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Improvement of domain-level ortholog clustering
by optimizing domain-specific sum-of-pairs score
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Abstract

Background: Identification of ortholog groups is a crucial step in comparative analysis of multiple genomes.
Although several computational methods have been developed to create ortholog groups, most of those methods
do not evaluate orthology at the sub-gene level. In our method for domain-level ortholog clustering, DomClust,
proteins are split into domains on the basis of alignment boundaries identified by all-against-all pairwise comparison,
but it often fails to determine appropriate boundaries.

Results: We developed a method to improve domain-level ortholog classification using multiple alignment
information. This method is based on a scoring scheme, the domain-specific sum-of-pairs (DSP) score, which
evaluates ortholog clustering results at the domain level as the sum total of domain-level alignment scores. We
developed a refinement pipeline to improve domain-level clustering, DomRefine, by optimizing the DSP score.
We applied DomRefine to domain-level ortholog groups created by DomClust using a dataset obtained from the
Microbial Genome Database for Comparative Analysis (MBGD), and evaluated the results using COG clusters and
TIGRFAMs models as the reference data. Thus, we observed that the agreement between the resulting classification
and the classifications in the reference databases is improved at almost every step in the refinement pipeline. Moreover,
the refined classification showed better agreement than the classifications in the eggNOG databases when TIGRFAMs
was used as the reference database.

Conclusions: DomRefine is a useful tool for improving the quality of domain-level ortholog classification among
microbial genomes. Combining with a rapid domain-level ortholog clustering method, such as DomClust, it can
be used to create a high-quality ortholog database that can serve as a solid basis for various comparative genome
analyses.
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Background
Identification of orthologs constitutes the basis for com-
parative analysis of multiple genomes. It provides not
only a foundation for inferring the evolutionary history
of genes and genomes but also an important clue for in-
ferring protein functions [1]. Originally, orthologs were
defined as a pair of genes diverged from the same ances-
tral gene by speciation, whereas paralogs are a pair of
genes diverged by gene duplication [2]. Because the
functions of orthologs are typically more conserved than
those of paralogs, orthology relationships are often used
to transfer functional annotations between organisms
[3,4]. The concept of orthology has been extended from
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pairs of organisms to multiple organisms by clustering
orthologs into ortholog groups [5]. Ortholog groups are
a vital resource for comparative analysis of multiple ge-
nomes and provide a basis for phylogenetic profile (the
presence and absence patterns of genes in genomes)
analysis [6].
Owing to rapid progress in sequencing technologies,

an increasing number of genomes have been sequenced.
In particular, accumulation of microbial genome data is
remarkable [7]; several thousand genomes across diverse
taxa have already been sequenced, and even more data
have been generated as metagenomes from various en-
vironmental samples. A reliable method for identifying
ortholog groups among multiple genomes is needed for
comparative analysis of this huge amount of microbial
data. In prokaryotes, the prevalence of horizontal gene
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transfers (HGTs) makes accurate ortholog inference in-
feasible [8]. Therefore, a relaxed condition, i.e., closest
homologs in different species regardless of HGTs, is usu-
ally used as an alternative definition of orthology for
prokaryotic genome comparison [4].
Several previous studies have developed orthology in-

ference algorithms and ortholog databases [9,10]. One of
the most basic algorithms to identify orthologs is the bi-
directional best hit (BBH) approach for a pair of species
[11]. The BBH approach was extended to deal with mul-
tiple species by applying clustering methods to the graph
of BBH relationships; this approach for creating ortholog
groups is known as a graph-based method [5,12-15].
The Clusters of Orthologous Groups (COGs) database is
a pioneering study of graph-based methods and is still
one of the most popular ortholog databases, although it
is no longer updated [5,12]. The eggNOG database was
later constructed by extending COGs incrementally
using a computational method [13]. Another approach
for creating ortholog groups is based on the phylogen-
etic tree of genes and is called a tree-based method.
Such a method produces more reliable results than
graph-based methods but at the expense of higher com-
putational costs [16-19]. The DomClust algorithm [20],
which is used to create ortholog groups in the Microbial
Genome Database for Comparative Analysis (MBGD)
[21], adopts an intermediate approach, where ortholog
groups are identified on the basis of hierarchical cluster-
ing trees created from a graph of all-against-all pairwise
similarity relationships.
Among numerous methods proposed to create ortho-

log groups, only a few methods consider orthology rela-
tionships at the sub-gene level. Figure 1A is a schematic
illustration of ortholog clustering at the domain level,
where fusion proteins comprising originally distinct pro-
teins are included. With a simple clustering method that
does not consider sub-gene level classification, a fused
protein will be assigned to exclusively one of the clusters
(Figure 1A, left). However, considering that each domain
in the fused protein can have a distinct function that is
shared among the corresponding orthologs, a natural
method of grouping them is to split the fused proteins
into domains and treat them separately (Figure 1A,
right). Such a clustering procedure, called domain-level
ortholog clustering, is a challenging problem because
not only the cluster members but also the set of fusion
proteins and domain boundaries within them must be
identified. Some methods such as HOPS [22] use infor-
mation of known domains such as those included in the
Pfam database to identify domains and then identify
orthologs within each domain. However, such approaches
are unsuitable for comprehensive ortholog classification of
the entire set of proteins because of their dependency on
the existing domain database.
The orthologous domains considered here are ortholo-
gous gene subsequences that have been stable (unsplit)
during evolution after speciation from a common ancestor.
To clarify the difference between orthologous domains and
conventional homologous domains, let us consider the fol-
lowing evolutionary scenarios (Figure 1B, C). In Figure 1B,
a gene fusion event occurred after speciation. In this case,
the fused gene is split into two subsequences in the ortho-
logous domain classification. In Figure 1C, a gene fusion
event occurred before speciation. In this case, full-length
fused genes are classified in the orthologous domain group
because the fused form is stable after speciation. In either
scenario, there are two homologous domain groups: one is
the blue domain and the other includes both the red and
pink domains that are paralogous to each other. These ex-
amples illustrate that orthologous domains can be longer
than homologous domains if domain reorganization occurs
before speciation.
Note that the full length of a gene can be an ortholo-

