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Abstract

Background: High-throughput sequencing has become one of the primary tools for investigation of the molecular
basis of disease. The increasing use of sequencing in investigations that aim to understand both individuals and
populations is challenging our ability to develop analysis tools that scale with the data. This issue is of particular
concern in studies that exhibit a wide degree of heterogeneity or deviation from the standard reference genome.
The advent of population scale sequencing studies requires analysis tools that are developed and tested against
matching quantities of heterogeneous data.

Results: We developed a large-scale whole genome simulation tool, FIGG, which generates large numbers of whole
genomes with known sequence characteristics based on direct sampling of experimentally known or theorized
variations. For normal variations we used publicly available data to determine the frequency of different mutation
classes across the genome. FIGG then uses this information as a background to generate new sequences from a
parent sequence with matching frequencies, but different actual mutations. The background can be normal
variations, known disease variations, or a theoretical frequency distribution of variations.

Conclusion: In order to enable the creation of large numbers of genomes, FIGG generates simulated sequences
from known genomic variation and iteratively mutates each genome separately. The result is multiple whole
genome sequences with unique variations that can primarily be used to provide different reference genomes,
model heterogeneous populations, and can offer a standard test environment for new analysis algorithms or
bioinformatics tools.
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Background
This paper introduces the FIGG (Frequency-based Insilico
Genome Generator) tool, which is designed to be of use to
computational researchers who require high volumes of
artificially generated genomes that mimic the variation
seen in the natural population. FIGG is designed to use
high performance computing to rapidly generate artificial
genomes, and can be used to generate large numbers of
similar whole genome sequences by iteratively seeding
each run with new parent genomes.
In the last few years high-throughput sequencing (HTS)

has allowed researchers to sequence genomes for species
that range from bacteria and plants, to insects and verte-
brates. In the context of biomedicine HTS is being used
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to: characterize complex ecologies such as the human gut
microbiome [1]; understand parasitic diseases such as
malaria [2]; identify genomic variations that may be re-
sponsible for virulence in diseases such as tuberculosis [3];
and search for the mutations that drive genomic diseases
such as cancer [4-6].
A result of this wide-ranging use of sequence informa-

tion is petabytes worth of genomic data across multiple
species, populations and diseases. New tools are con-
stantly being required to enable the management and
analysis of this information. The FIGG tool is meant to
be of use to different computational researchers working
in the area of large-scale genomics. In particular it is de-
signed to be used by those who are struggling to keep
pace with the scale and diversity of data in large-scale
genomic projects. Using FIGG to generate artificial data
has a number of advantages over downloading and stor-
ing publically available whole genome sequences as it:
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has known characteristics, so can be used for consistent
benchmarking; can be used to generate mixed popula-
tions of heterogeneous genomes for algorithm testing;
has no security requirements, so can be shared and used
more easily; and does not place undue load on local re-
sources, as genomes can be generated on the fly.
FIGG is designed to generate large volumes of poten-

tially related sequences that can be used by computational
researchers in testing their models, analysis pipelines and
informatics solutions. Simulating experimental data is a
common step in the development and evaluation of new
analysis tools [7], computational methods, and the support
infrastructure for managing such sequences. Many differ-
ent genomic simulators are available (see Table 1) and
have been described elsewhere [8], however these are not
designed to provide the high volumes of complete genome
sequences which are required for software testing and
algorithm development. They range in application from
instrument-specific sequence read simulation (e.g. ART
[9], MetaSIM [10]), to genotype simulation for case–con-
trol studies based on linkage disequilibrium patterns (e.g.
genomeSIMLA [11], GWASimulator [12]), to evaluating a
population over time to determine how genomic hotspots
or population bottlenecks affect a genome (e.g. FreGene
[13], GENOME [14]) or protein sequence (e.g. ALF [15]).
FIGG generates whole genome sequence files, in FASTA

format, by directly sampling from populations of observed
variations. Each artificial genome includes sequence muta-
tions that range from single nucleotide variations (SNV)
to small and large-scale structural variations (e.g. indels,
tandem duplications, inversions). It has been designed to
use a distributed computing framework to enable rapid
Table 1 Genome simulators

Tool Description

ART [9] Simulation of sequence reads with error models for mu
(454, Solexa, SOLiD).

