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Abstract

Background: In complex large-scale experiments, in addition to simultaneously considering a large number of
features, multiple hypotheses are often being tested for each feature. This leads to a problem of multi-dimensional
multiple testing. For example, in gene expression studies over ordered categories (such as time-course or
dose-response experiments), interest is often in testing differential expression across several categories for each gene.
In this paper, we consider a framework for testing multiple sets of hypothesis, which can be applied to a wide range of
problems.

Results: We adopt the concept of the overall false discovery rate (OFDR) for controlling false discoveries on the
hypothesis set level. Based on an existing procedure for identifying differentially expressed gene sets, we discuss a
general two-step hierarchical hypothesis set testing procedure, which controls the overall false discovery rate under
independence across hypothesis sets. In addition, we discuss the concept of the mixed-directional false discovery rate
(mdFDR), and extend the general procedure to enable directional decisions for two-sided alternatives. We applied the
framework to the case of microarray time-course/dose-response experiments, and proposed three procedures for
testing differential expression and making multiple directional decisions for each gene. Simulation studies confirm the
control of the OFDR and mdFDR by the proposed procedures under independence and positive correlations across
genes. Simulation results also show that two of our new procedures achieve higher power than previous methods.
Finally, the proposed methodology is applied to a microarray dose-response study, to identify 178-estradiol sensitive
genes in breast cancer cells that are induced at low concentrations.

Conclusions: The framework we discuss provides a platform for multiple testing procedures covering situations
involving two (or potentially more) sources of multiplicity. The framework is easy to use and adaptable to various
practical settings that frequently occur in large-scale experiments. Procedures generated from the framework are
shown to maintain control of the OFDR and mdFDR, quantities that are especially relevant in the case of multiple
hypothesis set testing. The procedures work well in both simulations and real datasets, and are shown to have better
power than existing methods.
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Background

With the rapid development of high-throughput tech-
nologies, large-scale experiments nowadays frequently
adopt more complex designs, further complicating the
issue of multiple testing. In designs where a single hypoth-
esis is tested for each feature (e.g. testing differential
expression between two treatments for each gene), we
need to consider the adjustment of multiplicity across a
large number of features. As experiments become more
complicated, it is often the case that multiple hypothe-
ses need to be tested for each feature. This creates two
dimensions of multiplicity - one dimension comes from
the multiple features (e.g. genes), while another dimension
comes from the multiple hypotheses associated with each
feature. In dealing with these multi-dimensional multiple
testing problems, it is crucial to understand the underlying
structure and adjust for multiplicity accordingly.

As an example of such problems, we consider gene
expression studies over ordered categories. In these exper-
iments, researchers are often interested in genes that
are possibly differentially expressed across a number of
time points or dose levels. In this case, multiple tests
of differential expression are conducted for each gene.
An easy way of adjusting for multiplicity would be to
pool all the tests from all the genes together, and simply
apply multiple testing procedures such as the Benjamini
and Hochberg procedure (B-H procedure) [1], control-
ling for the false discovery rate (FDR). However, this
approach ignores the fact that the two dimensions of mul-
tiplicity are not equivalent. A suitable approach should
take into account the fact that the key goal in these
experiments is to identify important genes, and that
the false discoveries should be controlled at the gene
level.

In recent years, many proposals have addressed these
new issues in multiplicity arising in microarray time-
course or dose-response experiments. Sun and Wei [2]
considered the problem of multiple testing for pattern
identification in these types of studies. They considered
this a “set-wise” multiple testing problem, where each
gene corresponds to a “set”. Since they focused on pat-
tern identification, their methods test for specific patterns
across time for each gene, instead of making multiple indi-
vidual inferences of differential expression between the
time points. Guo, Sarkar and Peddada [3] looked into
the problem of controlling false discoveries when making
multiple directional decisions for each gene, also for time-
course and dose-response experiments. They considered
individual inferences for each time point and proposed
controlling a quantity called the mixed directional false
discovery rate (mdFDR). We will later show that the main
procedure introduced by Guo et al. [3] falls under the gen-
eral framework of this paper. On the other hand, building
upon our framework, we are able to easily come up with
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procedures that are more powerful than that proposed by
Guo et al. [3].

Our approach is to consider the multiple hypotheses for
each gene as belonging to a hypothesis set associated with
that gene. We aim at controlling false discoveries on the
hypothesis set level, but we also enable inferences on the
individual hypotheses. Inspired by a procedure in Heller
et al. [4] for testing differentially expressed gene sets, we
discuss a general two-step procedure to first identify sig-
nificant hypothesis sets, and to then make further individ-
ual tests on each of the hypotheses within the significant
sets. The procedure adjusts for multiplicity in both steps
by adopting the Benjamini-Hochberg procedure in the
first step and family-wise error rate controlling proce-
dures in the second step. To measure false discoveries on
the set level, we adopt the concept of the overall false dis-
covery rate (OFDR), which was introduced by Benjamini
and Heller [5] in the context of screening for partial
conjunction hypothesis and further discussed in Heller
et al. [4]. The OFDR is a straightforward extension of the
FDR to hypothesis sets. The general two-step procedure
we discuss is proved to control the OFDR under indepen-
dence between the hypothesis sets, which follows from a
similar result in the paper by Heller et al. [4]. In addition,
we extend the general procedure to incorporate the cases
of making directional decisions for two-sided alternatives,
and discuss the control of the mixed-directional FDR in
this case.