gous domain. If the domain-reorganization event after
speciation is either gene fusion or gene fission, the
orthologous domain should correspond to the full length
of a gene in at least one of the species (Figure 1B). Thus,
the orthologous domain defined here is a suitable unit
for functional annotation in comparative genomics, with
gene fusion/fission events taken into consideration and
seems well consistent with manually curated ortholog
databases such as COGs, although there are no clear-cut
criteria for splitting genes into subsequences in the
COG construction procedure [23]. DomClust automatic-
ally detects a domain-reorganization event and splits a
cluster into orthologous domains during the process of
hierarchical clustering [20].
In practical applications, the determination of ortholo-

gous domains becomes more complicated because of
several factors, including insertions/deletions of promis-
cuous domains and random disruption of coding se-
quences due to loss of function. These factors fragment
orthologous domains into smaller pieces than expected
as a unit of functional annotation. To avoid this over-
splitting problem, the DomClust algorithm tries to split
genes into the minimum number of domains required
for ortholog clustering, i.e., a gene is split only when a
different set of genes is putatively orthologous to each
split segment with sufficiently large scores [20]. More-
over, DomClust merges two adjacent domains in its final
step when genes in the fission form are much fewer than
those in the fusion form [20]. However, such approaches
do not always work well. Figure 1D illustrates a simple but
typical example, where domain boundaries determined by
DomClust are inconsistent in a multiple sequence align-
ment. Such inconsistent alignment boundaries are prob-
lematic because they not only cause incorrect sequence
grouping but also lead to failure of the above mechanisms



Figure 1 The concept and examples of domain-level ortholog clustering. (A) Schematic illustration of ortholog clusters containing fusion
proteins. The lines represent protein sequences, and red and blue colors represent two distinct domains of the proteins. (B, C) Groups of orthologous
domains in two evolutionary scenarios: the case of gene fusion after speciation (B) and gene fusion before speciation (C). (D, E) Appropriate re-splitting
of proteins refines the domain-level ortholog clustering. Examples of inconsistent domain boundaries (D) and a refined version of the boundaries
(E) are shown in multiple alignments, where two adjacent domains are colored in light blue and pink, respectively (see Methods for details
of the alignment visualization tool).
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of DomClust to avoid over-splitting. This problem arises
presumably because DomClust determines the boundaries
using pairwise, rather than multiple, sequence alignments.
Thus, utilizing multiple alignment information supposedly
improves the accuracy of domain-level ortholog clustering
(Figure 1E).
In this study, we present a method for impro-

ving domain-level ortholog classification using multiple
alignment information. We designed a scoring scheme to
evaluate the inferred domain organization on the basis of
multiple alignments and developed procedures to improve
the inference by optimizing the score. The improvement
procedures included the merge of adjacent domains to fix
the over-splitting problem and determination of optimal
domain boundaries. In addition, a phylogenetic tree was
created for each cluster to check the cluster members in
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terms of orthology relation. To evaluate the improvements,
we compared the obtained ortholog groups with the ori-
ginal ones by examining the agreement with COG and
TIGRFAMs, which are the manually curated reference
databases.

Results
Overview of the method to improve domain-level
ortholog clustering
In this study, we assumed DomClust results as the input
to our method, although any other domain-level cluster-
ing could have been applied. As illustrated in Figure 1A,
a split of a protein sequence during domain-level ortho-
log clustering leads to the creation of adjacent domains
that belong to different clusters (adjacent clusters). Pairs
of adjacent clusters were the targets of our refinement
procedure. For each pair of adjacent clusters in the in-
put, a multiple alignment of protein sequences contained
in either cluster was created and used in our refinement
procedure. A domain-specific sum-of-pairs (DSP) score
was introduced to evaluate the domain organization.
The DSP score is based on the sum-of-pairs (SP) score
merge

divide_tree

Figure 2 The DomRefine pipeline. The pipeline is given a domain-level o
procedures. Domain organizations are illustrated using light blue and pink
by sets of aligned horizontal lines. Adjacent clusters are merged if the score i
adjacent domains are temporarily merged and then divided into clusters con
Existing boundaries are moved (move_boundary), and new boundaries a
on the phylogenetic tree is detected, the cluster is divided into subgroups (div
[24]. However, it is calculated for each domain and in-
consistencies in domain boundaries are evaluated as
gaps so that the sum of the DSP scores in the alignments
of adjacent clusters reflects the quality of domain classifica-
tion. We defined five basic operations to modify and im-
prove the domain organization by maximizing the DSP
score and compiled them as a pipeline named DomRefine
(Figure 2, see Methods for details). The first two proce-
dures in the pipeline (merge and merge_divide_tree) were
designed to solve the over-splitting problem; merge de-
termined whether two adjacent clusters should be
merged, whereas merge_divide_tree temporarily merged
the adjacent clusters and then divided them into two
groups (rather than split into two domains). The next
two procedures (move_boundary and create_boundary)
determined the optimized boundaries between the do-
mains: the move_boundary procedure moved existing do-
main boundaries, whereas the create_boundary procedure
introduced new boundaries. All the four procedures im-
proved the domain organization on the basis of the
maximization of the DSP score. In contrast, the last pro-
cedure (divide_tree) is a type of conventional tree-based
merge_divide_tree

move_boundary

create_boundary

rtholog clustering result and modifies domain organizations using five
colors. Multiple alignments of amino acid sequences are represented
ncreases by merging the clusters (merge). Given a pair of adjacent clusters,
sidering score changes on the phylogenetic tree (merge_divide_tree).
re created (create_boundary). When species overlap between sub-clusters
ide_tree).
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approach for ortholog classification; it divided a cluster into
subgroups along with the phylogenetic tree if the sub-
groups shared intraspecies paralogs.
Figure 3 illustrates the examples of improved domain

organization obtained by DomRefine. In the original clas-
sification by DomClust (Figure 3A), several proteins are
split into domains, but the splitting pattern is inconsistent
in the multiple alignment. In this case, canceling those
splits to merge two clusters seemed to produce better
classification. Indeed, the merge procedure merged these
clusters because of the increase in the DSP score after
merge, which resulted from the gain of the SP score be-
tween the newly aligned residues in the merged alignment
and the disappearance of gaps owing to inconsistent do-
main boundaries. Figure 3B illustrates another example
where the inconsistent domain boundaries were modified
to lie at more appropriate positions. As a reference, the re-
gions determined by the TIGRFAMs models are also illus-
trated. In the original classification, some proteins are split
into domains, but the resulting domain boundaries did
not coincide with the region detected by TIGRFAMs
models. In addition, two proteins that also matched the
same TIGRFAMs model are not split in the original classi-
fication. The move_boundary procedure moved all the
existing boundaries at the same time in the multiple align-
ment to the best position on the basis of the DSP score.
The subsequent create_boundary procedure created new
boundaries, and the creation of these boundaries in-
creased the DSP score. As a result of these procedures, we
obtained domain boundaries that perfectly matched the
region detected by TIGRFAMs models (Figure 3B).