MetaSIM [10] Simulation of sequence reads for metagenomics, particu
variable data (taxonomically distinct but related organis

GENOME [14] Population simulation within a set of alleles using geno
such as recombination, migration, bottlenecks, and expa

GWASimulator [12] Simulation of loci across a population which follows a g
in case–control type studies.

FreGene [13] Mutation simulation using a theoretical sequence of a g
hotspot, conversion, and selection parameters.

genomeSIMLA [11] Simulation of disease loci within a family or case–contro
specific LD patterns for investigations of disease.

ALF [15] Population simulation for a specific gene set using a mo
at the sequence and individual level.

Example simulators used in various types of genome investigations. Many use the W
populations that vary over time given some set of event frequencies such as LD, ho
provide a set of sequences that could be generated by a given sequencing technol
based on the type of investigation. In planning new GWAS studies for instance, a si
disease related mutations would be selected. However, such a simulator would not
not yet be fully sequenced, or is highly variable. None of these simulators provides
generation of large numbers of genomes while tracking
the mutations that are applied to each. Below we provide
details of the FIGG methods that enable the creation of di-
verse whole genomes which accurately model experimen-
tally derived real sequence data. The following sections
describe the methods used for analysis of background gen-
omic variation, generation of the sequences, and validation
of the models through the use of standard sequence ana-
lysis tools. Finally we discuss applications for FIGG within
the sequencing community.

Methods
FIGG requires two inputs in order to create a genome:
1) all FASTA files representing the chromosomes to be
simulated (e.g. chromosomes 1–22, X, and Y from hu-
man genome build GRCh37), and 2) a database that is
the result of the frequency analysis as described in the
next section (the full database format can be found at
the link provided in Availability). The resulting output
from FIGG is set of FASTA formatted sequence files
(one per chromosome) that can be used by any tools
which use FASTA as an input, including sequence-read
simulators and genome alignment software.

Variation frequency analysis
The public availability of large datasets that characterize
human genomic variability provide a wealth of data on
population and individual variations. In order to de-
velop an accurate estimate of the range of “normal”
variation we used Ensembl [16]. This data was mined
for all variants validated in the 1000Genomes [17] and
HapMap [18] projects, as these are generally considered
Outputs

ltiple platforms Single or pair ended sequence reads.

larly for highly
ms).

Single or pair ended sequence reads.

me level events
nsions.

Alleles identified as mutated (1) or not (0) across the
simulated population.

iven LD structure SNVs per individual for input loci.

iven size with Mutation selection across population for a theoretical
sequence.

l setting using Affy identified SNPs selected by disease association.

del for variation FASTA protein and DNA sequences for specific genes.

right-Fisher model of population genetics theory [8] in order to generate
tpots, population bottlenecks (GENOME, genomeSIMLA, FreGene), others
ogy with an error model (ART and MetaSIM). The specific simulator used is
mulator that uses LD patterns and can provide predicted genomic regions for
be of use in the planning of a metagenomic study for an organism which may
whole genome FASTA as outputs.
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representative of normal populations. Several other sources
representing disease variations were downloaded for com-
parison, including those from the Catalogue of Somatic
Mutations in Cancer (COSMIC) [19] and small structural
variants in the Database of Genomic Variants Archive
(DGVa) [20].
In order to characterize the variant frequency across the

genome for different classes of mutations each chromo-
some was first fragmented into base-pair lengths that were
manageable for processing. For each fragment a profile of
unique variants was developed. These profiles were then
analyzed to determine the frequency of each variant class:
single point mutations being the most common, followed
by sequence alterations (defined as an uncharacterized
change in the sequence), and then insertions. Based on
these frequencies structural elements in the sequence frag-
ment were identified that can be directly observed and
which could explain the variation frequencies including: a
higher incidence of coding/non-coding regions; predicted
CpG methylation sites; and high/low GC content. A weak
correlation with SNVs was observed in segments with
high/low GC content [21,22], but no other genome-wide
structural correlation was found. When the same analysis
on “disease” variations was run (e.g. COSMIC, DGVa) as a
comparison, GC content continued to be the only clear
structural correlation for variation frequency (see Figure 1
for a description of the final output).
Based on this analysis the observed sequence fragments

