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Abstract

Background: Human disease often arises as a consequence of alterations in a set of associated genes rather than
alterations to a set of unassociated individual genes. Most previous microarray-based meta-analyses identified
disease-associated genes or biomarkers independent of genetic interactions. Therefore, in this study, we present the
first meta-analysis method capable of taking gene combination effects into account to efficiently identify associated
biomarkers (ABs) across different microarray platforms.

Results: We propose a new meta-analysis approach called MiningABs to mine ABs across different array-based
datasets. The similarity between paired probe sequences is quantified as a bridge to connect these datasets together.
The ABs can be subsequently identified from an “improved” common logit model (c-LM) by combining several sibling-like
LMs in a heuristic genetic algorithm selection process. Our approach is evaluated with two sets of gene expression
datasets: i) 4 esophageal squamous cell carcinoma and ii) 3 hepatocellular carcinoma datasets. Based on an unbiased
reciprocal test, we demonstrate that each gene in a group of ABs is required to maintain high cancer sample
classification accuracy, and we observe that ABs are not limited to genes common to all platforms. Investigating the
ABs using Gene Ontology (GO) enrichment, literature survey, and network analyses indicated that our ABs are not only
strongly related to cancer development but also highly connected in a diverse network of biological interactions.

Conclusions: The proposed meta-analysis method called MiningABs is able to efficiently identify ABs from different
independently performed array-based datasets, and we show its validity in cancer biology via GO enrichment,
literature survey and network analyses. We postulate that the ABs may facilitate novel target and drug discovery,
leading to improved clinical treatment. Java source code, tutorial, example and related materials are available at
“http://sourceforge.net/projects/miningabs/”.
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Background
Many clinical diseases such as cancer arise as a conse-
quence of massive alterations in gene activity. Genes
may interact or work together in response to environ-
mental change, further influencing the fate of a cell [1].
Synthetic lethality, where cell death is observed when
two genes are mutated but not when only one of the pair
is mutated, is a classic example of genetic interaction
[2]. Another example is in causal SNP identification
where Han et al. showed that two associated SNPs in
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the non-coding region of CFH (complement factor H)
were linked to age-related macular degeneration [3].
In our previous studies, we also demonstrated that
co-expressed genes revealed from association rules are
associated in yeast cells when they suffered from dif-
ferent stresses [4]. Therefore, many lines of evidence
suggest that combination effects of certain genes influ-
ence biological outcomes rather than individual effects
of a set of unassociated individual genes.
In the past decade, microarray techniques have been

widely used to detect large-scale molecular changes in
many biological events such as alterations in gene expres-
sion for human tumorigenesis [5-9]. These approaches
identified some important cancer-associated genes and
cellular pathways. However, most of these discoveries were
made using statistical methods such as applying a principal
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component analysis to obtain a limited gene list or using
the t-test to determine whether any probe readings were
significantly different between matched normal and tumor
samples [7]. Here, a probe reading is defined as the final
intensity of a cell-isolated nucleotide sequence hybridized
to a probe set containing 25 bp probe sequences derived
from a genomic target region of a gene in the Affymetrix
array platform or hybridized to a 60 bp spotted sequence of
a gene in the Agilent array platform. Despite similar experi-
mental and analytical designs, the results of these studies
often have little or no overlap [5,7]. These results motivated
others to develop meta-analysis methods to discover
reliable common patterns across different individually
performed experiments.
Existing microarray meta-analysis methods, reviewed

