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Scientists’ sense making when hypothesizing
about disease mechanisms from expression data
and their needs for visualization support
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Abstract

A common class of biomedical analysis is to explore expression data from high throughput experiments for the
purpose of uncovering functional relationships that can lead to a hypothesis about mechanisms of a disease. We
call this analysis expression driven, −omics hypothesizing. In it, scientists use interactive data visualizations and read
deeply in the research literature. Little is known, however, about the actual flow of reasoning and behaviors (sense
making) that scientists enact in this analysis, end-to-end. Understanding this flow is important because if
bioinformatics tools are to be truly useful they must support it. Sense making models of visual analytics in other
domains have been developed and used to inform the design of useful and usable tools. We believe they would
be helpful in bioinformatics. To characterize the sense making involved in expression-driven, −omics hypothesizing,
we conducted an in-depth observational study of one scientist as she engaged in this analysis over six months.
From findings, we abstracted a preliminary sense making model. Here we describe its stages and suggest guidelines
for developing visualization tools that we derived from this case. A single case cannot be generalized. But we offer
our findings, sense making model and case-based tool guidelines as a first step toward increasing interest and
further research in the bioinformatics field on scientists’ analytical workflows and their implications for tool design.
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Background
A common class of exploratory analysis is to examine
the functions of differentially expressed genes from high
throughput experiments using interactive protein-protein
interactions networks, visual pathways, and other bioinfor-
matics applications. The goal is to generate a hypothesis
about molecular mechanisms of a disease. We call this
analysis expression-driven, −omics hypothesizing. Despite
the availability of many interactive data visualizations to
support the graphic portions of this analysis most of the
tools do not adequately address scientists’ actual analytical
needs and practices. They need to be more useful and us-
able and better integrated [1].
In other domains, improvements in data visualization

designs have relied on models of analysts’ actual sense
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making for a complex analysis [2]. A sense making mo-
del captures analysts’ cumulative, looped (not linear)
“process [es] of searching for a representation and enco-
ding data in that representation to answer task-specific
questions” relevant to an open-ended problem [3]: 269.
As an end-to-end flow of application-level tasks, a sense
making model may portray and categorize analytical in-
tentions, associated tasks, corresponding moves and strat-
egies, informational inputs and outputs, and progression
and iteration over time. The importance of sense making
models is twofold: (1) If an analytical problem is poorly
understood developers are likely to design for the wrong
questions, and tool utility suffers; and (2) if developers do
not have a holistic understanding of the entire analytical
process, developed tools may be useful for one specific
part of the process but will not integrate effectively in the
overall workflow [4,5].
In the visual analytics research literature Pirolli and

Card’s sense making model of intelligence analysis is a
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seminal model that has led to positive tool designs and
has inspired other models in different domains [6-12].
Unfortunately, little is empirically known or modelled in
biomedicine about the end-to-end flow of expression-
driven, −omics hypothesizing. Some research describes
programmatic operations for just a portion of it, for ex-
ample, describing the processes of identifying protein
complexes as clustering networks, sub-dividing by attri-
butes, assigning color or shape to functional dimensions,
and creating biologically meaningful layouts [1]. But re-
searchers have not empirically described the integrated
thinking and behaviors that occur within and across the
stages of the whole analysis. These stages include visual
analytics as well as deep reading in the research literature.
Our goal is to empirically capture the end-to-end sense

making flow of expression-driven, −omics hypothesizing.
Working towards this goal is a continuous project. Here
we report on a preliminary model that we derived from an
initial field-based observational study. Observational re-
search is an appropriate first step when knowledge is
slight - as it is with this workflow [13]. The benefit of a
field study is that it can uncover and qualitatively describe
the flow and categories of reasoning and behaviors charac-
terizing complex explorations. It also can reveal gaps in
tool designs that impede researchers’ cumulative analysis.
Such results can establish a necessary foundation on
which to incrementally build and validate a generalizable
sense making model, which, in turn, can inform the evalu-
ation of tools.
We studied in-depth one biomedical researcher as she

