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Abstract

Background: It is important to predict the quality of a protein structural model before its native structure is known.
The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet
particularly needed for using, ranking and refining protein models.

Results: We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a
single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e.
basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue
contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores)
on 20 CASP8 targets and found that including them can only improve the performance when real deviations between
native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8
targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score.
SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific
distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The
global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark.

Conclusion: SMOQ is a useful tool for protein single model quality assessment. Its source code and executable
are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/.
Background
With the development of many techniques and tools for
protein tertiary structure prediction, a large number of
tertiary structure models can be generated for a protein
on a computer at a much faster speed than the experimen-
tal methods such as X-ray crystallography and nuclear mag-
netic resonance (NMR) spectroscopy [1,2]. It is becoming
increasingly important to develop model quality assessment
programs that can predict the qualities of protein models
before their corresponding native structures are known,
which can help identify quality models or model regions
and guide the proper usage of the models [3]. Therefore,
the last few rounds of CASP (Critical Assessment of Tech-
niques for Protein Structure Prediction) experiments [4-6]
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dedicated one model quality assessment (QA) category
to specifically evaluate the performances of protein
model quality assessment methods, which stimulated
the development of such methods and programs in the
last several years.
Model quality assessment programs can be categorized

into clustering-based methods [7-14], single-model methods
[14-18], and hybrid methods [19,20] that combine the pre-
vious two. Clustering methods need a set of protein models
associated with the same protein sequence as input and can
output the relative quality scores by pairwise structural
comparison (alignments). Single-model methods only need
one model as input and can output the either relative or
absolute qualities of the model. In general, clustering-based
methods usually had better performances than single-model
methods [6,20-22] in the past CASP experiments. However,
clustering methods are highly dependent on the size and
the quality distribution of the input models. It is hard for
them to pick up best models in most cases, especially if the
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best model is not the average model that is most similar to
other models. Therefore, it is increasingly important to
develop single-model methods that can predict the quality
of a single model without referring to any other models.
Model quality assessment programs can either output

global quality scores [11,14,18,23] or local quality scores
[20,24-27]. A global quality score measures the overall
quality of an entire model, whereas local quality scores
consisting of a series of scores, one for each residue,
measure the quality of the positions of individual residues.
For instance, a local quality score may be the predicted
distance between the position of residue in a model and
that in the native structure after they are superimposed.
Because local quality assessment methods can predict
residue-specific qualities, it can help identify regions of
good quality that can be used or regions of poor quality
that needed to be further refined.
Although local quality predictions are very useful, not

many local quality assessment methods have been devel-
oped. The existent local quality assessment methods mostly
use statistical structural environment profiles [26,28-31],
energy potentials [32], or pairwise clustering techniques
that output relative local qualities [19,33,34]. Verify3D
[29,35] is a representative method that compares the
structural environment of a query model of a protein with
the expected structural profiles for the protein compiled
from native protein structures in order to predict the
quality of the model. The information that Verify3D used
to generate statistical profiles includes secondary struc-
ture, solvent accessibility, and residue polarity. ProQres
[36] is a machine learning method that uses the structural
features calculated from the model with artificial neural
networks to predict absolute local qualities.
In this work, we developed and extensively tested a