recently by Dr. George C. Tseng and his colleague [10,11],
use a variety of strategies including i) vote counting, ii)
combining p-values, iii) combining effect sizes, iv) com-
bining ranks and v) directly merging after normalization.
The vote counting method counts how many curated
independent datasets show significant gene expression
changes between paired case–control samples for a quer-
ied gene. For example, LaCroix-Fralish et al. selected 79
pain-related genes to be statistically significant “hits” in
4 or more independent experiments using the vote
counting-based binomial test and then confirmed 43 out
of the 79 using qPCR in the dorsal root ganglion of rat
with chronic constriction injury [12]. Although this
method is very straightforward and efficient to find candi-
date genes common to different experiments, the method
relies highly on the definition of significance used in
the original researches. Considering more quantitative
information like p-values or even fold changes of genes
between two groups of samples might help increase
the flexibility and utility of meta-analysis. Rhodes et al.
integrated one-sided permutation t-test p-values for
each gene that is present in all collected prostate
cancer gene expression profiles [13]. Similarly, combining
single study-derived p-values or transform scores for
two- [14,15] and multi-class [16] comparisons has also
been conducted in the previous literature. Regarding the
approach using effect size, Choi et al. integrated t-based
effect size (fold-change in gene expression) to discover
significant genes from cancer datasets [17], and Wang
et al. utilized Bayesian statistics to identify differentially
expressed genes between B-cell chronic lymphocytic
leukemia and normal B cells across three microarray
studies [18]. However, using the combination of either
p-values or effect sizes, it is likely to obtain many candi-
date differentially expressed genes that are outliers
actually. Incorporating rank statistics of genes in the
aforementioned p-values or effect sizes in each study
might help fix this problem. For this, Hong et al.
successfully proposed a non-parametric fold-change-
to-rank statistic to detect plant hormone-related genes
[19], and Sanford et al. applied it to sub-classify renal
neoplasms [20]. In addition to the above reviewed meta-
analyses, recently there are some newer sophisticated
methods like following the PRISMA statement [21] to
calculate Cochran’s Q statistic [22] for each gene across
datasets curated in the study, or identifying genes by
directly merging data sets after normalizing the data [23].
Although the above methods have been developed and
evaluated with different sources of gene expression mi-
croarrays, the resulting genes were still considered inde-
pendently associated with their target diseases. Discovering
associated significant genes across different microarray
datasets, so called associated biomarkers (ABs), is a novel
approach for identifying convincing mechanisms under-
lying biological events or new targets for drug design.
In this study, we propose a new method called Mini-

ngABs to discover ABs through an “improved” common
logit model (c-LM) discovered from multiple connected
datasets. The logit model (LM) is a useful method for
solving binary classification problems such as classifi-
cation of samples as tumor or normal. The LM states
that the probability of belonging to a clinical group can
be formulated as a function of differences in gene
expression. MiningABs attempts to find a small subset
of genes, the ABs, that have a high classification accuracy
under the LM. We use a heuristic genetic algorithm to
select variables for the LM that allows for an optimal
model to be discovered in a reasonable time period.
Genetic algorithms have been used to select pathological
variables to predict myocardial infarction [24] and radio-
therapy treatment outcomes [25] using LMs. While this
approach is very powerful for most optimization prob-
lems, previous studies were limited to a single data set
or a single experiment. The challenges of using genetic
algorithms to select variables in a LM with different
microarray datasets include: i) how to handle the input
platforms containing disparate number of probes and
genes, ii) how to efficiently discover ABs from any possible
gene combinations other than a brute force search, iii)
how to evaluate whether the identified ABs are relevant to
a biological event, and iv) what number of ABs provides
the best classification accuracy. Our method addresses all
of these issues and is evaluated with two publicly available
cancer microarray datasets: i) 4 gene expression mi-
croarray datasets conducted by 3 independent research
groups in human esophageal squamous cell carcinoma
[5-7] and ii) 3 gene expression microarray datasets in
human hepatocellular carcinoma [8,9].

Methods
Overview of datasets
In this study, two input sets of gene expression microarray
data for human cancer subjects, esophageal squamous cell
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carcinoma (ESCC) and hepatocellular carcinoma (HCC),
were accessed from the Gene Expression Omnibus (GEO)
database. Table 1 shows the detailed characteristics of
these datasets. Four ESCC [5-7] and 3 HCC [8,9] inde-
pendent experimental designs were conducted to identify
differentially expressed genes of interest using various
microarray platforms and clinical samples. Su et al.
performed global gene expression profiling and validation
to identify 7 ESCC-related genes and their associations
with clinical phenotypes. Hu et al. identified 12 ESCC-
related genes relevant to DNA copy number neutral loss
of heterozygosity, and Yan et al. also identified 12 putative
therapeutic targets/genes in ESCC treatment. For the
input HCC set, Roessler et al. provided two large-scale
microarray datasets and identified 6 human chromosome
8p-invovled genes associated with HCC and patient
survival, and finally Tsuchiya et al. identified 11 HCC-
related genes from hepatitis C virus-positive patients.
However, esophageal carcinoma is the 8th most common
cancer worldwide affecting more than 450,000 patients
annually, and it is the 6th leading cause of cancer-related
mortality with more than 400,000 deaths per year [26,27].
Additionally, hepatocellular carcinoma is the 6th most
common cancer worldwide and the 3rd most common
cause of cancer-related death [28]. Hence, mining more
cancer-related patterns in gene expression will help us
identify more key genes involved in these diseases and
provide more information for developing therapeutics.
The two input sets will be individually considered as the
inputs to our method. The detailed data processing steps
will be introduced in the following paragraphs.