engaged in multiple stages of expression-driven, −omics
hypothesizing over a six month span. To our knowledge,
our results are the first end-to-end description of sense
making for this class of analysis – that is, its actual
looped analytical processes and intentions; behaviors
and reasoning with visualizations; engagement with nu-
merous tools (visual and textual); research into the lit-
erature coupled with visual analytics; and various modes
and content of note-taking. We recognize that this one
case cannot be generalized. Yet we believe that it is a
first step and can inform further research toward this
end. Moreover, to lend reliability to our findings we tied
them whenever possible to relevant results from our
own prior research and from studies by others [14-18].
This commentary reports on this synthesis. It presents
the resulting sense making model, describes it in detail,
and recommends guidelines that we derived from our
one case for tool design.

A sense making model for hypothesizing about disease
mechanisms: an overview
We abstracted six stages of end-to-end sense making
and roughly quantified the duration of each based on
the case study researcher’s demonstrated and reported
engagement. To represent these stages visually, we adap-
ted Pirolli and Card’s graphic representation of a sense
making model expression-driven, −omics hypothesizing
(see Figure 1).
In order to center our model on the user, we struc-

tured its stages by researchers’ analytical intentions,
unlike Pirolli and Card’s focus on information per se.
In later sections we discuss each stage separately accom-
panied by figures that capture activities in each stage.
For these figures we adapted Brehmer and Munzer’s
(2013) graphic framework for capturing and naming visual
analytic tasks [19]. This framing takes a user-centered per-
spective by highlighting scientists’ purposes for interacting
with visualizations – the “why” of a class of analysis – and
tying them to “how” scientists interact and with the tools
(software-supported methods) and “what” data and
objects are involved. The names we use for the “why” and
“how” activities are informed, as well, by Yi et al’s cat-
egories of visual analytic tasks [20]. These systems for
classifying tasks from both Brehmer and Munzer and
Yi et al. trace to years of extensive research in visual
analytics that aims to define users’ work in ways that
can inform tool design.
As a caveat, neither our prose descriptions nor figures

of stages can fully capture the iterative and opportun-
istic analysis that actually occurs within and across
stages. Nor do they do justice to researchers’ interlea-
ving of metacognitive processes with logical analysis.
Metacognitive processes involve efforts to manage evolv-
ing knowledge; monitor progress; and validate sources,
data, and interpretations. For a narrative retelling of the
exploratory analysis and scientific context see Additional
file 1: Heart Failure Case Study: Narrative of Progressive
Discovery.

Duration of sense making stages
In the case study, calculations of weeks spent in each
sense making stage (see Figure 2) show that immersion
in visualization tools (Stages 1 and 2) constituted only
13 percent of the total weeks of end-to-end analysis. In
this 13 percent, the researcher in the case used two or
more visual analytics tools at once during both Stages 1
and 2 in addition to external digital information.
In Stage 1 - characterizing genes conceptually – the

three week total involved only 5.5 hours of real-time vis-
ual analytics. Of these 5.5 hours just 11 percent was
spent studying the data to make sense of patterns and
sub-groups. For the rest, the researcher divided the
hours as follows: 62 percent laying out networks, 15 per-
cent setting up and arranging views, nine percent for-
matting the copy-and-pasted tabular data in Word, and
three percent color coding. The remainder of the weeks
involved studying printouts of attribute tables of genes
copied from the tools.



Figure 1 Sense making model for exploring molecular level influences on disease-related processes. Our model presents analysts’
progressive and cumulative sources of data for constructing and representing knowledge on the y-axis and their progressive units (or focus) of
analysis on the x-axis. It names stages by users’ analysis objectives not by information artifacts as in the Pirolli and Card model; and it ties stages/
objectives to domain content. It also includes validation questions analysts iteratively investigate (arrow chains from higher to lower stages); and
output from each stage that serves as input for the next.
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The other visual analytics stage – Stage 2, contextual-
izing related genes – consumed almost twice as many
hours of hands-on visual analytics (9.3 hours) but just a
week of overall time.
The calculations show that for 87 percent of the sense

making flow the researcher was involved in the other four
stages. Notably, it was in these other stages that she did the
lion’s share of explanatory reasoning, with occasional
returns to the visualization programs and views that had
helped prepare her for this reasoning.

