for Performance Evaluation on Modern Processors. International
Journal of High Performance Computing Applications 2000, 14:189-204.

27. Graham SL, Kessler PB, Mckusick MK: Gprof: A call graph execution
profiler. SIGPLAN Not 1982, 17:120-126.

28. Cluster File Systems, Inc.: Lustre: A Scalable, High-Performance File
System. Technical report 2002.

29. Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F, Cowan J:
Extensible Markup Language (XML) 1.1 (Second Edition). W3C; 2006.

30. McLennan M, Kennell R: HUBzero: A Platform for Dissemination and
Collaboration in Computational Science and Engineering. Computing in
Science & Engineering 2010, 12:48-53.

31. Miller MA, Pfeiffer W, Schwartz T: The CIPRES Science Gateway: Enabling
High-Impact Science for Phylogenetics Researchers with Limited
Resources. XSEDET2 Chicago, IL, USA; 2012.

32. Java Struts 2. [http://struts.apache.org/].

doi:10.1186/1471-2105-14-S9-S3

Cite this article as: Rekapalli et al: POPLAR: Portal for Petascale
Lifescience Applications and Research. BMC Bioinformatics 2013
14(Suppl 9):S3.

http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S9
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S9
http://www.ncbi.nlm.nih.gov/pubmed/21311016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9918945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15034147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15034147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17846036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17846036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11524383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11524383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19923229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19923229?dopt=Abstract
http://www.chembiogrid.info/projects/proj_ws_all.html
http://www.chembiogrid.info/projects/proj_ws_all.html
http://www.nbcr.net
http://www.ncbi.nlm.nih.gov/pubmed/15215442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15215442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23653898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23653898?dopt=Abstract
http://struts.apache.org/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Development of parallel applications
	Science gateways

	Methods
	Profiling for parallelization
	Optimization for improved data access
	Output analysis tools
	Science gateway: challenges and solutions
	Science gateway: architecture overview

	Results and discussion
	Scaling of parallel applications
	The PoPLAR gateway

	Conclusions
	Availability and requirements
	List of abbreviations used
	Authors’ contributions
	Authors’ information
	Competing interests
	Acknowledgements
	Declarations
	References