We applied this framework to gene expression data on
ordered categories and developed three procedures for
the problem of identifying genes that are differentially
expressed between categories, as well as making direc-
tional decisions for each significant expression change.
We conducted a simulation study to show that all three
proposed procedures maintain control of the OFDR and
mdFDR at the desired level under independence between
genes, as well as positive correlations across genes. Sim-
ulation results show that two of our new procedures
perform better in terms of power compared to the pro-
cedure in Guo et al. [3]. The proposed methodology is
also applied to a microarray dose-response experiment by
Coser et al. [6] which studied 178-estradiol (E2) sensitiv-
ity of genes in breast cancer cells. We identified genes that
are induced at low concentrations of E2, and compared
the results across the different procedures. Our results
confirmed and complemented the original findings.

Methods
A framework for multiple hypothesis set testing and a
general two-step procedure
We first present a general framework for multiple hypoth-
esis set testing.

Suppose we want to test for m sets of hypotheses
H(1),...,H(m) simultaneously. In each set of hypotheses
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H(i), there is a screening hypothesis, denoted by Hy (i),
that will be tested first. The rest of the hypotheses in the
set H1(i), ..., Hy(;) (i), which we will refer to as the indi-
vidual hypotheses, will be tested simultaneously if and
only if Hy(i) is rejected. In general, the number of indi-
vidual hypotheses in each set need not be the same. Note
that all the hypotheses referred to here are by default null
hypotheses.

In this formulation of multiple testing of hypothesis sets,
we wish to control the proportion of false rejections on
the level of the hypothesis sets. So instead of the usual
false discovery rate, we consider the overall false discovery
rate (OFDR) [5], which is a similar concept but defined in
terms of the hypothesis sets. It is defined as the expected
proportion of falsely rejected hypothesis sets out of all the
rejected hypothesis sets. We define a hypothesis set to be
rejected if the screening hypothesis in the set is rejected;
and we define a hypothesis set to be falsely rejected if
at least one true null hypothesis in the set (including
the screening hypothesis) were incorrectly rejected. The
formal definition of OFDR is given below.

Definition 1. A hypothesis set HG@) (i = 1,...,m) is
said to be rejected if the screening hypothesis Hy(i) is
rejected. A hypothesis set H (i) is said to be falsely rejected
if it is rejected and at least one hypothesis in the set
Ho(i), H1(0), ..., Hyi) (i) is falsely rejected. The overall
false discovery rate (OFDR) is defined as

Vv
OFDR =E ,
Rv1

where RV 1 = max(R, 1), R is the total number of hypoth-
esis sets rejected out of m, and V is the total number of
hypothesis sets that are falsely rejected out of m.

Heller et al. [4] proposed a two-step procedure for
testing differentially expressed gene sets that controls the
OFDR of the gene sets. Here we formally discuss a general
two-step hierarchical testing procedure for the multiple
hypothesis set testing framework. The general procedure
proceeds as follows. Let p;(i) be the unadjusted p-value
for individually testing the jth hypothesis in the ith set,
wherei=1,...,mandj=0,1,...n().

Procedure 1:

(1) Apply the Benjamini-Hochberg procedure at level «
to the m p-values corresponding to the screening
hypotheses po(1),. .., po(m). Let R be the number of
rejected screening hypotheses.

(2) For each rejected hypothesis set H (i), test for the
individual hypotheses H1 (i), . . ., Hy () (i)
simultaneously, applying a p-value adjusting
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procedure on pi (i), . . ., Pu(;) (i) such that the
family-wise error rate (FWER) of these n(i) tests are
controlled at level Ro/m.

Procedure 1 enables two levels of inferences. We are
able to identify the significant hypothesis sets by testing
the screening hypotheses for each set. At the same time,
for each significant hypothesis set, we are able to iden-
tify the significant individual hypotheses within the set.
On the other hand, the false discovery rate is administered
only on the set level. Procedure 1 controls the OFDR of
testing the m hypothesis sets at level «, under the condi-
tion that the p-values of the individual hypotheses in each
hypothesis set are independent from all other screening
hypothesis p-values. The proof follows directly from the
proofin [4] of a similar claim on their procedure. We state
the theorem formally below.

Theorem 1. Procedure 1 controls the overall false dis-
covery rate (OFDR) at level o assuming that for each
hypothesis set H(i), the p-values po(i), p1(i), . .., Pni) (@)
are independent of all the other screening p-values,
po(1), ..., po(m) excluding po (i).

Though Theorem 1 only states the case of independence
between the hypothesis sets, in practice, the framework
can be applied to more general cases where certain posi-
tive dependency structures exist between the test statistics
from different hypothesis sets. Intuitively, this is because
Procedure 1 relies on the B-H procedure. The conditions
on dependence such that the FDR is controlled are given
in [7]. On the other hand, we will later present simulation
studies that cover the situation where positive correla-
tion exists across the hypothesis sets, and the results
demonstrate control of OFDR in these cases.