were separated into bins by GC content, with variant counts
per segment recorded for each chromosome (see Figure 2
for an example of the variant and GC tables in chromo-
some 4). The result is a set of tables that can be easily sam-
pled for fragments based on a GC profile. Additionally, base
pair size probabilities were calculated for all size-dependent
variants (e.g. deletion sizes from 1–10 have a genome-wide
frequency of 0.96, and from 11–100 a frequency of 0.04),
and nucleotide mutation rates were determined for SNVs
(e.g. C- > T 0.69, C- > A 0.16, C- >G 0.15, etc.).

Implementation
The general architecture of FIGG is shown in Figure 3.
It has been designed to take advantage of distributed
computing by both breaking down the processing of the
data into a distributed model, and by separating the
functionality required into distinct steps, called “jobs”,
that can be added or altered for downstream analysis or
testing needs. FIGG is separated into three distinct jobs.
The Additional file 1 document provided describes how
to set up and run these jobs on an Amazon Web Ser-
vices cluster.
The first job fragments a reference genome and persists

it to a distributed database, which ensures that the back-
ground genomic information is highly accessible, and
only needs to be run once per reference (e.g. GRCh37).
The second job mutates each of the segments from a
parent genome, using information pulled from a variation
frequency database. This database provides the informa-
tion necessary to determine which variations should be
applied to a given fragment (e.g. SNV, deletion, insertion)
and how often these occur.
The third job assembles the mutated fragments into a

whole genome, and generates the corresponding FASTA
files. The second and third jobs are run in parallel to
each other, allowing for a means to generate large num-
bers of artificial genomes in a highly scalable manner.

Mutation rules
The generation of new, mutated sequences is achieved
through application of a ruleset based on the frequency
analysis described above. Each input chromosome is
split into fragments of the same size as those used for
the frequency analysis (e.g. 1 kb). Each fragment is then
processed stepwise (see Figure 4):

1. Determine the GC content of the fragment then fit
to the identified bins in the frequency database
based on the fragment chromosome. This provides a
set of observed fragments to sample.

2. Randomly sample an observed fragment from the set
of fragments that fit the GC bin. This fragment will
include 0..n counts for each variation type (e.g. SNV,
deletion, substitution, etc.).

3. Apply each variant type to the fragment sequentially
(e.g. deletions first, tandem duplications last). This is
achieved through sampling without replacement
random sites within the fragment for each mutation,
applying size-dependent or SNV probabilities for
that mutation to the site, and repeating until all
variants have been applied to the sequence.

The resulting fragment may vary significantly from, or
be nearly identical to, the original sequence depending
on the selected variant frequencies. Use of random site
selection for applying the mutations ensures that no spe-
cific population bias (e.g. if the population that is used
to generate the frequency data is overrepresented for a
specific variant) is introduced into the bank of resulting
sequences. The final FASTA sequence then provides a
unique variation profile.

MapReduce for multiple genomes
Applying this process to the human genome to create a sin-
gle genome is slow and inefficient on a single machine,
even when each chromosome can be processed in parallel.
In fact, a basic version of parallelization took more than
36 hours to produce a single genome. Producing banks of
such genomes this way is therefore computationally limited.
However, mutating the genome in independent fragments



Figure 1 Variation frequency table generation procedure. The variation analysis uses publicly available small scale variation data to generate
a set of database tables for a specific variation frequency. This is done in four separate steps. First, filter GVF or VCF files for unique variations per
chromosome location and validation status. In this analysis variation files from Ensembl were used and “normal” validation status was determined
based 1000Genomes or HapMap annotations. To generate a “highly variant” frequency, variations that were identified as being in the COSMIC
and DGVa databases were added. Next, each chromosome is segmented into defined lengths (e.g. 1 kb) and the observed variations per class
within the segment are counted. Additionally, the GC content for each segment is calculated from a corresponding FASTA sequence file. Then
the segments are separated by GC content into 10 bins per chromosome. While these bins can be more granular, the correlation of SNV to GC
content did not improve by increasing the number of bins. Finally, determine the genome-wide SNV mutation and size probabilities for variations
that can be more than a single base pair in length. A database schema describing the final tables is provided in the source for FIGG.
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makes this a good use case for highly distributed software
frameworks such as Apache Hadoop MapReduce [23,24]
backed by distributed file systems to create and store tens,
hundreds, or more, of simulated genomes. In addition, use
of HBase [25] allows for highly distributed column-based
storage of generated sequences and mutations. This enables
rapid scale-up for management, ensures that all variations
to a given genome can be identified, and allows for the