Overview of the results of domain-level ortholog
clustering
Our method was tested on proteome sets retrieved from
the COG and MBGD databases. The protein sequences
from the COG03 dataset (including 66 organisms) were
clustered into ortholog groups by our method, and the re-
sults were compared with the manually curated COG clus-
ters for evaluation. To test the utility of our method in a
more practical situation, we also constructed a larger data-
set (the FAMILY dataset including 309 organisms) by
selecting a representative organism from each taxonomic
family of the MBGD database. For each of the COG03 and
FAMILY datasets, we first applied DomClust to classify
genes into ortholog groups and then applied the DomRe-
fine pipeline to improve the classification. For the FAMILY
dataset, we compared our results with eggNOG, which was
constructed by computationally extending COG. In the
comparison with eggNOG, we extracted the common
proteome between FAMILY and eggNOG (FAMILY210
dataset including 210 organisms).
Table 1 summarizes the statistics of the ortholog clus-

tering results. Although DomRefine had limited effects
on the total number of clusters [from 7503 to 7307
(97.4%) for COG03; from 60775 to 57644 (94.8%) for
FAMILY210], it caused significant changes in the num-
ber of split clusters. For the COG03 dataset, the number
of split clusters produced by DomClust alone was higher
than that in the original COG, reflecting the over-
splitting problem of DomClust. After DomRefine was
applied, however, the number of split clusters decreased
drastically [from 2439 to 1562 (64.0%)] to approximately
the same number as COG. This result was in line with
expectations, given that DomRefine was designed to fix
over-splitting problems. Similarly, in the FAMILY210
dataset, the number of split clusters was decreased from
15879 to 10942 (68.9%). In contrast, the number of split
clusters in eggNOG was remarkably small (2333, which is
only 3.6% of the total number of clusters) compared with
the number in COG, DomClust, and DomRefine (range,
19%–33%). In particular, the number of split clusters in
eggNOG is considerably lower than that in COG, on which
it is based, presumably because of the lack of a procedure
for splitting clusters into domains when creating new clus-
ters not included in COG, i.e., non-supervised orthologous
groups (NOGs) during the construction of eggNOG.
For more detail, we also examined the distribution of

the cluster size (the number of proteins in each cluster)
(Figure 4). In general, the distributions of the cluster size
show a near-linear relationship on a log–log plot, indicat-
ing that cluster sizes approximately follow a power-law dis-
tribution. For the COG03 dataset, the distributions of
COG and DomClust show similar trends: the distributions
deviate downward from the linear relationship at cluster
sizes lower than 10 (Figure 4A) as observed previously
[25]. This is because they retain only ortholog groups that
have more than three members from (not closely re-
lated) different species (for results with smaller groups,
see Additional file 1: Figure S1A). However, this trend
is considerably prominent in COG than in DomClust,
probably reflecting the feature of the COG classifica-
tion that ortholog groups often contain small paralog
groups that should be separated according to a rigorous
definition of orthology.
For the FAMILY dataset, the DomClust distribution

follows a linear relationship in the log–log plot (log10
y = −1.499 log10 x + 4.206, R2 = 0.90, Figure 4B), whereas
the eggNOG distribution deviates from a linear rela-
tionship (for the fitted line, see Additional file 1: Figure
S1B). When the eggNOG clusters are separated into
COG-derived clusters and NOG, their distributions are
substantially different (Figure 4B, upper right). The
COG-derived cluster exhibits a curved distribution, de-
viating downward from the linear relationship at cluster
sizes lower than 100. The NOG distribution has a
steeper negative slope than DomClust (for the fitted
line, see Additional file 1: Figure S1B) and deviates
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Figure 3 Examples of improvement in domain-level ortholog clusters. Examples of improvement by merge (A) and move_boundary and
create_boundary (B) procedures are shown with multiple alignments, where two adjacent domains are colored in light blue and pink, respectively. The
arrowheads indicate the domain boundaries to be modified. The black rectangles represent the matches of the TIGRFAMs models.
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downward at cluster sizes greater than 10. In summary,
DomClust, a fully automated clustering method, exhibited
a power-law distribution in cluster size, whereas eggNOG,
a combined approach of manual and automated methods,
produced two different types of clusters and thus exhibited
a relatively skewed size distribution.



Table 1 Statistics of domain-level ortholog clustering
results

COG03 dataset FAMILY210 dataset

Method No. of clusters Method No. of clusters

Nclust Nclust
split Nclust Nclust

split

COG 4814 1389 (29%) eggNOG 64983 2333 (3.6%)

DomClust 7503 2439 (33%) DomClust 60775 15879 (26%)

DomRefine 7308 1562 (21%) DomRefine 57644 10942 (19%)

Nclust denotes the total number of clusters. Nclust
split denotes the number of

clusters that include proteins split into domains. The ratio of split clusters to
the total number of clusters is shown in parenthesis.
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Assessment of the refinement procedures through the
COG reconstruction test
To assess our refinement method, we examined whether
our fully automated procedures could recover the manu-
ally curated COG database (COG02 including 43 organ-
isms and COG03 including 66 organisms). To quantify
the agreement of the clustering results between two
methods (ours and COG) at the domain level, we first
identified corresponding clusters as cluster pairs sharing
at least one overlapping domain of the same protein and
then extracted only those cluster pairs that had one-to-
one correspondence (see Methods for details). The num-
ber of one-to-one corresponding cluster pairs against
COG (NCOG