The multiple hypothesis set testing framework and the
general two-step procedure have very broad applicability.
They provide a general platform for dealing with practical
problems in large scale experiments where simultaneous
inference is needed on two or more dimensions. Take
microarray experiments as a general example. One dimen-
sion of multiplicity would be the genes, while another
dimension would represent the multiple inferences for
each gene that the researcher is interested in. We now give
some examples: 1) in time-course experiments, the sec-
ond dimension could reflect hypotheses on/between the
different time points; in dose-response experiments, the
second dimension could reflect hypotheses on/between
the different dose levels; 2) in experiments with multiple
treatment groups, the second dimension could reflect a
number of possible pairwise comparisons between treat-
ments. In all of these cases, the multiple hypotheses for
each gene would make up the hypothesis set for that gene.
Thus each gene would correspond to a hypothesis set.
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Under this context, intuitively, we would want to control
the false discoveries on the gene level, despite the multi-
ple inferences made for each gene. This makes the OFDR
a reasonable quantity to control, compared to the usual
EDR. In general, our framework and procedure can be rea-
sonably adapted to any multi-dimensional multiple testing
problem that has a hierarchical structure where it makes
sense to define hypothesis sets.

Incorporating directional decisions

In many practical settings, following the rejection of a
hypothesis, researchers are interested in making addi-
tional claims. In the case of two-sided alternatives,
directional decisions are often made. This is especially
common in differential expression analysis of genomic
data, where it is important to claim the direction of
expression change after finding a difference. In these sit-
uations, in addition to the traditional type I error, there
is also a chance of making directional errors [3,8]. Direc-
tional errors occur when a two-sided test is correctly
rejected, but the choice of the alternative (directional deci-
sion) is incorrect. If directional decisions are desired, it is
important to take into account directional errors (some-
times referred to as type III errors [8]) in additional to type
I errors.

Guo et al. [3] discussed the idea of mixed-directional
FDR (mdFDR), which is similar in concept to the OFDR,
but with the addition of directional errors. We give the
formal definition of mdFDR below.

Definition 2. The mixed-directional false discovery rate
(mdFDR) is defined as

1%
mdFDR:E( +S>,
Rv1

where R v 1 = max(R,1), R is the total number of
hypothesis sets rejected out of m, V is the total num-
ber of hypothesis sets that are falsely rejected out of m,
and S is the total number of hypothesis sets that are
correctly rejected but for which at least one directional
error was made when making directional decisions for the
individual hypotheses.

It is apparent that OFDR < mdFDR. Thus while the
general Procedure 1 guarantees the control of the OFDR
under independence conditions (by Theorem 1), it does
not automatically guarantee the control of the mdFDR.
However, we can easily extend the proof of Theorem 1 to
obtain the following results.

Lemma 1. Under the assumptions of Theorem 1,
Procedure 1 controls the mixed-directional FDR (mdFDR)
at level « if the family-wise error rate controlling proce-
dure used in step (2) maintains control of both type-I and
directional errors.
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Although Lemma 1 is just a direct extension of
Theorem 1, it provides great practical benefits. This is
because many commonly used family-wise error rate con-
trolling procedures have been shown to maintain control
of directional errors under certain conditions [8]. For
instance, Finner [8] showed that the Bonferroni proce-
dure, Holm’s procedure, as well as Hochberg’s procedure
are all able to control both type I and directional errors
family-wise, for multiple two-sided tests involving inde-
pendent T-statistics. This covers the most common two-
sided tests as well as some of the most common family-
wise error rate controlling procedures. Thus Lemma 1
allows us to extend Procedure 1 to many situations where
directional decisions are needed, and ensures control of
the mdFDR in addition to the OFDR.

Procedures for testing gene expression differences on
ordered categories

Now we shall introduce methods for testing differential
expression for microarray experiments on ordered cat-
egories, while controlling for the OFDR/mdFDR on the
gene level. The procedures we are proposing are based
on the hypothesis set testing framework and the general
Procedure 1 described previously.

In microarray experiments on ordered categories, such
as time-course or dose-response experiments, depend-
ing on the study design, some of the common research
interests include discovering: (i) genes that are differen-
tially expressed between two treatment groups at certain
time points or dose levels; (ii) genes that are differentially
expressed between successive time points or dose levels;
or (iii) genes that are differentially expressed at certain
time points or dose levels compared to a starting time
or baseline dose level. Regardless of the specific case, the
commonality is that we are interested in testing multi-
ple hypotheses simultaneously for each gene, and that a
gene would be considered interesting if at least one of its
associated hypotheses is significant.

The cases described above are problems of multiple
hypothesis set testing, where each gene corresponds to a
hypothesis set. The individual hypotheses of each hypoth-
esis set are the multiple hypotheses that are tested for
each gene. On the other hand, the screening hypothesis
for each hypothesis set would test an overall hypothesis
of whether the gene is differentially expressed at all. For
the case of time-course and dose-response experiments,
it would be reasonable to set up the screening hypothe-
sis such that it tests for the conjunction of the individual
hypotheses. That is, for each hypothesis set, the screening
hypothesis tests for whether at least one of the individual
null hypotheses can be rejected.