Figure 3 FIGG MapReduce jobs. Three discrete MapReduce jobs have been set up to generate unique whole genome sequences. The first job
simply fragments the reference or “parent” genome into the distributed database, HBase. The second job reads all the fragments for the parent
genome from the database, mutates them using the provided frequency information and again saves them to the database to ensure
reproducibility. The final job generates FASTA formatted files, per chromosome, for the mutated genomes.

Figure 2 Variation frequency analysis. The result of the variation analysis is a table, indexed by chromosome and GC content, which provides
experimentally observed counts of the different variations for that fragment. This means that a DNA fragment from chromosome 4 with a GC
content of 25-35% has been observed 38,734 times. Each of those observed fragments is recorded with their variant counts. These observed
fragments will be sampled from directly in the generation of an artificial genome.
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Figure 4 (See legend on next page.)
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(See figure on previous page.)
Figure 4 Fragment mutation rules. As an example of the process each fragment goes through, this fragment from chromosome 4 is mutated
based on information from the tables shown in Figure 2. In step 1 the GC content of the fragment is calculated then fit to the pre-determined
bins, all observed fragments within that bin are then available to sample. Step 2 samples one of these observed fragments to get the counts of
specific variants. In this case the observed fragment had a single deletion and three SNVs. In step 3 these observed variant counts are applied in
stages. Sites for each variation are selected randomly (without replacement), and the mutation applied. For a size-dependent variant such as the
deletion, a size is determined from a probability table, for SNVs the probability of the point mutation is determined based on the nucleotide
present at that site. The resulting fragment will not replicate the sampled fragment (from step 2) in specific mutations, but only in the number
of mutations applied.
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simple regeneration of simulated FASTA files on an as-
needed basis.
MapReduce has been used effectively by us and others

in various large-scale genomics toolsets to decrease com-
putation times, and increase the scale of data that can be
processed [26-28]. FIGG uses this framework in order to
allow the rapid generation of new genomes or regener-
ation of previous mutation models. It is designed to run in
three discrete jobs: 1) breakdown input FASTA files into
fragments and save to a HBase database for use in subse-
quent jobs; 2) mutate all of the fragments from the first
job and persist these to HBase; and 3) reassemble all mu-
tated fragments as new FASTA formatted sequences.
MapReduce accomplishes these tasks by breaking each

job into two separate computational phases (see Figure 5).
The Map phase partitions data into discrete chunks and
sends this to mappers, which process the data in parallel
and emits key-value pairs. In each of the separate jobs for
FIGG the mappers deal with FASTA sequences, either
directly from a FASTA file or from HBase. Each mapper
performs a computation on these sequences, and produces
Figure 5 MapReduce framework. MapReduce provides a general framew
metadata statistics on a sequence fragment and write them to HBase (Job
The Reduce phase, if it is specified, is responsible for assembling the mutat
may simply output additional metadata to HBase for use in other processin
a sequence (the value) with a key that provides informa-
tion about that sequence (e.g. chromosome location).
These key-value pairs are “shuffle-sorted” and picked up
by the Reduce phase. The framework guarantees that a
single reducer will handle all values for a given key and
that the values will be ordered.
It is worth noting that not all jobs will require the use of

a reducer. In FIGG the first job which breaks down FASTA
files into fragments and saves them to HBase (Job 1) is a
“map-only” job, because we cannot further reduce these
fragments without losing the data they represent. There-
fore, the mappers output directly to HBase rather than to
the reducers. In the mutation job (Job 2) the Map phase
performs multiple tasks including applying variations to a
sequence fragment, and writing new sequences and spe-
cific variation information directly to HBase. Whereas in
Job 3 (FASTA file generation), the Map phase only does a
single task, tagging a sequence with metadata that enables
it to be ordered for the Reduce phase, which actually out-
puts the file. As each mapper is processing a subset of the
data in parallel to all other mappers the compute time
ork to process partitionable data. The Map phase may either gather
1) or apply the variation frequencies and rules to a fragment (Job 2).
ed fragments into FASTA formatted chromosome files (Job 3) or it
g tasks.