1to1) was then used as an indication for the
agreement between two clustering results. Figure 5 pre-
sents the changes in NCOG

1to1 during the DomRefine
Figure 4 Cluster size distributions of domain-level ortholog clusters.
dataset (B). The red circles represent DomClust results. The blue circles rep
the upper right window of (B), the eggNOG distribution is divided into CO
line represents log10 y = −1.499 log10 x + 4.206, obtained by the linear regre
procedures. We observed an increase in the agreement
with COG during the merge and merge_divide_tree proce-
dures (Figure 5A, B). These procedures exhibited greater
changes than the subsequent procedures to modify bound-
aries (move_boundary and create_boundary). This is prob-
ably because increasing one-to-one relationships by
moving a boundary requires exact matches of boundary
positions; thus, NCCOG

1to1 is not a sensitive measure for
capturing a moderate improvement in boundary positions.
On the other hand, the consistency with COGs was de-
creased in the last procedure, divide_tree, which divides a
cluster into subgroups to separate paralogs rather than
modifying the domain organization. However, this result
does not necessarily mean that divide_tree failed to im-
prove ortholog classification, considering that a COG clus-
ter often includes obvious outparalogs as members,
resulting in a larger cluster than that produced by more
rigorous ortholog grouping (see Discussion).
Next, we examined the contribution of the DSP score

to the refinement in the merge procedure. To quantify
moderate agreement between two clustering results, we
calculated the mean overlap ratio of corresponding do-
mains (�rover , see Methods for details). For each pair of ad-
jacent clusters, we calculated the changes in the DSP
score and the changes in �rover after the merge for 2029
pairs of adjacent clusters and examined the correlation be-
tween them (Figure 6). We observed a positive correlation
between them (Pearson’s correlation coefficient r = 0.51,
Clustering results for the COG03 dataset (A) and the FAMILY210
resent COG data in (A) and eggNOG in the main plot area of (B). In
G-derived clusters (green circles) and NOG clusters (blue circles). The
ssion of the DomClust distribution on the log–log plot (B).



Figure 5 Consistencies of the resulting clusters with COG clusters. (A) COG02 dataset and (B) COG03 dataset. Vertical axes represent the
numbers of one-to-one relationships.
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P value of <1E-15). This observation supports an as-
sumption that the DSP score is able to quantify the
quality of domain-level ortholog classification in terms
of consistency using the COG database as a reference.
We drew a LOWESS curve to reveal the details of the re-
lationship between the score changes and �rover changes.
When the score changes were positive, �rover changes were
mostly positive (128 pairs in positive and 22 in negative).
Thus, we could safely merge clusters if the resulting score
change was positive. In contrast, when the score changes
were negative, �rover changes varied, spanning positive (639
pairs) and negative (1185 pairs), meaning that some clus-
ter pairs that should be merged may show negative score
changes after the merge. In fact, the LOWESS curve dem-
onstrated that when the score changes were small negative
values, �rover changes were slightly positive on average (for
Figure 6 Correlation of the DSP score and consistency with
COG. Each circle represents a pair of ortholog clusters that was one
of the targets of the merge procedure. The red line was drawn by
the lowess function of R with parameter f = 0.1.
score changes between −0.05 and 0; the mean �rover change
was 0.06), suggesting that the threshold of the DSP score
change for merging adjacent clusters should be a negative
value rather than zero. This was desirable for avoiding the
over-splitting problem because in this case, a domain split
was introduced only when the splitting caused a sufficient
score gain. On the basis of Figure 6, we used −0.05 as the
threshold for the DSP score change to decide merges.
Practical application of the refinement procedures
To demonstrate the utility of our method in a more
practical situation, we applied the method to the FAM-
ILY dataset that covers the diversity of currently se-
quenced microbial genomes, in addition to the COG03
dataset. We here used the TIGRFAMs database instead
of the COG database to evaluate the clustering result.
TIGRFAMs is a database containing the profile hidden
Markov models (HMMs) constructed from manually
curated multiple alignments of functionally equivalent
protein families (equivalogs) [26] with “trusted cutoff” in-
formation for searching sequences with HMM using the
HMMER program [27]. Thus, TIGRFAMs can be used to
classify any set of protein sequences using the HMMER
program. In addition, equivalogs defined in TIGRFAMs
are a suitable reference classification for evaluating our
ortholog classification, in that the main aim of the ortho-
log classification is to infer gene functions.
We applied our method (DomClust and DomRefine) to

the COG03 and FAMILY datasets to classify genes and
evaluated the resulting clusters using the TIGRFAMs
database as a reference. As in the previous section, we
considered the number of one-to-one corresponding
cluster pairs against TIGRFAMs (NTIGR

1to1) as a measure
of consistency between two classifications. We examined
the changes in NTIGR

1to1 during the DomRefine procedure
(Figure 7A, B) and again observed gradual increases dur-
ing the DomRefine procedures in both the COG03 and



Figure 7 Consistencies of the resulting clusters with TIGRFAMs models. (A) COG03 dataset and (B) FAMILY210 dataset. Vertical axes
represent the numbers of one-to-one ortholog relationships.
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the FAMILY210 datasets. In total, NTIGR
1to1 was increased

from 1235 to 1272 for the COG03 dataset and from 1375
to 1448 for the FAMILY210 dataset (Table 2).
However, some differences were observed between the

results of this test (Figure 7A) and that of the previous
test (Figure 5B), where the same COG03 dataset was
used as a classification target, but COG instead of TIGR-
FAMs was used as the reference database. In particular,
NTIGR