Integrating sk-LMs to classify cancer samples
In this section, we introduce how to discover the associ-
ated biomarkers (ABs) for a common logit model (c-LM)
by combining sibling-like logit models (sk-LMs) derived
separately for each dataset. The basic definition of the
Table 1 Characteristics of microarray datasets used in this stu

Sample
types

Dataset
serial

numbers

GEO
accession
numbers

Platform types N/T

ESCC

1-1 GSE23400 Affymetrix HG-U133A 53/53 2

1-2 GSE23400 Affymetrix HG-U133B 51/51 1

1-3 GSE20347 Affymetrix HG-U133A_2 17/17 2

1-4 GSE29001 Affymetrix HG-U133A_2 12/12 2

HCC

2-1 GSE14520 Affymetrix HG-U133A_2 19/22 2

2-2 GSE14520 Affymetrix HT_HG-U133A 210/225 2

2-3 GSE17856 Agilent 014850 44/43 2

ESCC: esophageal squamous cell carcinoma; HCC: hepatocellular carcinoma; N: # of
distinguishable gene IDs in a platform; D: # of downloaded probes contained in a p
target sequence; ††: Agilent spotted sequence.
traditional LM developed from a single microarray dataset
will be given in the first part. Then, we introduce how to
link different datasets together with a matrix of probe se-
quence (including Affymetrix probe set-matched target se-
quence and Agilent spotted sequence) similarities, and
finally introduce how to determine a c-LM from the
multi-connected-datasets.

Development of individual logit model from single dataset
The traditional logit model (LM) is a commonly used
method for solving binary classification problems and is
akin to non-linear regression such as fitting a polynomial
to a set of numerical/categorical data. In this case, the
probability p of a sample being from a cancer patient is
derived as a function of the following combination of n
selected probe readings x = {x1, x2,…, xn}. A general form
of the LM formula is given by Eq. (1).

p ¼ eβ0þβ1x1þβ2x2þ…þβnxn

1þ eβ0þβ1x1þβ2x2þ…þβnxn
ð1Þ

where β0 is an intercept and {β1, β2,…, βn} are coefficients
of the independent variables. If the target categorical vari-
able is tumor, p will be set as 1. On the contrary, normal
samples are set as 0. We use a maximum likelihood estima-
tion method to calculate these beta values. The LM for a
single dataset can be evaluated by referring to the natural
log likelihood value (LLV) via the following Eq. (2).

LLV β̂
� �

¼ ln
Yn
i¼1

π̂ xið Þyi 1−π̂ xið Þð Þ1−yi
 !

ð2Þ

π̂ xið Þ ¼ eβ̂0þβ̂1xi1þβ̂2xi2þ…þβ̂nxin

1þ eβ̂0þβ̂1xi1þβ̂2xi2þ…þβ̂nxin

Where β̂ are the beta values of a LM and yi is the
target categorical value (Tumor = 1 and Normal = 0) of
dy

A/D
# of distinct
genes in a
platform

Avg length of
sequences Source of

samples References
(Avg ± SD)

0,133/22,283 12,633 250 ± 22†
China [5]

4,110/22,477 9,256 250 ± 22†

0,133/22,277 12,633 250 ± 22† China [6]

0,133/22,277 12,633 250 ± 22† China [7]

0,133/22,277 12,633 250 ± 22†
China [8]

0,429/22,277 12,743 440 ± 105†

0,772/25,073 14,312 60 ± 0†† Japan [9]

normal samples; T: # of tumor samples; A: # of available probes matched with
latform; Avg: average; SD: standard deviation; †: Affymetrix probe set-matched