Table 2 Sequence alignment statistics for simulated
genomes

SAMtools flagstat

Mapped Correctly paired Singletons

GRCh37 98.22% 96.34% 0.85%

S1 97.89% 95.52% 1.00%

S2 95.46% 92.95% 1.09%

S3 97.89% 95.54% 0.99%

S4H 90.09% 85.11% 2.89%

S5H 90.35% 85.45% 2.84%

S6SV 88.16% 83.22% 2.88%

A comparison of the 1000Genomes reads for ERX000272 mapped against each
genome. GRCh37 is the current reference genome. S1, S2 and S3 are genomes
generated based on normal variation data. S4H and S5H were generated with high
variation data and S6SV is based on normal variations but with the chromosome
arm 19q deleted. The table columns are statistics provided by SAMtools flagstat:
Mapped provides the total percentage of reads that mapped to the genome on the
left; Correctly Paired provides the percentage of reads that aligned to the genome in
their proper pair; and Singletons provides the percentage of reads that were
orphaned in the alignment. As expected, genomes S1-3 show mapping statistics
that are close to the reference genome, while the others show a significantly lower
statistics due to the higher frequency and larger bp size of variations used to
generate these genomes.
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required will scale directly with the number of mappers
available to the task, limited in FIGGs case only to the
organization of the data in HBase.

Results and discussion
Our primary interest in developing this tool was to pro-
vide sets of heterogeneous whole genomes in order to
benchmark cancer genome alignments. This is a special
case for alignment, as cancer genomes can vary quite
dramatically between patients and even within a single
tumor. With such a range of variation in patients, it was
important to ensure that the simulated genomes were
representative of the heterogeneity, without introducing
biases for specific mutations.
In order to ensure that FIGG was modeling heteroge-

neous genomes that fit a specific background (e.g. “nor-
mal” or “diseased”) two different frequency backgrounds
were generated (see Methods). The “normal” frequency
background was from data representative of the average
human population: 1000Genomes and HapMap. The sec-
ond, “highly variant” frequency background was based on
data from the DGVa and COSMIC databases of cancer
and other disease variations. This greatly increased the
frequency and size of the small structural variations (e.g.
millions of small deletions and insertions, up to several
hundred bp in length).
Using these two different backgrounds and GRCh37 as

the parent genome, FIGG generated six whole genome
sequences: three “normal”, two “highly variant”, and one
additional genome from the “normal” background that in-
cluded a common cancer structural variation. As expected,
for both the “normal” and the “highly variant” sequences,
the simulated genomes preserved the frequency distribu-
tion of variations observed in the background data, while
differing in the raw counts per fragment.
These simulated whole genomes were then used as

references to align a set of low-coverage paired-end se-
quencing reads from the 1000Genomes project (NCBI
Trace Archive accession ERX000272). The BWA align-
ment tool [29] was used to index the simulated genomes
and align the reads against each reference, including the
current reference genome GRCh37. Statistics regarding
read mapping accuracy (see Table 2) for each genome
were generated using SAMtools [30].
This comparison demonstrates that heterogeneous a