Descriptions of sense making stages
Stage 1: Characterize genes conceptually. The analyt-
ical goal of this stage is to reduce the initial expression
genes to a subset based on functional attributes relevant
to the research problem (Figure 3). Approaches include:

– Identify interactions between gene products.
Researchers query a protein-protein interaction
(PPI) networks tool on a list of pre-processed (e.g.
statistically significant) expression genes. The tool
displays interactors and annotates genes (nodes) and
interactions (edges) by attributes and/or derived
values. Researchers read the graph and learn what
gene products interact directly and indirectly [15].

– Forage for information on conceptual traits of nodes
and edges. Researchers use a tool’s dynamically
linked data tables and network to see the
annotations of nodes and edges [16]. They select
and focus on relevant, salient interactors. To reduce
cognitive load, they capture, print, and manually
annotate screen shots. For later offline analysis, they
may copy, paste, and print tables into other
programs (e.g. Word). They format and re-format
copied data, as needed.

– Filter on edge attributes: Networks often can be
reduced dramatically by filtering to only select edge
attributes, e.g. sources citing interactions (e.g.
pathway and disease databases), evidentiary strength
(e.g. cited by three or more articles) or
directionality. The graph then becomes more
tractable [13].

– Group, sub-group, and re-group nodes by function
and filter by function, as needed: Part of foraging for
relevant attributes involves sorting tables and
arranging networks into similarly annotated
subnetworks. Much experimenting ensues to
determine the most relevant groupings and to get
clean borders. Many changes in layout occur [16].
Researchers save different network groupings for
later review.

– Overcome obstacles to achieving the right sized
subset for further inquiry. If a subnetwork of interest
(e.g. a metabolism group) is highly connected it is
difficult to subdivide further. To reduce highly
connected networks researchers may read the
member genes into another more stringently
curated program. The high stringency reduces the



Figure 2 Weeks spent by the heart failure researcher in each stage of sense making.

Figure 3 Stage 1: Characterize genes conceptually. The goal is to reduce expression genes to a meaningful subset.
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number of interactions. Conversely, for sparse
networks researchers may expand nodes to nearest
neighbors and repeat “Characterize” methods on
results [15].

Stage 2: Contextualize related genes in biological
events. Using the subset selected in the previous stage
the goal is to uncover broad outlines for a few biological
stories involving some of the interactors in the subset.
Researchers examine pairs of interactors , one pair at a
time, in pathway contexts and biological events. This stage
also has the goal of retrieving relevant citations during
these contextual explorations. Citations collected now ex-
pedite literature searches later in subsequent stages.
This stage is more complex than “Characterize.” It in-

volves close analysis of high dimensional, multi-scale re-
lationships coupled with ongoing assessments of their
relevance, potential novelty, cumulative implications, and
credibility (see Figure 4). Approaches include:

– Identify pathways in which interactors function.
Researchers query an interactive pathway program
on one or two genes. It displays associated pathway
(s) and sub-pathway (s), with the query gene (s)
overlaid and highlighted on them [18].

– Examine the role each pairwise interaction plays in
context. Researchers examine interactors at multiple
scales and relate them to up and down stream
regulatory events, other molecular pathway
members, post-translational modifications, and
directional (temporal) interactions and outcomes.

– Validate the distinctiveness of sub-pathways and
information they carry on interactors’ roles.
Researchers need to understand and validate how
the sub-pathways they explore relate to each other,
Figure 4 Stage 2: Contextualize related genes in biological events. The
what differs between them, and what criteria a tool
uses to sub-divide pathways. To do so, they access
external information and place views of sub-pathways
and parent pathways side-by side to compare them.
Additionally, they refer back to the networks and
earlier notes from the “Characterize” stage (Stage 1)
to corroborate the interacting molecules with
pathway views.