machine learning software tool (SMOQ) that implements
a local quality assessment method predicting the absolute
local qualities of a single protein model [14]. SMOQ also
uses structural features including secondary structure,
solvent accessibilities, and residue contact information
as input. However, different with Verify3D that directly
evaluates the fitness of the structural features parsed from
a model, SMOQ compares the structural features parsed
from the model with the ones predicted from sequence,
and uses the comparison results as input features. In
addition to using the features briefly introduced in [14],
we tested the effectiveness of new features such as sequence
profiles and SOV scores [37] and trained support vector
machines on a larger dataset (CASP8) to make predic-
tions. Furthermore, we developed and benchmarked a
new method to convert predicted local qualities into a
global quality score. Our experiment demonstrated that
the global quality scores converted from local quality
scores were useful for assessing protein models, particu-
larly the models of hard ab initio targets.
Implementation
Features for support vector machines (SVM)
We developed and tested three SVM-based predictors
using basic, profile, and profile+SOV feature sets respect-
ively. The features in the basic feature set include amino
acid sequence, secondary structures, solvent accessibility,
and residue-residue contacts. The profile feature dataset is
the same as the basic feature set except that amino acid
sequence was replaced with sequence profile generated
from PSI-BLAST [38]. Compared with the profile feature
set, the profile+SOV feature sets added as a feature the
SOV (segment overlap measure of secondary structure)
scores [37] between the secondary structures predicted
from protein sequence and secondary structures parsed
from model.
A 15-residue window centered on a target residue in a

protein was used to extract features. 20 binary numbers
represent an amino acid at each position in the window.
We used software SSPRO [39] to predict the secondary
structures and solvent accessibility based on the amino
acid sequence parsed from each protein model. For each
residue position within the window, the predicted sec-
ondary structure and relative solvent accessibility were
compared with the ones parsed from the protein model
by the software DSSP [40]. If they are the same, 1 will be
input as a feature for secondary structure or relative
solvent accessibility, respectively, otherwise 0.
We used NNcon [41] to predict the residue-specific

contact probability matrix from a protein sequence. For
each residue within the 15-residue sliding window, we
first used DSSP to parse their coordinates in the models
to identify the other residues that are >=6 residues away in
the sequence and are spatially in contact (<=8Å) with the
residue. And then we calculated their average predicted
probabilities of being contact with the residue according to
the contact probability matrix. This averaged value was
used as a feature. We calculated the SOV score between
the secondary structures predicted from sequence and the
secondary structure parsed from model and used it as a
feature according to the same approach in [37].
The input features in a window centered at a target resi-

due in a model are used by SVMs to predict the distance
deviation between the position of the residue in the model
and that in the corresponding native structure. The larger
the distance deviation, the lower is the local quality.
Training data set
Our first training data set contains the complete tertiary
structure models of 85 single-domain CASP8 targets
(http://predictioncenter.org/casp8/domain_definition.cgi).
These targets contain all the single-domain “template based
modeling” (53 TBM targets), “template based modeling-
high accuracy” (28 TBM-HA targets), “free modeling”

http://predictioncenter.org/casp8/domain_definition.cgi
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(2 FM targets), “free modeling or template based model-
ing” (2 FM/TBM) targets.
Descriptions about the domain classifications can be

found from CASP website (http://predictioncenter.org/
casp8/doc/Target_classification_1.html). For each of these
targets, only the first Tertiary Structure (TS) model for a
TS predictor was included in our training dataset. These
models generated about 600,000 training examples (i.e.
feature-distance pairs for the residues in these models) in
total. This data set was used to optimize the parameters
of the Radial Basis Function (RBF) kernel used with our
support vector machines (SVM). A SVM model of using
the basic feature set was then trained on this data set
using the optimized parameters before being tested on the
test data set.
To fairly compare the performances of basic, profile,

and profile+SOV feature sets, we also trained them on the
same set generated from the protein models associated
with the same 20 CASP8 targets. These 20 CASP8 single-
domain targets also contain FM, TBM, and TBM-HA
targets in a balanced way.
All of the training and testing targets are deliberately

chosen to be single-domain proteins. This is because dir-
ectly superimposing multi-domain model with its native
structure often over estimates the distance deviations of
residues in individual domains due to possible deviations
in domain orientations. An alternative way would be to
cut multi-domain models into individual ones and align
Figure 1 The evaluation results of residue-specific local quality predic
single-domain proteins. Basic (20 targets) denotes the SVM model trained
(85 targets) denotes the SVM model trained using basic feature set on 85 C
the basic model trained on 20 CASP8 single-domain targets, but tested on
targets. Profile and profile+SOV denote the two SVM models using profile and
targets and tested on CASP9 targets without homologue removal. The absolu
distance deviations.
each domain with its native structure. Since we have a
reasonable number of single-domain targets of different
modeling difficulty (i.e., TBM, TBM-HA, and FM), we have
chosen to only use single-domain targets for training
and testing.