1to1 was increased by the divide_tree procedure
(Figure 7A), whereas NCOG

1to1 was decreased in the pre-
vious test (Figure 5B). In addition, NTIGR

1to1 was less in-
creased in the merge and merge_divide_tree steps, but
more increased in the move_boundary step. Changes in
the number of one-to-one ortholog relationships, illus-
trated in Figure 7, were analyzed in more detail by decom-
posing the change into gains and losses of one-to-one
relationships (Additional file 1: Figure S2). Although occa-
sionally a one-to-one relationship can be lost during the
procedure, the gain of new relations significantly (P < 0.05
by binomial test) exceeds the losses in total and in most
steps that have sufficient numbers of modifications
(Additional file 1: Figure S1).
To compare the classification performance, we also

evaluated the COG and eggNOG classifications in terms
of the agreement with the TIGRFAMs models (NTIGR

1to1).
Table 2 Number of consistent clusters with TIGRFAMs
models (NTIGR

1to1)

COG03 dataset FAMILY210 dataset

Method NTIGR
1to1 Method NTIGR

1to1

COG 1107 eggNOG 1149

DomClust 1235 (1.12) DomClust 1375 (1.20)

DomRefine 1272 (1.15) DomRefine 1448 (1.26)

TIGRFAMs* 3576 TIGRFAMs* 3924

The ratio of NTIGR
1to1 to COG or eggNOG is shown in parenthesis. *Number of

TIGRFAMs models with hits in the corresponding dataset, which is the possible
maximum number of NTIGR

1to1.
For the COG03 dataset, NTIGR
1to1 of the original COG

classification was 1107, whereas for the FAMILY210 data-
set, NTIGR

1to1 of the eggNOG classification was 1149
(Table 2). Both these values were even lower than those
of the DomClust classification before refinement (1235
and 1375, respectively; Table 2). Thus, our DomClust/
DomRefine classifications showed better agreement than
the COG/eggNOG classifications when evaluated on the
basis of the agreement with the TIGRFAMs classification.
To examine the inclusion relationships between corre-

sponding ortholog groups in different ortholog classifica-
tion systems, including DomClust/DomRefine, COG/
eggNOG, and TIGRFAMs groups, we considered three
additional concepts, equivalent, supergroup and sub-
group that were introduced in our previous work [28]
(Additional file 1: Table S1). The inclusion relationships
among them tend to be COG >DomClust/DomRefine >
TIGRFAMs > NOG, where A > B indicates that clusters
in A tend to be supergroups of clusters in B. Note that a
TIGRFAMs group can be a subgroup of a real orthologous
group because of a strict trusted cutoff value, but the
evaluation measure NTIGR

1to1 is effective even in such a
case, provided that there is a one-to-one relationship be-
tween the TIGRFAMs group and the corresponding target
group.

Examples of the resulting ortholog clusters
On the basis of the resulting number of clusters for
FAMILY210 (Table 1), the DomRefine result included a
larger number of split clusters than eggNOG (10942
against 2333). We here focused on the genes split in the
DomRefine result but not in eggNOG. Figure 8A pre-
sents an example of the clusters containing such genes,
where two adjacent clusters corresponded to TIGRFAMs
domains TIGR03546 and TIGR03545, respectively, both
of which were functionally uncharacterized protein
families. Although DomClust split a fused gene, nam:



B

A

Figure 8 Examples of the resulting ortholog clusters. Examples of ortholog clusters obtained by DomRefine applied to the FAMILY210
dataset. (A) Clusters including genes split in the DomRefine result but not in eggNOG. (B) Clusters including genes with tandemly repeated
domains. In these figures, coloring of each residue according to the conservation rate is disabled in order to simplify the representation.
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NAMH_0533 (Nautilia profundicola), into two do-
mains, it failed to split another plausible fused gene,
ftu:FTT_0505 (Francisella tularensis) (Additional file 1:
Figure S3). However, DomRefine corrected the classifi-
cation (Figure 8A). When the members of the clusters
were compared to eggNOG, they overlapped three NOG
clusters: NOG12793 (N = 6473), NOG44136 (N = 7), and
NOG145366 (N = 2), where N indicates the cluster sizes in
the FAMILY210 dataset. eggNOG did not split the two
plausible fused genes, ftu:FTT_0505 and nam:NAM_0533;
it assigned ftu:FTT_0505 to NOG145366 and nam:
NAMH_0533 to NOG12793. As a result, proteins with
the same TIGRFAMs hits were separated into different
clusters. In contrast, NOG12793 was the largest eggNOG
cluster containing proteins with many different TIGR-
FAMs hits (97 families), indicating that it is too large in
terms of grouping corresponding genes among organisms.
Figure 8B presents another example, where the pro-

teins had hits to TIGR00324 (endA: tRNA intron endo-
nuclease). Here genes of FAMILY210 were extracted to
demonstrate the subset of the alignment (see Additional
file 1: Figure S4 for the full alignment of the FAMILY
dataset). Of 35 proteins, 12 had two domains both of
which correspond to TIGR00324, whereas in several
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species, these domains are coded as two separate genes.
Some other species, such as Methanocaldococcus jan-
naschii, contain only one gene consisting of one domain
(mja:MJ_1424). It is known that the two tandemly re-
peated domains, N-terminal repeat (NR) and C-terminal
repeat (CR), have distinct functional roles and were sug-
gested to have arisen by gene duplication and subfunc-
tionalization [29]. Thus, it is reasonable to cluster these
homologous domains into two distinct ortholog groups.
When we created a phylogenetic tree using both the do-
mains, we discovered distinct clusters corresponding to
NR and CR. DomClust successfully clustered these do-
mains except for two genes (Additional file 1: Figure S5),
but DomRefine failed to refine these, in that the bound-
ary modification reduced the agreement with TIGR-
FAMs hits (Figure 8B). One reason for this failure could
be that the presence of tandemly repeated domains con-
founded the alignment, and DomRefine based on an
incorrect alignment may fail to refine the domain
boundary. In fact, in this case, single-domain proteins of
Nitrosopumilus maritimus, nmr:NMAR_0450 and nmr:
NMAR_1039, which were assigned to the NR and CR
clusters, respectively, were both located in the C-
terminal half in the alignment. Another problem affect-
ing the alignment was the presence of unconserved se-
quences in the N-terminal regions of eukaryotic genes,
such as cdu:CD36_42500 (Candida dubliniensis). In do-
main inferences of DomClust and DomRefine, these re-
gions are treated as C-terminal groups (colored in light
blue). Influenced by such an unconserved region, regions
such as nmr:NMAR_0450 are prevented from being
aligned to the N-terminal region and are consequently
aligned to the C-terminal region.