– Manage perceptual orientation and trains of
thought. Maintaining focus and coherent thought
is taxing when examining high dimensional data
and multiple scales [17]. If researchers get
disoriented they may abandon a program and
seek workarounds (e.g. reading texts instead of
visual analytics).

– Forage textual information for interactors that
suggest an interesting biological story. To put
together “pathway stories,” researchers
opportunistically shift between textual and visual
modes. Ideally, they move seamlessly between
visualization tools, PubMed abstracts, NLP
annotations, and full texts. They delve into domain
content, examining, for example, how normal and
abnormal events differ, how transcriptional events
affect or respond to translational modifications, and
what trigger conditions occur.

– Pursue promising unexpected leads by cross-
referencing different or earlier tools. Researchers
welcome unexpected and potentially interesting
findings. They often examine their implications by
iterating back to prior moves within the current or
prior stage [14].

– Manage evolving knowledge and ideas by
externalizing them in notes and diagrams. To
keep track of insights about possible story
goal is to create story outlines.
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outlines as they evolve researchers take notes.
They may annotate network print-outs, copy and
paste excerpts from abstracts, other texts, and
citations into laboratory notebooks; and enter
additional notes in laboratory notebooks. They
format copied data, as needed.

Stage 3 Read for background understanding and
biological stories. Reading in earnest now begins The
goal is to internalize background knowledge as mental
models. These mental models are necessary for subse-
quently constructing convincing narratives (see Figure 5).
Approaches include:

– Read articles from already collected citations and
search for more. Researchers read primary research
articles and reviews. They read across sub-specialties,
as needed (e.g. biochemistry, molecular biology, and
bio-gerontology); and re-read articles several times.

– Read portions of articles selectively. Reading focuses
primarily on the article Abstract, Introduction,
Discussion, and figures. Information of interest
ranges from basic facts, such as gene synonyms, to
complex relationships, such as interdependencies
Figure 5 Stage 3: Read for background. The goal is to prepare for in-de
and modifications among functional relations.
Figures illustrating the roles genes of interest play in
these complex relationships are especially useful.

– Externalize in-progress knowledge to assure
understanding and to communicate it to others.
Researchers externalize their evolving knowledge to
untangle and clarify the dense and multi-faceted
relationships cumulatively obtained from the literature
[21]. The externalizations may involve sketching
causal maps - a convention in biomedicine for
diagrammatically connecting numerous molecular
actors through inhibitory and activating actions
and outcomes [22-25]. Externalizing also includes
highlighting texts, writing marginal notes, and
entering questions and comments in laboratory
notebooks. Diagrams and notes help in discussions
with collaborators.

Stage 4. Read to explain causes/conditions. Stage 4
has the transformative goal of synthesizing cumulative
research and knowledge into a causal and conditional
biological story – a story from which to hypothesize
later [13]. Reading focuses on how and why questions
(see Figure 6). Approaches include:
pth explanatory analysis.
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– Create new knowledge at a detailed level. Reading
mainly examines Methods and Results sections of
primary research articles. Researchers follow chains
of citations in articles of most interest. Issues of
importance involve nuances of change or slight
distinctions, e.g., varying effects that minor changes
in durations and protein levels have on pathway
events and modifications; or causal differences
between distinct phenotypes of a disease.

– Forage information for elaborations, confirmations,
or validations. Frequent references back to earlier
PPI and pathway networks occur to help situate
potentially interesting interactors in contexts of
other genes and pathways and to validate that
emerging insights and inferences are credible
[14]. Cognitive dissonance likely occurs due to
counterintuitive biological events (e.g. modulations
causing a gene to perform opposing functions); and
researchers strive to reconcile the tensions.