Assume that we test the same set of g individual
hypotheses for each gene, i.e. ny = gfori =1,...,m.
Let H1(i), . .., Hy(i) denote the individual null hypotheses
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for gene i, i = 1,...,m. The screening null hypotheses
for gene i is Ho(i) = DZZIHk(i), which is the conjunction
of the individual hypotheses. Let p1(i),...,p,(i) denote
the p-values for testing Hi(i),...,Hy(i) individually.
There are many possible methods for testing the con-
junction of hypotheses in order to obtain py(i) for the
screening hypothesis Hy (i), including more conservative
family-wise error rate controlling methods such as the
Bonferroni method, or commonly used meta-analysis
methods such as Fisher’s combined probability test. In
this case though, referring to Procedure 1, since we ulti-
mately need to make inference on each of the individual
hypothesis in the second step, it makes sense to use meth-
ods for testing Hy (i) such that the rejection of Hy(i) leads
to at least one rejection out of Hy(i),...,Hy(i). Thus
meta-analysis methods such as the Fisher’s combined
probability test that do not have corresponding proce-
dures for making inference on the individual hypotheses
are not suitable in this case. On the other hand, multi-
ple testing procedures such as the Bonferroni method,
Holm’s step-down procedure [9] or Hochberg’s step-up
procedure [10], can be used to test for the conjunction of
hypotheses and at the same time test for the individual
hypotheses while controlling the family-wise error rate.
Based on Procedure 1 and the three family-wise error rate
controlling methods mentioned, we propose the following
three procedures for making inference on gene expression
data on ordered categories. Let p(1)(i) < --- < p(, (i) be
the ordered versions of p;(i),j = 1,.. ., g, for a fixed i.

Procedure 2:

(1) Based on Bonferroni’s method, let the screening
p-value po(i) = gp1) (i) fori =1, ..., m. Apply the
Benjamini-Hochberg procedure at level « to
po(1), ..., po(m) for testing Ho(1), ..., Ho(m)
simultaneously. Let R be the number of rejected
screening hypotheses.

(2) Foreveryj=1,...,qandi=1,...,mwith
pj(i) < Ra/(gm), reject the corresponding H;(i). If
desired, the directions of expression changes can be
declared according to the signs of the test statistics.

Procedure 3:

(1) Based on Holm’s method, let the screening p-value
po(i) = qpay(@) fori=1,...,m. Apply the
Benjamini-Hochberg procedure at level « to
po(1), ..., po(m) for testing Hy(1), ..., Ho(m)
simultaneously. Let R be the number of rejected
screening hypotheses.

(2) Foreveryi=1,...,mletR;=max{l <j<gq:
pay(@) < Rafm(q+1—D}7L forl=1,...,j}, if the
maximum exists; otherwise R; = 0. For every i and j
with p;(i) < Ra{m(q +1 — R)}~! (or equivalently

Page 50of 11

pi(D) < pr;) (D), reject the corresponding H;(i). If
desired, the directions of the expression changes can
be declared according to the signs of the test statistics.

Procedure 4:

(1) Based on Hochberg’s method, let the screening
p-value po(i) = mini<j<4{(g + 1 — j)p(; (i)} for
i=1,...,m. Apply the Benjamini-Hochberg
procedure at level o to po(1), . . ., po(m) for testing
Hy(1),...,Ho(m) simultaneously. Let R be the
number of rejected screening hypotheses.

(2) Foreveryi=1,...,mletR;=max{l <j<gq: )20
(i) < Ra{m(q + 1 — j)}~1}, if the maximum exists;
otherwise R; = 0. For every i and j with
pi(i) < Ra{m(g+1— R)}~! (or equivalently
pi(D) < pr;) (D), reject the corresponding H;(i). If
desired, the directions of expression changes can be
declared according to the signs of the test statistics.

By Theorem 1, Procedures 2, 3 and 4 control the OFDR
of the genes under independence between genes and
other conditions required for Bonferroni’s, Holm’s and
Hochberg’s methods to control the family-wise error rate.
In addition, by Lemma 1, Procedures 2, 3 and 4 also
maintain control of the mdFDR of the genes under inde-
pendence between the genes and the test statistics for the
individual hypotheses for each gene, as well as the con-
ditions required for Bonferroni’s, Holm’s and Hochberg’s
methods to control the family-wise error rate. In fact,
Bonferroni’s method and Holm’s method control the
family-wise error rate without any restrictions on the indi-
vidual hypotheses. Hochberg’s method does require either
independence between the individual hypotheses or cer-
tain positive dependence structures (more details on this
can be found in [11]). On the other hand, since Hochberg’s
method is uniformly more powerful than Holm’s method,
which is uniformly more powerful than Bonferroni’s
method, Procedure 4 is more powerful than Procedure 3,
which in turn is more powerful than Procedure 2. Notice
though that the screening p-values for Procedure 2 and
3 are the same, so that they would reject the same genes
in step one, but Procedure 3 would potentially find more
significant individual hypotheses in step two compared to
Procedure 2.

Interestingly, the main procedure proposed by Guo
et al. [3] for making multi-dimensional directional deci-
sions is essentially the same as Procedure 2 above. In
an attempt to increase power, Guo et al. [3] also pro-
posed another procedure similar in structure but using
the Simes method [12] instead of the Bonferroni method.
However, as discussed in [3], the procedure based on the
Simes method, though potentially more powerful, does
not guarantee control of the mdFDR. Under our proposed
framework, it is easy to see that the problem lies within
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the fact that the Simes method does not guarantee control
of the family-wise error rate, which is a required property
of the method used in the second step, as seen in the gen-
eral Procedure 1. With this observation in mind, the key
to improving power over the procedure in Guo et al. [3],
is to use family-wise error rate controlling methods that
are more powerful than Bonferroni’s method, naturally
leading to Procedures 3 and 4.