Training and cross-validation
The support vector machine tool SVM-light (http://
svmlight.joachims.org/) was trained on the data set
extracted from the CASP8 tertiary structure models.
We applied several rounds of 5-folds cross-validation
on the training data set. Each round used a different
combination of parameters: −c “trade-off between training
error and margin”, −w “epsilon width of tube for regres-
sion”, and –g “the gamma parameter in the RBF kernel”.
The parameter combination that achieved the best per-
formance in a 5-fold cross-validation was finally used
to train a SVM model with all the training examples.

Test dataset
In total, 84 CASP9 single-domain targets were used to
blindly benchmark the performances of the QA tools.
The tools were tested only using the first TS (tertiary
structure prediction) model for each target. Partial TS
models that did not have coordinates for all the residues
were discarded. In total, ~778,000 residue-specific local
quality examples (data points) were generated as the
ground truth to evaluate the local predictions of these
tions of single-model local quality QA tools (SMOQ) on CASP9
using the basic feature set on 20 CASP8 single-domain targets. Basic
ASP8 single-domain targets. Basic (20 targets, no homologue) denotes
the CASP9 single-domain targets that are not homologues of CASP8
profile+SOV feature set that were trained on 20 CASP8 single-domain
te difference errors of the predictions were plotted against the real
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Table 1 The average correlation and absolute difference
between real and predicted deviation on CASP9 targets
for residue-specific quality prediction

Avg. correlation Avg. absolute difference error

Basic (85 targets) 0.42 7.09

ProQ2 0.47 6.63

QMEAN 0.43 7.46
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tools. The true global qualities of the models were also
used to evaluate the global quality predictions converted
from the local quality predictions.

Converting local quality scores into one global quality
score
Based on the local qualities predicted by the local quality
predictor trained on the CASP8 data set, we use a vari-
ation of Levitt-Gerstein (LG) score [42] to convert the
local quality scores into one global quality score for each
individual model:

global ¼ 1
L

XL

i¼1

1

1þ di
c

� �2 ;

where L is the number of amino acid residues in the
protein, di is the predicted distance deviation between
the position of residue i in a model and that in the native
structure, and c is a constant that was set to 5 in our ex-
periments. This formula was first used by [42] to calculate
the similarity score for aligning two protein structures.
This formula ensures the global quality remains between
(0, 1). The parameter c is a constant, which was set to be
3.5Å for MaxSub score and 5Å for the original LG-score
Figure 2 The predicted deviation against real deviation for our basic
QMEAN) on 84 CASP9 targets.
and S-score [42,43]. Another quality prediction method
such as ProQ2 [25] also has used similar approaches to
convert local scores into global ones.

Results and discussion
Benchmarking residue-specific local quality predictions
We trained three different SVM models using three dif-
ferent feature sets (“basic”, “profile”, and “profile + SOV
score”) extracted from the CASP8 protein models. Using
778,000 CASP9 local quality examples, we benchmarked
and compared the performances of the three QA tools
(Figure 1). We used the absolute difference between pre-
dicted and real deviation between the position of a residue
in a model and that of the same residue in the native
structure as a metric to evaluate the predictions. We refer
to this metric as absolute difference error. According to
Figure 1, as the real distance deviation increases, the
absolute difference error of predictions of the three
tools decreases at first, reaches the minimum and then
increases. The best performance of using the basic feature
set happened when the real deviation is <= 7Å, where the
absolute distance error is ~2.637Å for the basic-feature
predictor trained on 85 CASP8 targets.
According to the evaluation results in Figure 1, adding

profile and profile+SOV feature did not improve the pre-
diction accuracy over the basic feature set for the cases
when real distance deviation is <= 5Å. However, when
the real deviation is >5Å, adding profile and profie+SOV
starts to improve prediction accuracy. In general, although
the basic feature set trained on 85 CASP8 targets performs
better than all others SVM models (trained on 20 CASP8
targets) partially because of the larger training data set,
a more extensive training on the same large data set is
SVM model and other two local prediction methods (ProQ2 and