– Externalize knowledge to relate relationships. In
addition to continuing with the same externalizing
Figure 6 Stage 4: Read to explain. The goal is to construct rich narrative
modes as earlier researchers now also deeply study
their sketches (e.g. causal maps). They strive to
understand how behaviors captured in different
diagrams happen and how they connect to one
another. Researchers return to prior articles and
network views. They record open research questions
into their laboratory notebooks.

– Cumulatively build a biological story. Researchers
read for and build one story at a time. They stick
with one if it seems plausible, novel and credible.
Otherwise they move on to another possibility.

Stage 5: Schematize and hypothesize. Researchers
construct logical schematics to turn rich narratives into
explanations [21,25]. From them they articulate a hy-
pothesis (see Figure 7). Approaches include:

– Externalize knowledge as schematics. Schematics
consolidate and refine the novel biological story that
researchers have been composing analytically.
Visually, schematics may comprise a set of
s involving expression genes.
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interrelated causal maps, each depicting part of the
story. Schematics are cleaner than earlier hand-
sketched causal maps, and researchers may craft
them with drawing programs. The diagrams show
functional interdependencies, conditions, and causal
mechanisms and outcomes, all leading to an
explanation of why disease-related processes
occurred in the experimental samples.

– Fill in evidential gaps by conducting new analyses
and relating new and prior findings. Schematics
reveal weaknesses in the biological story, and
researchers seek stronger evidence – often from the
clinical data. Researchers may statistically analyze
clinical/ phenotype traits and then correlate
outcomes with certain molecular interactions to
strengthen the hypothesis.

Stage 6: Read and re-read to compose write-ups of
findings. The goal is to find just the information needed
to write up findings in targeted sections of a manuscript
of proposal (see Figure 8). Approaches include:

– Forage for and understand information relevant to
specific sections of drafts. Researchers look at prior
notes, readings, and new articles to substantiate the
points they want to make in specific sections of an
in-progress manuscript or proposal draft. They take
notes while reading, and organize them by the
sections of their draft.
Figure 7 Stage 5: Schematize and hypothesize. The goal is to turn narr
Guidelines for tool design
Our sense making model of expression-driven, −omics
hypothesizing can deepen the bioinformatics commu-
nity’s understanding of this problem space and the tool
support scientists need for it. Case study findings sug-
gest three issues to frame user-centered approaches to
tool design. The first is that tools need to support scien-
tists in iterating and unifying their moves across stages
and not just within discrete portions of analysis. Itera-
tions and recursions occur in the following categories of
analytical activity:

� Query, retrieval, and filtering
� Visual analytics
� Externalized knowledge
� Primary literature
� Knowledge management.

The eight guidelines we propose below address these
activities, as we indicate parenthetically below.
The second framing issue is that visual analytics is likely not

yet scientists’main means for constructing complex explana-
tions in this class of analysis. Visul analytics holds the promise
of augmenting explanatory reasoning [1]; but tools in bio-
informatics have not yet delivered on this promise. Ideally,
user-centered improvements to bioinformatics visualization
tools will enhance the contextualizing needed for explanatory
reasoning and to the integration of visualizations with import-
ant articles and other textual information for hypothesizing.
atives into schematics into a hypothesis.



Figure 8 Stage 6: Read to compose write-ups. The goal is to substantiate manuscript/proposal drafts.
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The last framing issue is that scientists use and want
to use multiple tools. They do so to validate, shift perspec-
tive, and make and evaluate comparisons. Tools have to
support this valued multiplicity and the continuous trans-
fer of data it often requires. Framed by the three issues,
specific guidelines for tool design based on our case in-
clude the following:

1. Provide efficient filter and expand operations
(Query, retrieve, and filter): Filter operations are
essential to reducing data to a subset for further
analysis, e.g. filtering by stringency, by attributes
of individual genes, or attributes of subsets.
Operations should allow filtering on orthogonal
categories (not just terms/keywords) and on a
variety of stringency parameters. Expansion
operations are also essential, especially when
networks are sparse. Operations should allow
selective expansion and collapse. Effective and
efficient filtering comes into play in the literature
reading stages, as well, but in different ways, as
detailed below.