Figure 1 Comparisons of paired probe sequences in two input
sets. A) Average of maximum/mean/minimum similarity scores
among different probe sequence sets in ESCC set. B) Average similarity
as a function of maximum/average/minimum scores among different
probe sequence sets in HCC set. C) Distributions of most similar paired
probe sequences (Max group in the panel A). D) Distributions of most
similar paired probe sequences (Max group in the panel B). Intra:
different probes matched with same gene IDs; Inter: different probes
matched with different gene IDs.
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the indexed i out of n samples. The domain of LLV is
less than zero, and a larger LLV represents a better
model in sample fitness.
However, developing an individual LM from a single

array dataset may not offer maximum power for classify-
ing cancer samples because the number of available
probes/genes varies from platform to platform (Table 1).
As a result, a single array dataset-derived classification
model may not be applicable for another dataset. In
most of the traditional meta-analysis approaches, the
common significant genes are limited to the genes com-
mon to all microarray platforms [13,18]. Table 1 shows
that among the available probes, the numbers of com-
mon genes across input ESCC and HCC sets are only
3,887 and 9,755 respectively. Many potential candidate
genes would be missed if an approach only focuses on
these common genes. Therefore, developing a c-LM in
which every AB’s value can be accessed simultaneously
in each dataset is a very important issue. In the next
section, we introduce how to overcome this issue by
linking different array-based platforms together using a
sequence comparison-based method.

Probe sequence similarity matrix development as a bridge
to connect datasets
The final probe readings from arrays are only based on
the sequence-sequence hybridization affinities. Although
probes are matched with different gene IDs over array
platforms, the readings will be very similar for a given
cell-isolated nucleotide sequence. Moreover, the hybrid-
ized sequences are usually limited to a very short sub-
sequence (hundred bases) of gene open reading frames
rather than the entire gene. Is it possible to designate a
probe as a substitute for a probe that is contained by one
platform but not another by finding probes with the
highest similarity in sequences between the two plat-
forms? To test this possibility, we measured a similarity
score for each paired probe sequence in both input
platforms. The Affymetrix probe set-matched target
sequence (the sequence from which 25 bp sequences
within probe sets are extracted, average length 250 bp
or 440 bp) and Agilent spotted sequences (average
length 60 bp) were used in this study (Table 1). In
Figure 1A and B, the averages of maximum/mean/
minimum similarity scores among the probe sequences
for the same gene (intra) are higher than probes from
different genes (inter). In the intra group, 91% (Figure 1C)
and 67% (Figure 1D) of the probes can be matched to at
least one different probe on another platform. Probes
from different genes can often be matched with a most
similar (above 80%) probe in the ESCC (Figure 1C) and
HCC (Figure 1D) input sets. These observations hinted
that using a most similar substitute in a platform is a
reliable proxy for an absent probe because the probe
sequence hybridization affinities would be very similar
for a cell-isolated nucleotide sequence, leading to simi-
lar intensities. For each set, the similarity scores, whose
domain is given by [0.0, 1.0], were calculated using the
alignment tool in the Phylogenetic Analysis Library [29]
and stored as a matrix. The sequence similarity between
any two probes (Affymetrix probe set-matched target
sequences or Agilent spotted sequences) is defined by
subtracting an evolutionary distance value from 1.0,
where the evolutionary distance whose domain is [0.0,
1.0] between the two sequences was taken as the branch
length of the maximum likelihood tree containing only
the two sequences, under a set model of substitution
[30]. Table 2 shows a toy example of probe sequence
similarity matrix of 3 platforms: PF1, PF2 and PF3. We
define an identifier PF-P-G which is composed of a plat-
form ID, probe ID and gene ID. Accordingly, PF1 has 3
probes P1, P2 and P3 and their corresponding genes G1,
G1 and G3, i.e., PF1-P1-G1, PF1-P2-G1 and PF1-P3-G3.
PF2 has PF2-P1-G1 and PF2-P2-G2, and PF3 has PF3-P1-G2

and PF3-P2-G3. Larger scores represent higher similarities
of paired probe sequences. In this way, the similarities
between any paired probes across platforms can be
successfully quantified. Take P3 in PF1 as an example,