Results and discussion

A simulation study

We conducted a simulation study to illustrate the control
of the OFDR and mdFDR of Procedures 2, 3 and 4, as well
as compare their performances on power. We shall set up
the simulation study exactly following the paper by Guo
et al. [3]. Since Procedure 2 is essentially the same as the
procedure proposed in [3], this allows us to directly com-
pare the performances of our new Procedures 3 and 4 with
their procedure.

Following [3], we simulate the setting of a time-course
experiment with m = 1000 genes, and 6 time points. We
are interested in differential expression between succes-
sive time points, which leads to ¢ = 5 hypotheses for
each gene. The gene expression vectors Z; (j = 1,...,6)
for the 6 time points are simulated from independent
m-dimensional multivariate normal distributions, where
Zj; ~ N(uji,1) (i = 1,...,m) and have a common corre-
lation p. p is set to be 0, 0.2, 0.5 or 0.8 for four separate
simulations respectively. Let the vector of expression dif-
ferences between successive time points for each gene i
be §;, where each component &;; = (1jy1,i — /L/i)/«/Z for
j=1,...,5. Out of the m §;’s, mg were set to a zero vec-
tor, and the §;’s in 50%, 25% and 25% of the remaining
m — mg 8;’s were randomly generated (uniformly) from
the intervals (—0.75, 0.75), (—4.25, —2.75) and (2.75, 4.25)
respectively. The null hypothesis tested is §; = 0 for
all i and j. The test statistic for testing each §;; is T;; =
(Zjy1,i — ji)/\/2 and the corresponding p-value is com-
puted by p;; = 2{1 — ®(|Tij|)}, where ®(.) is the standard
normal CDE. Here p;; are the p-values for the individual
hypotheses for each gene i - corresponding to the nota-
tion of p;(i) used in the methods section. This simulation
set up, as well as the parameter values, strictly follow that
of [3]. Simulation results are averaged across 1000 replica-
tions. The level « is set to be 0.05. Notice that even though
theory on all the procedures were developed under inde-
pendence between genes, we also investigate the cases
where genes are positively correlated in the simulation
study.

We consider Procedures 2, 3 and 4 in our simulation
study. As a comparison to these two-step procedures,
we also consider what we call the simple B-H proce-
dure, which is basically a one-step procedure that simply
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tests for the mq individual hypotheses simultaneously by
directly applying the Benjamini-Hochberg procedure. By
construction, the simple B-H method would control the
FDR of the mgq individual hypotheses, but it would be
interesting to see how it performs with respect to the
gene-wise OFDR or mdFDR. The simple B-H method
does not conduct tests on the hypothesis set level, but in
order to compare it with the two-step procedures, we can
define a hypothesis set (or gene) to be rejected if any of
its individual hypotheses are rejected by the simple B-H
method, and define the OFDR/mdFDR correspondingly.
In this simulation, evaluating the mdFDR would be
more appropriate, since we do care about the direction of
change across the time points. Figure 1 shows the evalu-
ation of the mdFDR for the different methods and corre-
lation settings. Results for the OFDR are very similar to
those of the mdFDR in our simulations. We do not provide
separate plots for the OFDR, but note that since OFDR <
mdFDR, the OFDR is controlled whenever the mdFDR is
controlled. The first plot in Figure 1 shows the control of
the mdFDR (for @ = 0.05) by Procedures 2, 3 and 4. These
three procedures have almost exactly identical results for
mdFDR, thus only one set of results are reflected in the
plot. Notice that the mdFDR is not only controlled under
independence between genes (p = 0), which is proved
by theory, but it is also controlled under the three posi-
tive correlation settings (o = 0.2, 0.5, 0.8). In fact, it seems
that stronger positive correlation results in even lower
mdFDR. The plot also shows that the mdFDR decreases
as the number of false null hypotheses increases. More
precisely, the x-axis is the number of genes (or hypoth-
esis sets) for which at least one null hypotheses is false.
For these genes, which we shall call “false null genes”,
the screening null hypothesis associated with it would be
false. Notice that as the number of false null genes reaches
1000 (i.e., all the genes are false null genes), the mdFDR
does not decrease to 0. In this case, even though there
would be no probability of making false discoveries with
regard to the screening hypotheses (since all screening
hypotheses are false), there is still a positive probabil-
ity of making false discoveries, especially false directional
decisions for the individual hypotheses. The second plot
in Figure 1 shows the average mdFDR for the simple B-
H method. As we can see, the simple B-H method fails
to control the mdFDR at « = 0.05. This illustrates the
fact that the FDR with respect to the m x g individual
hypotheses and the OFDR/mdFDR with respect to the m
hypothesis sets are distinct concepts. It can be shown that
the simple B-H method always rejects at least as many
genes as Procedure 2. However, the rejections by simple B-
H method are on the basis of the individual hypotheses -
not considering each gene as an entity. In this case, if the
interest is in controlling the false discoveries of the genes,
then simply applying an FDR controlling procedure to all