Discussion
In this study, we developed a method, DomRefine, to
improve domain-level ortholog classification and applied
the method to refine the ortholog classification created
by our previous program, DomClust, using the proteome
sets extracted from the COG and MBGD databases. We
demonstrated that our method was able to achieve im-
provements when we evaluated the results on the basis
of COG and TIGRFAMs, which are the manually curated
reference databases. Although COG and TIGRFAMs clus-
ters have different characteristics (as discussed below),
DomClust clusters became more consistent with both
COG and TIGRFAMs after the merge procedure of Dom-
Refine (Figures 5 and 7), suggesting that the over-splitting
problem in orthologous domains mentioned in the Back-
ground section were alleviated.
The TIGRFAMs database consists of HMMs con-

structed from curated multiple sequence alignments and
is designed mainly for detecting functionally equivalent
homologous proteins (equivalogs) among prokaryotic
genomes [26]. Therefore, validating the obtained ortho-
logous domains by TIGRFAMs models is reasonable in
that the main aim of the ortholog database among pro-
karyotic genomes is to infer protein functions. In
addition to the TIGRFAMs database, we used the COG
database, a manually curated ortholog database for mi-
crobial genomes, as the reference database. However,
when the same classification results of the COG03 data-
set were evaluated using the different reference data-
bases, COG and TIGRFAMs, we discovered different
tendencies between them (Figure 5B and Figure 7A). In
particular, the agreement with COG decreased after the
divide_tree procedure (Figure 5B), whereas that with
TIGRFAMs increased (Figure 7A). This difference is
probably caused by the known COG problem that a sub-
stantial fraction of COG groups contain non-orthologous
(or out-paralogous) genes [30]; thus, division of groups
using the divide_tree procedure such that paralogous
genes are appropriately separated can reduce the
consistency with the COG classification. Another dif-
ference is that the move_boundary procedure improved
domain boundaries in terms of their correspondence
with TIGRFAMs (Figure 7A), whereas it failed to im-
prove them in terms of their correspondence with COG
(Figure 5B). This was observed because TIGRFAMs is
constructed from the HMMs of well-conserved and
well-characterized protein families, whereas COG was ori-
ginally constructed from a clustering result based on all-
against-all similarities. Consequently, the move_boundary
procedure modified the domain boundaries to improve
the coverage of well-conserved domain boundaries de-
fined in TIGRFAMs, but may not have improved the cor-
respondence with COG boundaries. In either case, we
consider TIGRFAMs as a better reference dataset than
COG to evaluate orthologous domain classification.
The goal of this study was to construct a fully auto-

mated and reliable procedure to create ortholog data-
base, a necessary resource in the era of huge amounts of
genomic data. In this respect, the eggNOG database,
which was constructed by computational extension of
COG, is another ortholog database that covers the cur-
rently sequenced genomes and is periodically updated.
However, eggNOG consists of two different types of
ortholog groups, i.e., the extension of the original COGs
and the remaining NOGs, because of the nature of its
incremental updating procedure. COG-derived clusters
tend to be larger, whereas the NOG clusters tend to be
smaller (Additional file 1: Table S1). As a result of the
mixture of the two different distributions, the cluster
size distribution of eggNOG appears to be deviated from
the power-law distribution, which has been observed in
various types of protein clusters [25] (Figure 4B).
To compare the classification performance, we also

evaluated the COG and eggNOG clusters in terms of the
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agreement with the TIGRFAMs models (NTIGR
1to1) and

discovered that our method showed better agreement
than the COG/eggNOG classifications (Table 2). The
original DomClust classification already showed better
agreement than the COG classification partly because of
the abovementioned problem that some COG groups
contain non-orthologous genes. In the eggNOG classifi-
cation, additional problems caused by its incremental
updating procedure can magnify the difference. In fact,
the increasing rate of NTIGR

1to1 from the eggNOG classi-
fication to the DomClust classification using the FAM-
ILY210 dataset (20%) was higher than that from the
COG classification to the DomClust classification (12%)
(Table 2). The increasing rates were further increased
when the COG/eggNOG classifications were compared
to the classifications after refinement (15% and 26%, re-
spectively; Table 2).
One of the problems with incremental updating in the

eggNOG classification is that a new domain split appears
to be rarely introduced during the NOG classification in
contrast to the original COG classification (Table 1).
Our DomClust/DomRefine procedure identified a sub-
stantial number of clusters that are not defined in COG,
where domain splitting was needed for valid ortholog
classification, as in the examples illustrated in Figure 8A.
As illustrated in Figure 1A, a clustering method without
domain splitting generally tends to create clusters with
smaller sizes than that with domain splitting when fused
proteins are included in the dataset. This may partly ex-
plain the smaller size distribution of the NOG clusters
observed in Figure 4B.
Although numerous methods have been developed

for identifying orthologs, few methods have focused on
classification at the sub-gene level. Our method splits
proteins into domains in the course of clustering with
the aim of detecting the correct grouping of proteins
(Figure 1A). The resulting splits of proteins suggest do-
main fusion/fission events in evolutionary history,
which may result in functional divergence among ortholo-
gous proteins. In this sense, domain-level ortholog classifi-
cation provides a valuable source for evolutionary analysis.
Theoretically, our system is applicable to eukaryotic

protein classification. However, given the abundance of
complex multidomain architectures among eukaryotic
proteins and the frequent differences in domain com-
position among apparent orthologs [31,32], domain-level
clustering of eukaryotic proteomes is more challenging
than prokaryotic proteomes. In particular, as described
in the Results section, a tandem repeat of homologous
domains within a protein, which is quite common in
eukaryotic proteins, may confound the multiple align-
ment, possibly leading to a failure of DomRefine to re-
fine domain boundaries. As far as we tested, handling of
tandemly duplicated domains seems to be more or less a
common problem in existing alignment programs, al-
though Clustal Omega used in this study demonstrated
a relatively better performance with respect to this point.
Thus, a special procedure may be required to handle
such tandem repeats correctly as a pre- or postproces-
sing step of an alignment program unless improved ver-
sions of the alignment programs are available.
Although the current DomRefine pipeline requires