2. Provide interoperable data exchange (Query,
retrieve, and filter): Programs should make it easy
for scientists to move between tools (i.e. using
output from one as input to another). Blurring the
line between input and output helps achieve a
smoother flow of analysis. Correspondingly,
functionality to export data in a standard format is
crucial; especially considering that in “Characterize”
the heart failure scientist spent almost as much
online time formatting as thinking.

3. Support automated but still flexible network
layout operations (Visual analytics): Manual
network layouts can be extraordinarily time-
consuming. Yet scientists’ abilities to construct
appropriate mental models and to judge relevance
and novelty depend on meaningful and accurate
layouts. Tool operations should allow users to
specify one or more traits for grouping and get layouts
of like grouped with like.
4. Support the analysis of different relationships
in multivariate and multi-scale data (Visual
analytics): Tools should afford multivariate what,
why, and how inquiries; and multi-scale investigations
should not spatially disorient scientific users. Overlays
of genes on pathways are supported by various
tools but few offer adequate support for making
distinctions between sub-pathways and molecular
roles within them. Also, transitions in displays across
pathway hierarchical levels, for example, must be
paced to coordinate with scientists’ mental transitions
in changing levels. Tools also need to give scientists
control over adjusting size and scale for both focus
and context views.

5. Provide multiple perspectives on the data,
especially to foster comparisons (Visual
analytics): To facilitate mapping across views, tool
functionality should enable scientists to mark
features or anchors across tools that are important
to the research problem. It should also let them
synchronize manipulations across views. Ideally,
there should be more links and dynamic selection
available across tools, perhaps with tools sharing a
consistent knowledge base.

6. Support the construction of external
representations (Externalized knowledge):
Many tools do not provide explicit support for
the note-taking, diagramming, or annotating of
visualizations that scientists value. Visual analytics
tools should provide this support, ideally in ways that
let scientists access or query these “externalizations”
throughout the ongoing investigation. Invariably,
scientists will end up taking notes and crafting
sketches in many places. Designs for unifying such
traces require more knowledge than currently exists
about scientists’ patterns of note-taking and mark-ups
for different purposes and representations they
commonly use for various types of relationships.

7. Support finding and annotating relevant
documents (Primary literature): Some
visualization tools give access to MEDLINE
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abstracts, NLP, and citations but rarely do they let
scientists see and group potentially relevant texts
and/or figures by conceptual relationships. Such
functionality would be useful. Also, because it is
likely that researchers know the sections of articles
they want for a particular stage and purpose of
reading, it would be expedient to let them select
extracts from desired sections when full text NLP
is available.

8. Record the investigation history (Iteration and
knowledge management): Given the numerous
times researchers return to earlier moves and tools
for a variety of different purposes, tools need to
support researchers in keeping track of the ongoing
investigation. Tools should automate the recording
of investigation history and let researchers add their
own annotations and go back to previous states in
an investigation. Additionally, the investigation
history should be accessible in an intuitive and easy
to use interface and not increase a researcher’s
cognitive load.
Limitations and future directions
The proposed guidelines specify necessary support for
efficient, effective, coherent, and complete sense making.
They do not endorse, however, any specific tools, suites
of tools, features, or user interface designs as being better
than others. Moreover, some aspects of sense making fall
outside the scope of our research design but are nonethe-
less critical to sense making success. For example, collab-
orative interactions and collaborative activities to create
externalized representations play important roles in clari-
fying and deepening researchers’ mental models and sub-
sequent inquiry directions. Also outside our scope is an
in-depth look at the distinct content structures and pro-
cesses in reading as well as in-depth modes modes of
reasoning involved in moving from description to biolo-
gical narrative to explanation and hypothesis. We did not
directly observe the synthesis and novel insights during
Stages 3 and 4 that were critical to explanatory reasoning.
Rather our scope only enabled us to uncover, for example,
that narratives became prominent when the researcher in
the case had to tease apart dynamic relationships and out-
comes (beyond pairwise interactions) that were too com-
plicated to hold in mind at once and understand (due, in
part, to insufficient software support).
We believe that future research needs to continue to