Figure 3 The absolute difference error between real and predicted deviation against real deviation for our basic SVM model and
ProQ2 and QMEAN.
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needed in order to more rigorously compare the perform-
ance of the feature sets with or without profile and SOV
features. The SMOQ tool that we finally released was
trained on 85 CASP8 targets using the basic feature set.
We trained the SVM models on CASP8 targets and

benchmarked them on CASP9 targets, which contain
some homologues of CASP8 targets. Therefore, we also
eliminated all the CASP9 targets that are significant
homologue to CASP8 targets according to PSI-BLAST
comparison and used the remaining CASP9 targets to
benchmark the performance of the basic-feature pre-
dictor trained on 20 CASP8 targets (see Figure 1). The
performance is about 0.1Å worse than without removing
homologues.
The average absolute difference error and average cor-

relation coefficient on all CASP9 examples were reported
Table 2 The performance of the global quality predictions of
average correlation, overall correlation, average real GDT-TS
average loss of top 1 models ranked by each method, evalua

Avg. correlation Ove

Basic (85 targets) 0.737 0.737

Profile 0.708 0.658

Profile+SOV 0.696 0.681

ModelEvaluator 0.636 0.76

ProQ 0.494 0.707

ProQ2 0.662 0.78

QMEAN 0.733 0.80

Basic, profile, and profile + SOV are the three single-model local QA tools (SMOQ) p
The other four QA predictors are ModelEvaluator (predictor name in CASP9: MULTIC
according to each metric were bolded.
in Table 1. The average correlation of our basic SVM
model trained on 85 CASP8 targets is somewhat lower
than ProQ2, but very close to QMEAN. Our basic SVM
model performs better than QMEAN in terms of average
absolute difference error, but worse than ProQ2. Figure 2
plots the average absolute difference error with respect to
different real deviations. Our basic SVM model has higher
absolute difference error than ProQ2 or QMEAN for the
cases when real deviation is <= 6Å, but for cases whose
real deviation is >=7Å, our basic SVM model has lower
absolute difference error.
Figure 3 shows the relationship between real and pre-

dicted distance deviation for basic, ProQ2, and QMEAN.
We noticed that QMEAN tends to predict smaller values
for deviation when the real deviation actually is large. For
example, the predicted deviation remains between 4 to
our three tools and the other four methods in terms of
score of top 1 models ranked by each method, and
ted on 84 CASP9 single-domain targets

r. correlation Avg. top 1 Avg. loss

0.588 0.082

0.589 0.080

0.594 0.075

7 0.597 0.073

0.563 0.110

7 0.607 0.066

3 0.594 0.078

resented in this manuscript.
OM-NOVEL), ProQ, ProQ2, and QMEAN. Top 3 QA predictors’ performances



Table 3 The performance of the QA predictor in terms of average correlation, overall correlation, average real GDT-TS
score of top 1 models ranked by each method, and average loss of top 1 models ranked by each method, evaluated
on 8 FM (free modeling) CASP9 single-domain targets

Avg. correlation Over. correlation Avg. top 1 Avg. loss

Basic (85 targets) 0.577 0.516 0.267 0.078

Profile 0.590 0.427 0.254 0.091

Profile + SOV 0.586 0.431 0.267 0.078

M.-NOVEL 0.386 0.480 0.235 0.115

ProQ 0.478 0.437 0.266 0.090

ProQ2 0.529 0.465 0.289 0.066

QMEAN 0.507 0.456 0.266 0.090

Top 3 QA predictors’ performances according to each metric were bolded.
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4.4Å when the real deviation increases from 10 to 20Å.
Overall, our SVM model’s performance is somehow com-
parable to ProQ2 or QMEAN. And our method seems to
be complementary with ProQ2 and QMEAN.