much larger computational time than that required by
DomClust, the parallelization technique enables the exe-
cution of the pipeline in a feasible time (Additional file 1:
Table S2). Of the required time, the calculation of the DSP
score comprises only a small fraction, and most of the
computational time is spent performing multiple align-
ments. This bottleneck is caused by the repeated calcula-
tion of multiple alignments for the same set of sequences
and could be partly solved by reusing the multiple align-
ment information. It is notable that the obtained multiple
alignment information will be a useful resource not only
for the DomRefine pipeline but also for various other ap-
plications. Therefore, it is worth computing and storing
this information for general use.
Conclusions
We developed a method for improving domain-level
ortholog classification on the basis of the optimization
of a score and demonstrated the effectiveness of the
method using the manually curated reference databases.
For this purpose, we designed a score for evaluating
ortholog clusters at the domain level on multiple align-
ments and demonstrated that the method contributes to
the improvement of the clusters. This method will en-
hance the reliability of ortholog databases and thereby
contribute to comparative analyses using them.
Methods
Definition of the DSP score
The DSP score is calculated on the basis of multiple
alignments. The score evaluates the consistency of
domain-level ortholog clusters and multiple alignments.
The basic idea is the sum-of-pairs score of a multiple
alignment, which is a standard measure of evaluation of
protein sequence alignment [33]. The unique idea of our
score is that the calculation of the sum of pairs is re-
stricted to specific domains, and that inconsistencies in
the domain boundary positions are treated as gaps. Con-
sider the alignment in the form of matrix A = (aij), i = 1, ...,
Nseq , j = 1, …, Npos, where aij represents an amino acid or
a gap, Nseq is the number of sequences, and Npos is the
number of positions in the alignment. The positions of a
domain on the amino acid sequences are also defined
in the form of matrix D = (dij) of the same size of A,
where dij = 1 if aij is within the domain or otherwise dij = 0.
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The DSP score of domain D in multiple alignment A is
given by

SA Dð Þ ¼
XNseq

i<i′

"XNpos

j¼1

sdom aij; ai′j; dij; di′j
� �� �

� nGopen ai:; ai′:; di:; di′:ð ÞGopen

�
;

where Gopen is the gap-opening penalty. nGopen

ai:; ai′:; di:; di′:ð Þ is the number of open gaps between
the i-th sequence and i′-th sequence, where the open
gaps are counted in the regions of dij=1 and di'j = 1,
and the mismatches of the domain terminal positions
are counted as open gaps. sdom is a function similar to
a commonly used score matrix, but it returns a value
depending on the domain as follows:

sdom a; a′; d; d′ð Þ ¼
smat a; a′ð Þ; if b að Þd ¼ 1 and b a′ð Þd′ ¼ 1
Gext ; else if b að Þd ¼ 1 or b a′ð Þd′ ¼ 1
0; else if b að Þd ¼ 0 and b a′ð Þd′ ¼ 0

;

8<
:

where smat is a commonly used score matrix such as the
BLOSUM score matrices, Gext is the gap extension pen-
alty, and b(a) = 1 if a represents an amino acid or other-
wise b(a) = 0. Therefore, a higher DSP score is obtained
when the domain organization is such that sequence re-
gions similar to each other (i.e., aligned with a positive
score) belong to the same domain and sequence regions
dissimilar to each other (i.e., aligned with a negative
score) belong to different domains, because the DSP
score counts similarity scores only between sequences
belonging to the same domain. If the domain boundaries
are not consistent with each other in the multiple align-
ment, they are penalized as external gaps, decreasing the
score. Thus, an increase in the DSP score denotes that
the domain boundaries are more consistent with each
other in multiple alignment and/or the sequences be-
longing to the same domain produce a higher sum-of-
pairs score. To normalize the DSP score with respect to
the number of sequences and sequence lengths, we div-
ide the DSP scores or the differences in the DSP scores
by Nseq and Naa, where Naa is the total number of amino
acids included in the alignment.

The merge procedure
In the merge procedure, all the split proteins in the data-
set are re-examined in multiple alignments. Consider a
pair of clusters that share at least one common protein
whose sub-sequences are members of each cluster. We
define two clusters as adjacent if they have a shared pro-
tein whose sub-sequences in each cluster are adjacent to
each other in the shared protein sequence. To determine
whether a pair of adjacent clusters should be merged,
the DSP scores are evaluated before and after the merge.
First, the score is calculated for each of the clusters
before the merge. Then, the clusters are merged by can-
celing the split between the clusters. The clusters are to
be merged under the condition of the normalized score
change S′−S

� �
= NseqNaa
� �

> Sδ , where S and S′ are the
scores before and after the merge, respectively, and Sδ is
a threshold for the merge. Following the examination of
adjacent cluster pairs, all the pairs to be merged are
merged at once.

The merge_divide_tree procedure
The merge_divide_tree procedure temporarily merges a
pair of adjacent clusters and then divides them into two
groups as a split of a phylogenetic tree. Because this pro-
cedure is preceded by the merge procedure, we assume
that clusters that should be merged are already merged.
A motivating example of this procedure is as follows:

suppose there are two domains A and B. Some proteins
have both domains (domain organization A + B) and the
others have only domain A (domain organization A). In
this case, we may want to classify these proteins into
two groups corresponding to the two domain organiza-
tions, A + B and A, instead of the original domain-level
classification, A and B. The merge_divide_tree procedure
adopts the modified classification only when the result-
ing subgroups are consistent with the gene phylogeny,
i.e., when they correspond to a split of the gene tree, as
well as when the resulting DSP score becomes higher
than before.
More precisely, this procedure re-defines the two

groups on a phylogenetic tree as follows. If a root of the
tree is determined, two subgroups are produced. The
initial domain patterns are compared between the newly
defined subgroups, and the difference is quantified as
follows:

tdiff G1;G2; t1; t2ð Þ ¼ jg1 ∩t1j þ jg2 ∩ t2j−jg1 ∩ t2j−jg2 ∩t1j
�� ��

þ jg12 ∩ t1j−jg12 ∩ t2j
�� ��;

where G1 and G2 represent initial clusters, t1 and t2 rep-
resent newly defined subgroups, g12 is the set of genes in
both G1 and G2, g1 is the set of genes in G1 but not in
G2, and g2 is the set of genes in G2 but not in G1. We
calculated tdiff for all candidate roots and selected the
root showing the largest tdiff. If several candidate roots
show the same value of tdiff, the root with the longest
edge among them is selected. Finally, the DSP score
change was calculated comparing the original and result-
ing states, and the modification was executed only when
the score increases.