Li and Ghosh BMC Bioinformatics 2014, 15:108
http://www.biomedcentral.com/1471-2105/15/108

Page 7 of 11

mdFDR for Two-Step Procedures
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Figure 1 Evaluation of the mixed directional FDR. Evaluation of the mixed directional FDR (¢ = 0.05). Each plot includes results for the four
different correlations settings (among genes): p = 0, 0.2, 0.5 and 0.8. The first plot shows the control of mdFDR for Procedures 2, 3 and 4 (only one
set of results are reflected because the mdFDR for the three procedures are almost exactly identical). The second plot shows the non-control of

the tests does not guarantee the control of the desired
OFDR/mdFDR.

Next, we shall look at the performances on power for the
different procedures. We first need to define power in the
context of multiple hypothesis set testing. In general mul-
tiple testing problems, we evaluate power by looking at
the proportion of false null hypotheses that are correctly
rejected by a method. We can adopt this definition of
power for our problem as well, if we put aside the hypoth-
esis sets for a moment, and directly look at all the m x g
individual hypotheses. We shall name this “power (I)”. On
the other hand, we can define power with respect to the
hypothesis sets, by looking at the proportion of false null
genes that are correctly rejected. Here, false null genes
refer to the genes for which at least one null hypotheses is
false, as mentioned previously. Further, we say that a false
null gene is correctly rejected, if and only if a correct deci-
sion is made for every single null hypothesis for that gene -
i.e., we need to correctly reject every false null hypothesis
for that gene, and at the same time not reject any true null
hypothesis for that gene. The power defined this way is
with respect to the hypothesis sets and we shall name it
“power (II)”.

Figure 2 shows the simulation results for power (I) and
(I) respectively for p = 0. Results for other cases of
p are not shown here, but they look very similar to the
case of p = 0. For both definitions of power, the results
are compared across four methods: Procedure 2 (based
on Bonferroni), Procedure 3 (based on Holm), Procedure
4 (based on Hochberg), and the simple B-H method. As
mentioned before, Procedure 2 (Bonferroni) is the same
as the procedure proposed in [3], while Procedures 3
(Holm) and 4 (Hochberg) are newly proposed procedures.
We can see that Procedures 3 (Holm) and 4 (Hochberg)

show considerable improvements in power compared to
Procedure 2 (Bonferroni), especially for power (II), which
is defined with respect to the hypothesis sets. This result
is to be expected, as mentioned earlier, since Holm’s and
Hochberg’s method are more powerful than Bonferroni’s
method. It is worth noting that even though Procedure
3 (Holm) selects the same genes in the first step as
Procedure 2 (Bonferroni), it still results in a much higher
power (II) (which is defined with respect to the genes).
This is because Procedure 3 correctly rejects more false
individual null hypotheses. We also see that Procedure 4
(Hochberg) has a slight gain in power over Procedure 3
(Holm), but this comes at the price of restrictions on the
dependence structure among the individual hypotheses.
On the other hand, the performance of the simple B-H
method is interesting. In general, the power of the simple
B-H method is similar to that of Procedure 3 (Holm) and
4 (Hochberg). For power (I), the simple B-H method per-
forms the best. This is not very surprising, since power (I)
is the power with respect to the m x g individual hypothe-
ses. But the simple B-H method does not perform as well
for power (II), which is defined with respect to the hypoth-
esis sets. This again reinforces the idea that it is very
different as to whether we treat the problem simply as one
of multiple testing of mgq individual hypotheses, or look at
it from the gene-wise point of view and treat it as multiple
hypothesis set testing of m hypothesis sets.

In summary, results from the simulation study show
that Procedures 2, 3 and 4 do indeed control the OFDR
and mdFDR under independence between genes, as well
as positive correlation between genes. The three pro-
cedures perform almost identically with regards to the
mdFDR/OFDR. On the other hand, our new Procedures
3 and 4 show considerable gains in power compared to
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Procedure 2 (as in [3]). By comparing the two-step pro-
cedures with the simple B-H method, we also gain some
insight into the differences between treating a problem
as a simple multiple testing problem versus a multiple
hypothesis set testing problem.

An application to a microarray dose-response experiment
Coser et al. [6] studied the effect of estrogen on gene
expression in breast cancer cells. In particular, they are
interested in characterizing the effect of low concentra-
tions of 178-estradiol (E2) on the transcriptome profile of
MCF7/BUS human breast cancer cells. According to [6],
the E2 dose-dependent growth curve of these cells satu-
rate with 100 pM E2, which is a concentration unlikely to
be maintained in vivo. Thus it is important to study the
effects of lower, unsaturated concentrations of E2. Vary-
ing low concentrations of E2 are investigated in this study
through a microarray dose-response experiment using
Affymetrix U-133A chips. Gene expressions are evaluated
at 5 different levels of concentration of E2: 0, 10, 30, 60
and 100 pM. Five replicates are used for each concentra-
tion. Gene expressions are evaluated for a total of 22283
genes. The gene expression dataset from this study can be
found in the NCBI GEO public database under the record
number GDS2324.