Table 2 Example of probe sequence similarity matrix

PF1 PF2 PF3

P1 P2 P3 P1 P2 P1 P2

G1 G1 G3 G1 G2 G2 G3

PF1

P1 G1 1.0 0.9 0.5 0.8 0.3 0.4 0.1

P2 G1 1.0 0.4 0.8 0.2 0.3 0.2

P3 G3 1.0 0.4 0.1 0.5 0.9

PF2
P1 G1 1.0 0.0 0.5 0.3

P2 G2 1.0 0.8 0.4

PF3
P1 G2 1.0 0.5

P2 G3 1.0
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the probe-matched G3, i.e., PF1-P3-G3, does not appear
in PF2 on which PF2-P1-G1 could be used as a substitute
for the G3 since they have the most similar sequences
relative to PF2-P2-G2 in sequence.
Identification of c-LM from multi-connected-datasets
By referring to the developed probe sequence similarity
matrix M, any probes from genes private to a platform
can be linked with the most similar substitutes in other
platforms. Therefore, all of the platforms in an input set
can be connected using the bridge M. Figure 2 shows an
algorithm to identify a common logit model (c-LM) from
Figure 2 Algorithm of c-LM identification.
multi-connected datasets. Briefly, the algorithm consists
of 5 steps:

1) Input a set DS of datasets, a similarity matrix M,
and a set EI of expected/selected identifiers

2) Examine if each dataset contains the gene IDs of the
EI-contained identifiers

3) For each dataset, by referring to M, the substitutes
of EI-contained identifiers will be assigned to a
sibling-like LM (sk-LM)

4) Calculate each sk-LM ‘s LLV (natural log likelihood
value)

5) Update the LLV of the c-LM by averaging each
dataset-derived sk-LMs

Here we extend the toy example stated in the above
paragraph to describe this algorithm. Let DS = {DS1, DS2,
DS3} be three microarray datasets and M be the probe
sequence similarity matrix in Table 2. Assuming EI =
{PF1-P1-G1, PF3-P2-G3}, a c-LM will be introduced to the
algorithm c-LM identification (Figure 2). The examining
identifiers in sk-LMs for DS1, DS2 and DS3 will be {PF1-
P1-G1, PF1-P3-G3}, {PF2-P1-G1, PF2-P2-G2} and {PF3-P1-
G2, PF3-P2-G3} respectively. Then, the LLV of the output
c-LM, with identifiers PF1-P1-G1 and PF3-P2-G3, can be
calculated by averaging each sk-LM’s LLV value. The
magnitude of the output the c-LM’s LLV is based on
what identifiers have been defined in EI. According to
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the computational design of a LM, the probability of
clinical outcomes is attributed to a combined effect of
those probe intensity values. The next important issue
is to properly select these identifiers for including in a
model.

Improving c-LM via a heuristic selection process
The ABs are defined as a small number of genes k with
high classification accuracy under the LM. Generally,
array platforms have tens of thousands of probes. The
Cn

k (n available probes choose k) possible probe combin-
ation of size k, and as a result, the cost of determining
the k genes with the highest classification accuracy will
be very high if solving by brute force. For example,
if n and k are 30,000 and 8 respectively, there are
approximately 1.6E31 combinations. If testing a com-
bination takes 2 seconds, the total running time of
the algorithm will be about 1E24 years, which is
unacceptable.
A genetic algorithm is a heuristic-based approach

that was originally designed to efficiently find optimal
solutions for a specific fitness function such as the
maximum/minimum of a function based on natural
evolution including selection, inheritance, mutation
and crossover in an iterative process [31]. In this section,
we illustrate a genetic algorithm to heuristically improve
the c-LMs with selected gene candidates in a reasonable
time period. An algorithm describing the entire selection
process is shown in Figure 3. The backbone of the algo-
rithm consists of 5 steps:

1) Input a set DS of datasets, a similarity matrix M,
a set IDF of identifiers derived from the DS, a
number of identifiers k to be selected for each
LM, a number PS of populations in a generation, a
maximum number MG of generations, a threshold
TXR of crossover rate, and a threshold TLC of the final
improved c-LM’s LLV

2) Select k identifiers for each population (p-LM) and
evaluate the p-LMs using the fitness subroutine

3) p-LMs with larger LLVs have higher probabilities to
be kept in next generations based on a roulette
wheel selection

4) The matched identifiers among the kept
populations are swapped with each other or
replaced with newly selected identifiers because
they were not associated with (small absolute beta
values) clinical outcomes