build out the stages of sense making and corresponding
requirements for user-centered tools. It needs to tie visual
analytics as well as semantically rich information from text
mining to actual sense making. More empirically-based
models of other workflows and more refinements and/or
alternatives to our own are needed.
Conclusions
Sense making models have proven useful for understand-
ing analysts’ application-level tasks and for developing
user-centered tools that can facilitate and enhance these
tasks in an integrated way. We believe that the model
we presented in this paper is an important first step to
introduce sense making models to the bioinformatics
community. We do not claim that our model accurately
represents every researcher’s workflow for analyzing a
set of genes and generating a hypothesis to explain dis-
ease mechanisms. Instead, we believe that our model ac-
curately represents a subset of researchers’ workflows and
can serve as the foundation for future refinements and de-
velopments of competing models. Our proposed model
provides a “language” that researchers can now use to de-
fine tasks and workflows and to build tools that speci-
fically support those identified tasks and workflows as a
whole and not only in separation. Therefore, the contribu-
tion of our work is not only the sense making model itself
but also the introduction of sense making models to the
bioinformatics community.

Methods
For six months we observed and interviewed an IRB-
consented biomedical researcher as she worked with
expression data to generate a plausible and credible hy-
pothesis about why some non-ischemic heart failure pa-
tients failed to respond to beta-blocker treatment. She
identified non-responders from her team’s clinical data
and explored their richly annotated expression data using
a number of bioinformatics and MEDLINE tools. She col-
laborated offline with her team of heart failure specialists.
They generated a hypothesis at the end of the case study,
wrote a grant proposal, and began a manuscript.
Using Camtasia screen capture software, we gathered

15 hours of video and audio data on the researcher’s in-
teractions with visualization tools and her verbalized
thoughts as she worked with the visualizations. We in-
terviewed her once a month for more details about her
inquiries and took copious notes. We also interviewed
her several times at the end of the case study to validate
interpretations and gather more details. (20 hours total
of interviews). We collected copies of her laboratory
notebook (55 single spaced pages, including screen cap-
tures) along with 40 pages of other hand-written notes
and sketches, and the PubMed articles that she read and
annotated. The researcher’s offline collaborations were
outside the scope of our analysis.
To analyze the visual analytics data, we transcribed the

Camtasia tapes and conducted several holistic readings
of the transcriptions, interview notes, and relevant por-
tions of the laboratory notebook. We then abstracted pat-
terns and themes relevant to our sense making research
goals and informed by relevant theories and frameworks
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on the cognitive and technological demands of complex
problem solving with interactive visualizations [26]. We
categorized the researcher’s goals, analytical tasks, sub-
tasks, and actions; restructured them into a flow of
sense making reasoning and behaviors; and identified
the information used as the inputs and outputs of various
analytical tasks. We tied information and actions to tools
and tool features and framed task flows by analytical in-
tentions. From time stamped data, we quantified time on
tasks and sub-tasks.
To analyze the portions of the workflow that involved

reading and making sense of PubMed articles we exam-
ined the laboratory notebook, annotated articles, hand
written notes, and relevant interview responses. We
examined 40 abstracts that she cited or copied in her
notebook annotated with points of interest and read the
corresponding articles for more detail on the issues of
interest. We distinguished and characterized types of read-
ing based on analytical intentions, modes of reasoning and
note-taking; and focus of attention (i.e. article sections
and content). We estimated time on reading-and-thinking
based on laboratory notebook entry dates and the resear-
cher’s self-reported durations during interviews. We in-
tegrated results from other relevant bioinformatics and
visual analytics research with our findings and finalized a
sense making model and design guidelines.

Additional file

Additional file 1: Heart Failure Case Study: Narrative of Progressive
Discovery. A detailed narrative specific to the heart failure problem and
insights is presented for each stage of sense making. To facilitate recall of
each stage and cross-reference from the prose, a simplified rendition of
the sense making model is included.
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