whole genome sequences matching specific variation
characteristics (e.g. normal, disease variant, etc.) can be
generated by this tool. In the first three genomes the
characteristics come from a “normal” population fre-
quency and fairly closely match the mapping rates of
the current public reference (GRCh37). The lower map-
ping rates in the high variation genomes are expected,
as these will have a higher number of variations as well
as longer insertions, deletions, and substitutions. This
suggests that by using distributions for variations within
distinct genomic populations, such as can be seen in differ-
ent tumor types, highly specific simulated genomes can be
generated. These specific simulated genomes could then
be used as more accurate quality control sets for testing
hypotheses or data. For instance, genome S6SV models a
breakpoint that may be found in specific types of glioma
[31-33]. This simulation could therefore be used to more
accurately align a clinically derived sequence, integrate
with proteomics data to infer a potential effect or bio-
marker, or simply provide a test sequence for breakpoint
analysis methods [34].
Finally, it is important to note the benefits of using a

highly distributed framework to generate these sequences.
Current sequencing projects are generating hundreds or
thousands of sequences from patients. In order to provide
artificial data models to assist computational researchers
working on large-scale projects, the simulation tool must
be able to rapidly generate data of similar complexity and
size. Distributed computing frameworks enable FIGG
to generate this data quickly, allowing the researcher to
simulate the scale of data they will actually be facing.
Using Hadoop MapReduce enables FIGG to scale the
mutation job nearly linearly to the number of cores
available (see Figure 6). However, as with other distrib-
uted environments optimization for large clusters must
be done on an individual basis.

Conclusions
HTS is now a primary tool for molecular biologists and
biomedical investigations. Identifying how an individual
varies from others within a population or how populations



Figure 6 Scaling FIGG with MapReduce. The mutation process in FIGG is the most computationally intensive job in the pipeline. It was tested
on Amazon Web Services Elastic MapReduce clusters of varying sizes for scalability. MapReduce provides a near linear speed up with the addition
of nodes to this job. These genomes are saved to HBase to provide a persistent store of standard artificial genome data that can scale along with
the cluster size. This is one area where optimization will provide increased performance as defining how the HBase tables are distributed can
increase the speed of computation (e.g. more efficient row key design decreases query time and increases the number of available mappers).
This is due to the fact that region server optimization is highly specific to the data, and improves as the data size increases.
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vary from each other is central to understanding the mo-
lecular basis of a range of diseases from viral and parasitic,
to autoimmune and cancer. As our understanding of these
variations increases so too does the complexity of the ana-
lyses we need to undertake to find meaning in this data.
Simulation data is a common measure of the usability

and accuracy of any analysis tools, but in whole genome
studies there continues to be a lack of standard whole gen-
ome sequence data sets. This is especially problematic with
the production of hundreds or thousands sequences from
different populations. Comparing these to a single refer-
ence can lead to loss of important variation information
found in even reasonably homogenous data. Highly hetero-
geneous populations, such as those found in cancer, may
not even be represented at all by the reference. Generating
thousands of whole genome models that vary predictably
can provide highly specific test data for computational bi-
ologists investigating tumor diversity, software engineers
who are tasked with supporting the large scale data that is
being generated, and bioinformaticians who require reli-
able standards for developing new sequence analysis tools.
Central to each of these research needs is the develop-

ment and use of banks of whole genome simulation data
which will allow for the development of quality control
tools, standard experimental design procedures, and dis-
ease specific algorithm research. FIGG provides simulation
data models based on observed population information,
will enable disease sequence modeling, is designed for
large-scale distributed computing, and can rapidly scale
up to generate tens, hundreds, or thousands of genomes.

Availability and requirements
Project name: Fragment-based Insilico Genome Generator
Home page: http://insilicogenome.sourceforge.net
Operating systems: Platform independent
Language: Java
Other requirements: Java version 1.6 or higher, A com-
putational cluster running Hadoop v1.0.3 and HBase 0.92
(Amazon Web Services AMI v2.4.2), pre-computed HBase
tables for the frequency analysis, and FASTA files for a ref-
erence genome.
Open source license: Apache 2.0
Restrictions for use: None
All Hadoop MapReduce jobs for this paper were run

using Amazon Web Services MapReduce clusters. Please
see the Additional file 1 for a walkthrough of the AWS
job creation.

Additional file

Additional file 1: Amazon Web Services FIGG Walkthrough.

Abbreviations
COSMIC: Catalogue of Somatic Mutations in Cancer; DGVa: Database of
genomic variants archive; HTS: High-throughput sequencing; SNV: Single
nucleotide variation.
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