The move_boundary and create_boundary procedures
The move_boundary procedure moves the set of domain
boundaries between two adjacent clusters at the same
time, keeping them in the same column on the multiple
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alignment. By moving the position from the N terminus
to the C terminus on the multiple alignment, the pos-
ition showing the highest score is selected. If the best
score is higher than the score of the initial state, the
move of the boundaries is retained.
The create_boundary procedure creates a new bound-

ary on candidate sequences, which are not split into do-
mains in the initial state. Following the examination of
all the protein sequences without splits, if the set of
newly introduced splits increases the DSP score, bound-
ary creation is applied.
The divide_tree procedure
The divide_tree procedure checks whether the resulting
clusters contain paralogous genes using a species overlap
criterion that is used in DomClust as well as several tree-
based ortholog classification methods. For this purpose,
using FastTree, we created phylogenetic trees on the basis
of multiple alignments produced by Clustal Omega. Al-
though the obtained tree is unrooted, the root is placed
on one of the edges so that the height of the resulting
rooted tree is minimized. Division of a cluster into sub-
groups is determined by a species overlap rule as follows:
Ssp t1ð Þ∩Ssp t2ð Þ =j jSsp t1ð Þ∪Ssp t2ð Þ�� ��≥Rsp , where t1 and t2
represent candidate subgroups of the phylogenetic tree,
Rsp is a threshold, and Ssp(ti) represents the set of species
included in ti.
Dataset
The 2002 version of the COG database (COG02) con-
tains genes from 43 species in 3307 clusters. We ex-
cluded ortholog groups comprising genes of fewer than
three phylogenetically distinct organisms, retaining 3192
clusters, as described previously [20]. The 2003 version
of the COG database (COG03) contains genes from 66
species in 4873 clusters [12]. Using the same filter ap-
plied to COG02, the number of clusters was reduced to
4814. DomClust was executed using the following pa-
rameters: ao (member overlap for merging adjacent
clusters) of 0.8, ai (member overlap for absorbing adja-
cent small clusters) of 0.95, V (alignment coverage for
domain split) of 0.6, and C (cutoff score for domain
split) of 80. For the execution of the DomRefine pipe-
line, the following parameters were set: Gopen of 10, Gext

of 0.5, Sδ of −0.05, and Rsp of 0.5, and BLOSUM45 was
used as the score matrix smat. In the tests to recover
COG classification by DomClust, an additional param-
eter was used to specify a condition that at least three
phylogenetically distinct organisms must be included in
each cluster, as described previously [20].
The FAMILY dataset was created using the MBGD

database [34]. Using NCBI taxonomy information, one
representative genome was selected from each family.
The resulting number of genomes was 309. COG and
NOG clusters included in the eggNOG database v3.0
[35] were concatenated and designated as eggNOG in
this study. To compare eggNOG classification with our
classification based on the FAMILY dataset, we com-
pared the list of genes between the FAMILY dataset and
eggNOG v3.0 using NCBI taxonomy ID for organisms
and locus ID for genes and extracted the intersection of
these gene sets, obtaining a total of 587,463 genes from
210 organisms. Note that the eggNOG cluster sizes in
the resulting FAMILY210 dataset were reduced from the
original one because the species subset was extracted.
Evaluation criteria
If overlapping fragments are observed between a COG
cluster Ci and a DomClust cluster Dj, whereas no over-
lapping fragments are observed between Ci and Dj′ and

between Ci′ and Dj for any j′≠j and i′≠i , then the rela-
tion of Ci and Dj is called a one-to-one relationship.
When we have two clustering results, we can evaluate
the consistency between them using the number of one-
to-one relationships between them. To evaluate cluster-
ing results showing moderate agreement with the refer-
ence classification more appropriately than counting the
number of one-to-one relationships, the agreement of
clustering results was quantified as follows. The overlap
ratio of fragment c∈Ci and fragment d∈Dj is calculated
as rover = |c ∩ d|/max(|c|, |d|). The mean overlap ratio
�rover is obtained by averaging rover for the overlapping
fragments.

Software
The core part of the pipeline that calculates the DSP
score was implemented in the C language. Other parts
of the pipeline are implemented in the Perl language.
The programs were executed on Linux. DomClust [20]
was used to obtain the initial clustering results. The
pipeline accepts the DomClust default format, which in-
cludes the cluster members and the regions of the mem-
ber domains. The DomRefine output is obtained in the
same format as the input. Clustal Omega [36] was used to
create multiple alignment with auto option. FastTree [37]
was used to create a phylogenetic tree based on the mul-
tiple alignment produced by Clustal Omega. For visualizing
domain-level clustering results on multiple alignments,
we developed a visualization tool using Perl and the GD li-
brary (http://search.cpan.org/dist/GD/). The tool colors
the amino acid residues according to the conservation
rate pcons in the multiple alignment: red for pcons ≥ 70%,
yellow for 70% > pcons ≥ 50%, and cyan for 50% > pcons ≥
30%. The scatter plot was created using R (http://www.
r-project.org/). A significance test of the results obtained
by the binomial test was performed using the binom.test

http://search.cpan.org/dist/GD/
http://www.r-project.org/
http://www.r-project.org/
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function of R considering gains and losses as successes
and failures in trials, respectively. TIGRFAMs release 13.0
[26] was used as protein models. For searching the protein
sequences using the protein models, HMMER3 [27] was
used with the “trusted cutoff” of each model. DomRefine
including the visualization tool can be downloaded from
the following link: http://mbgd.genome.ad.jp/domrefine/.

Additional file

Additional file 1: Supplementary figures and tables.
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