We apply the methodology we proposed in this article to
the dose-response gene expression data from [6] to iden-
tify genes that are significantly induced or suppressed at
various low concentrations of E2. More specifically, we
test four individual hypotheses for each gene, to detect dif-
ferential expression at 10, 30, 60 and 100 pM compared to
0 pM respectively. The screening hypothesis for each gene
tests for whether the gene is differentially expressed at all
at any of the four levels of concentration of E2 compared

to absence of E2. The ability of our procedure to make
directional decisions is utilized to decide whether the sig-
nificantly differentially expressed genes are induced or
suppressed.

We tried all three procedures on the data: Procedure 2
(Bonferroni), which corresponds to that of [3], and Proce-
dures 3 (Holm) and 4 (Hochberg). Theoretically, in order
to control the OFDR, Procedure 4 (Hochberg) requires
that the tests between the multiple dose levels and 0 pM
be independent or satisfy certain positive dependence cri-
teria. It seems reasonable to assume that these tests within
each gene are positively correlated, therefore we think it is
appropriate to apply Procedure 4 here in practice.

With the overall false discovery rate controlled at level
0.05, Procedures 2 and 3 identified 368 genes that are dif-
ferentially expressed at some level of E2 (of which 204
were induced and 164 were suppressed), while Procedure
4 identified 374 genes (of which 208 were induced and 166
were suppressed). Note that in this application, the signif-
icant individual hypotheses within a gene always display
consistent direction of change, regardless of which proce-
dure was used, thus enabling us to declare each significant
gene as induced or suppressed. Recall that Procedures 2
and 3 will always reject the same hypothesis sets, but may
not reject the same individual hypotheses subsequently.
With regards to the individual hypotheses, the number of
individual hypotheses deemed significant by Procedures
2, 3 and 4 are 579, 640 and 662 respectively. Notice that
our new procedures were able to detect a considerably
larger number of significant individual hypotheses.

The implications of the fact that Procedures 2 and 3
reject the same genes but that Procedure 3 rejects more
individual hypotheses is that, for the same genes iden-
tified by both procedures, Procedure 3 is more likely
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to detect significant differential expression for a lower
concentration level of E2, thus better characterizing the
sensitivity of the genes. Table 1 summarizes the distri-
bution of the number of E2 concentration levels that the
identified genes are found to be differentially expressed in,
for the three procedures respectively. As we can see, out
of the 368 genes identified by both Procedures 2 and 3,
only one gene was found to be differentially expressed at
all four concentrations of E2 by Procedure 2, while nine
of them were identified by Procedure 3 to be differentially
expressed at all four concentration levels. On the other
hand, 200 genes were found to be differentially expressed
at only one concentration of E2, according to Procedure 2.
However, 28 of them were found to be also differentially
expressed at other concentration levels by Procedure 3. To
further illustrate this point, we compare the genes that are
identified by the three procedures as having very high E2
sensitivity (induced or suppressed at 10 pM E2). Proce-
dures 3 and 4 detected 9 and 10 genes respectively that are
induced at 10 pM E2, while Procedure 2 only detected 3 of
them. In particular, progesterone receptor gene PGR, one
of the genes found to have very high sensitivity by [6], was
identified by Procedures 3 and 4, but not by Procedure 2.
At the same time, Procedures 3 and 4 detected 6 and 8
genes suppressed at 10 pM E2, while Procedure 2 detected
only 4. Again, one of the genes found to be E2-suppressible
by [6], apolipoprotein D gene APOD, was only detected by
Procedures 3 and 4 but not by Procedure 2. These results
show that our new procedures are better options for this
problem compared to that of [3].

The direct comparison of the lists of genes found by our
procedures and those in [6] is not straightforward, partly
due to the fact that [6] considered both the p-values and
the fold-changes in determining significance, but with-
out making any explicit adjustments to multiple testing.
However, to compare the pathways associated with the
gene lists, we performed functional annotation clustering
analysis using DAVID, which is available at http://david.
abcc.ncifcrf.gov/home.jsp. The analysis was performed on
lists of genes with high E2 sensitivity that were induced at
concentrations 10 pM or 30 pM. We compare the results
from Procedures 2 and 3. We did not include Procedure 4
because its gene list is rather similar to that of Procedure
3. The top five groups of functions associated with each

Table 1 Distribution of the number of dose levels that the
identified genes are found to be differentially expressedin

Method 1 2 3 4 Total
Proc. 2 (Bonferroni) 200 126 41 1 368
Proc. 3 (Holm) 172 129 58 9 368
Proc. 4 (Hochberg) 171 130 61 12 374
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genes lists are summarized in Table 2 along with corre-
sponding enrichment scores. The top functions identified
by the three gene lists are fairly similar, showing a consis-
tency in findings, especially compared to that of [6]. On
the other hand, the enrichment scores associated with the
results produced by Procedure 3 are the highest among
the three. This indicates that the evidence gathered by
Procedure 3 for the top functions is stronger.