Benchmarking global quality predictions converted from
local quality predictions
Based on the residue-specific local quality predictions,
we generate absolute global qualities for each TS model.
We benchmarked and compared the performance of our
local to global quality predictions with the other four
single-model global quality prediction tools including
ModelEvaluator [18], ProQ [17], ProQ2 [25], and QMEAN
[16]. It is worth noting that we only evaluated the perform-
ance of these methods on the CASP9 single-domain targets
rather than all the kinds of protein targets in order to gauge
the accuracy and correctness of our tool. A complete and
comprehensive assessment of the other methods can be
found in the CASP9 quality assessment paper [44].
Figure 4 An example illustrates the real and predicted distances betw
of the MULTICOM-CLUSTER tertiary structure predictor for CASP9 target T05
and the model at each amino acid position. (B) The superimposition betw
highlights the two regions where the model has a relatively large deviation
Table 2 shows the performances of the QA predictors
in terms of average correlation (the average per-target
correlation between predicted and real quality scores of
the models of each protein target), overall correlation (the
correlation between predicted and real quality scores of all
the models of all the targets), the average real GDT-TS
score of top one models for the targets ranked by each
QA predictor, and average loss (the average difference
between the GDT-scores of the really best models and
those of the top 1 models ranked by each predictor),
evaluated on 84 CASP9 single-domain targets. Table 3
reports the performances of the same predictors on
eight free modeling (FM) CASP9 single-domain targets.
It is shown that our predictors using basic/profile fea-

tures achieved the best or second performances in terms
of the average correlation metric (Table 2), which was
the official criterion used in the CASP experiment. Our
tools also achieved descent, but not the top performance
according to other criteria (Table 2). The performance of
een a model and the native structure. The model is the first model
63. (A) The real and predicted distance between the native structure
een the model (green and red) and the native structure (grey). Red
compared with the native structure.
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our tools on the free modeling (or ab initio) targets was
even better. The models for the free model targets were
generated by ab initio protein structure predictors, whose
quality was generally much worse than models constructed
from known homologous template structures. Thus, it is
harder to predict the quality of models of free modeling
targets. Table 3 shows that our tool using the basic feature
set was constantly ranked within top three. The tool using
profile and profile + SOV achieved better performances
than the one using basic feature set in terms of the average
correlation criteria. Overall, the global quality prediction
performance of our tools on the CASP9 single-domain
targets is comparable to the best single-model quality
predictors.

An example of local quality predictions
Figure 4 illustrates a good example of using our tool based
on the basic feature set to predict the local qualities of
a model [45] in CASP9. The average difference between
real and predicted distance deviation is 2.38Å. This
model (green) contains two regions with a relatively
large distance deviation with the native structure. One
region contains a short helix and the other is a loop.
These two regions were highlighted in red in Figure 4
(B). Correspondingly, in Figure 4 (A) the two peaks
indicating the larger distance deviation were predicted
for these two regions.

Conclusions
We developed and tested the single-model local quality
assessment tools (SMOQ) that can predict the residue-
specific absolute local qualities of a single protein model.
SMOQ is different from the majority of model quality
assessment programs in terms of both methodologies
and output. The predicted local qualities were also con-
verted into one single score to predict the global quality
of a model. The SMOQ tools were rigorously tested on
a large benchmark and yielded a performance comparable
to other leading methods. However, in this work, we only
used single-domain CASP8 targets for training. In the
future, we plan to include multi-domain targets by cutting
a whole multi-domain model into individual domains
and only aligning each domain with its native structure
to generate real local quality scores for training. Another
future work is to test other functions of converting local
scores into global ones. Overall, we believe that SMOQ is
a useful tool for both protein tertiary structure prediction
and protein model quality assessment.
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