5) Return the final improved c-LM derived from the
elitist subroutine

Based on our empirical tests, we set parameters PS =
300, MG = 50, TXR = 0.5 and TLC = 0 (equal to no thresh-
olds) as default setting performed in this study.
Evaluating improved c-LM using a reciprocal test
For evaluating an improved c-LM derived from the heur-
istic selection process, we perform a reciprocal test to
examine the model in sample classification accuracy. For
each input ESCC/HCC set of datasets, one of the data-
sets is regarded as a testing dataset and the others are
training datasets. Once an improved c-LM is successfully
trained from the training datasets, the model will then
be tested on the testing dataset using leave-one-out
cross-validation. The entire evaluation processes are
performed using the KNIME data mining tool [32]. A
formula for calculating the accuracy is given as follows.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

Where TP, TN, FP and FN represent the numbers of
true positive, true negative, false positive and false nega-
tive, respectively.

Results and discussion
Discovering improved c-LMs using a genetic algorithm
We tested whether the heuristic genetic algorithm out-
lined in the previous section is a reliable method for
discovering improved c-LMs by building c-LMs for the
ESCC and HCC cancer datasets. In the ESCC input set,
an improved c-LM can be trained from 3 randomly
selected datasets DS1–2, DS 1–3 and DS1–4 and tested on
the remaining dataset DS1–1. For the HCC dataset, an
improved c-LM can also be trained from randomly
selected datasets DS2–1 and DS2–3 and tested on the
remaining dataset DS2–2. For each combination, we
repeated the above processes to yield 5 improved c-LMs
whose LLV values exceeded the TLC (Threshold of
c-LM’s LLV) setting. Figure 4 shows the accuracy as a func-
tion of different thresholds. We set TLC as −1, −10, −20
and −30 (“-30” represents that the final c-LMs will not
be improved) and set k as 3 to observe the changes in
sample classification accuracy. Both input sets show the
trend that the accuracies increase when the models
possess larger LLVs. This phenomenon also supports
the assertion that the LLV is an efficient metric for
examining a LM given by Eq. (2).
Based on our design for identifying substitute probe

sequences across platforms, it is possible that we may
define incorrect substitutes especially for homologous
genes. In this case however, the corresponding probe
intensities will likely be inconsistent (causing small LLVs)
and will be eliminated through competition during the
selection process of the genetic algorithm. Therefore,
the genetic algorithm is reliable for mining improved
c-LMs with associated biomarkers (ABs) from the multi-
connected datasets.



Figure 4 Examination of improved c-LMs using different TLCs.
A) c-LMs derived from input ESCC set. B) c-LMs derived from input HCC
set. Error bars indicate standard error of the means. TLC: threshold of LLVs.

Figure 3 A genetic algorithm selection for c-LM improvement.
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Considering more datasets yields better accuracy
compared to increasing the gene number
As in other previously published meta-analysis approaches,
the two most important factors affecting our method
are the number of data sources and predictor vari-
ables/genes. Based on a reciprocal test, we examined
the scalability of our improved c-LMs in the number of
independent datasets to be used as training datasets
and in the number of genes to be selected in a model,
i.e., the parameter k. Figure 5A and B show the accur-
acy as a function of various combinations of training
datasets from the ESCC and HCC datasets respectively.
The average accuracies of improved c-LMs derived
from more training sets were higher than those derived
from fewer training datasets when setting the AB number



Figure 5 Testing improved c-LMs built by different number of
training datasets. A) Accuracy as a function of various ESCC training
datasets, grouped by gene numbers. B) Accuracy as a function of
various HCC training datasets, grouped by gene numbers. Error bars
indicate standard error of the means. TrDS: number of training datasets.
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k as 3, 6 and 12. Therefore, based on the same reciprocal
test, we developed the improved c-LMs from 3 ESCC and
2 HCC training datasets for addressing the other issue:
how many predictor variables/genes are suitable for a
model in cancer sample classification. We adjusted k from
2 to 32 and calculated the accuracy in both input sets as
shown in Figure 6A and B. The average accuracy 84.2%
for smaller k (k = 2 ~ 16) decreased to 75.7% (k = 17 ~ 32)
in the ESCC input set. A similar trend was also observed
in the HCC set (88.6% to 80.9%), likely due to overfitting.
The decrease in accuracy for higher values of k shows that
considering more variables/genes in a model does not
always improve classification performance. Coincidently,
the improved c-LMs in the both sets have the highest
accuracies when k was set as 8. This number would be an
Figure 6 Scalability of improved c-LMs. A) Accuracy as a function of var
a function of various HCC training datasets, grouped by gene numbers. C)
error of the means. Improved: improved c-LMs; Defective: removing one ou
ideal default setting for experimentalists who do not have
a hypothesis regarding the number of genes of interest in
advance. Another merit is that using fewer biomarkers
requires less computational resources and is easier to
validate and follow up on for further biological insight.