Conclusions

In large-scale experiments, such as microarray gene
expression studies, as the problem and the designs
become more complicated, new issues in multiple testing
arise. For instance, in microarray time-course or dose-
response experiments, in addition to considering tens
of thousands of genes simultaneously, multiple hypothe-
ses are often being tested for each gene. As a result,
the problem of multiplicity becomes multi-dimensional.
Traditional concepts of type I error control and meth-
ods for large-scale multiple testing (e.g. the FDR and the
Benjamini-Hochberg procedure) can still be used, but may
not be optimal for these more complex designs. Hence, it
is important to consider new measures of type I error and
develop statistical methods for these multi-dimensional
multiple testing problems.

The methodology in this article provides one way of
approaching these problems. We have formulated certain
types of multi-dimensional multiple testing problems as
multiple hypothesis set testing. In the case of microar-
ray time-course/dose-response experiments, we consider
each gene to be associated with a hypothesis set, where the
multiple individual hypotheses in the set test for differen-
tial expression among a number of different time points
or dose levels. We have adopted the concept of the overall
FDR, which is a measure of the FDR on the hypothesis set
level. By doing so, we aim at controlling the false discover-
ies on the gene level, which increases the interpretability
of the results, compared to focusing on the FDR of all the
individual hypotheses. We discussed a general two-step
hierarchical testing procedure for multiple hypothesis set
testing, which is proved to control the OFDR under inde-
pendence across the hypothesis sets. We also extended the
general procedure to enable directional decisions for two-
sided tests and discussed the control of the mdFDR under
certain conditions. We then suggested three specific pro-
cedures for microarray time-course/dose-response exper-
iments. These procedures not only allow us to test for
differential expression across multiple time points or dose
levels, but are also capable of identifying the direction
of expression change, while still maintaining control of
the OFDR and mdFDR. We evaluated the performance of
the proposed procedures under both independence and
dependence between genes and compared the power with
previous methods. Finally, the methodology is applied
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Table 2 Summary of top functions and corresponding enrichment scores from functional annotation clustering results by
DAVID for gene lists (inducible genes at low concentrations of E2) from three different methods

Enrichment score

Top functions by Coser et al. (2003)

411 Cell cycle, cell division, intracellular non-membrane-bounded organelle

248 DNA metabolic process, DNA repair, DNA recombination, cellular response to stress, disease mutation,
response to DNA damage stimulus/ionizing radiation/abiotic stimulus

242 Chromosome organization, M phase of meiotic cell cycle

231 Microtubule-based process, centrosome cycle, microtubule cytoskeleton, enzyme binding

1.9 DNA replication, regulation of cell cycle, microtuble cytoskeleton, nuclear lumen, negative regulation

of nucleobase/nitrogen compound/macromolecule metabolic process

by Procedure 2 (Bonferroni)

4.56 DNA replication, DNA metabolic process, nucleoplasm

2.95 Response to DNA damage stimulus, cellular response to stress, DNA repair

2.72 Nucleoplasm, nuclear lumen, intracellular organelle lumen

2.16 Cholesterol biosynthesis and metabolic process, lipid synthesis and metabolic process, sterol biosynthesis

and metabolic process, isoprenoid biosynthetic/metabolic process

2.01 Chromosome, intracellular non-membrane-bounded organelle

by Procedure 3 (Holm)

5.85 Chromosome, intracellular non-membrane-bounded organelle

485 DNA replication, DNA metabolic process, DNA-dependent ATPase MCM, nucleoplasm, intracellular organelle
lumen, purine nucleotide binding, adenyl robonucleotide binding

3.66 Response to DNA damage stimulus, DNA repair, cellular response to stress

3.13 Chromosome part, nuclear chromosome part

3.1 Cell cycle, cell division, mitosis, condensed chromosome, M phase, kinetochore, organelle fission

to analyze data from a microarray dose-response study
to identify genes that are differentially expressed at low
concentrations of estrogen in breast cancer cells.

The key point in the hypothesis set testing framework
is that the two-dimensional multiplicity is transformed
into a hierarchical structure. Hypotheses are tested in
the unit of sets in the first step. This is realized by the
formulation of a screening hypothesis for each set. The
first step of our procedures deals with the hypothesis sets
much like dealing with a traditional multiple testing prob-
lem. By applying the Benjamini-Hochberg procedure to
the screening hypotheses, we are able to adjust for part
of the multiplicity on the hypothesis set level. Additional
type I errors (and sometimes directional errors) that can
potentially occur while making inference for the individ-
ual hypotheses in each set are controlled in the second
step by applying family-wise error rate controlling proce-
dures. Together, the OFDR (or mdFDR) is controlled at
the hypothesis set level.

Although our focus was on applications to gene
expression data over ordered categories, the proposed
methodology is widely applicable. The framework of
multiple hypothesis set testing is very flexible and can be
easily adapted to many large-scale multiple testing prob-
lems with complex designs. For example, the methodology
can be applied to microarray studies with ANOVA designs

that require follow-up pairwise comparisons. In this case,
each gene would still be associated with a hypothesis
set, where the individual hypotheses in the set are the
multiple pairwise comparisons between the number of
treatments. On the other hand, it would be interesting to
develop more powerful procedures for each specific type
of problem. For example, if a large proportion of individ-
ual hypotheses are expected to be significant given the
significance of the hypothesis set, then we can potentially
improve power by incorporating adaptive multiple test-
ing methods into the procedure. Much future work can be
done on adapting the hierarchical hypothesis set testing
framework and procedures to different multi-dimensional
multiple testing problems.
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