Improved c-LMs reveal ABs
Based on the fundamental principle of the model design,
the target class (tumor/normal) should be described by
a combination effect of several independent variables.
Therefore, the genes in the improved c-LMs should be
strongly associated with each other in the biological
event of interest. To verify this, we compared our im-
proved c-LMs and their corresponding “defective” c-LMs
by removing one of the associated biomarkers (ABs) by
turns in each c-LM, i.e. remove a different AB k times
and retest the models with k-1 ABs, for the two input
sets as shown in Figure 6. The accuracies of the im-
proved c-LMs are on average higher (4.5% in ESCC and
3.4% in HCC) than the corresponding defective models.
Furthermore, as stated in the previous section, the
models seem to be overfitting for increasing values of
k. The average deviations in accuracy between the
improved and defective c-LMs decreases from 7.1%
(k = 2 ~ 16) to 2.0% (k = 17 ~ 32) in ESCC (Figure 6A)
and from 5.1% (k = 2 ~ 16) to 1.8% (k = 17 ~ 32) in HCC
(Figure 6B). Therefore, removing ABs from models that
are not overfitting causes a larger decline in accuracy
ious ESCC training datasets, grouped by gene numbers. B) Accuracy as
Average running times of panel A and B. Error bars indicate standard
t of an improved c-LM-contained genes by turns.
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relative to the overfitting models due to the combin-
ation effect of the ABs.
We also measured the running times for the scalability

experiments (Figure 6A and B) and display the results in
Figure 6C. The running time for both input sets scales
linearly as we increase k; this linear trend would be sig-
nificantly better than a brute force manner (data not
shown).

ABs are highly related to cancer development and
connected in network
In addition to using the reciprocal tests (models were
trained from training datasets and then tested on
remaining testing datasets) to repetitively examine the
improved c-LMs in different cancer-related datasets,
we additionally tested whether the associated biomarkers
(ABs) we discovered possessed biological insights into can-
cer development using a GO (Gene Ontology) enrichment
analysis [33]. We also evaluated the location of ABs in a
biological network derived from diverse data types such
as protein-protein, gene regulatory, DNA-protein, and
RNA-protein interactions, since some previous studies
have indicated that mining associated gene-based pat-
terns like association rules [4], co-expressed patterns
[34] and sequential patterns [35,36] from single experi-
ments are related in biological networks. Therefore, we
chose to examine the distance between ABs in the IPA
(Ingenuity® Systems, www.ingenuity.com) interaction
network.
As noted in Figure 6A and B, the improved c-LMs for

both input sets have the highest average accuracies
when k is set as 8. We therefore set k as 8 and repeat-
edly executed MiningABs to build 48 improved c-LMs
from each input set, i.e., 48 improved c-LMs (Additional
file 1: Table S1) were trained from 4 ESCC datasets:
DS1–1, DS1–2, DS1–3 and DS1–4, and 48 improved c-LMs
(Additional file 1: Table S2) were trained from 3 HCC
datasets: DS2–1, DS2–2 and DS2–3. For each set, 305
(ESCC) and 288 (HCC) out of 384 (48 × 8) ABs were
distinct. To evaluate whether the two sets of distinct
ABs have a high propensity for cancer development,
they were analyzed separately using a GO enrichment
analysis with significant p-values smaller than 0.05
through the DAVID tool [33]. All of the cancer-related
GO terms among the resulting outputs are shown in
Figure 7, and their corresponding genes are listed in
Additional file 2: Table S3 and S4. For achieving a fair
comparison, we randomly selected the same number of
genes 30 times and repeatedly performed the same test-
ing process as a control group. Overall, the distinct ABs
were more highly enriched in cancer-related GO terms
compared to the randomly selected genes in both input
sets (left panel in Figure 7A and B). Furthermore, within
each GO term, the number of distinct ABs was also on
average higher than that of the randomly selected genes
(right panel in Figure 7A and B). We also manually
uploaded the distinct ABs and the randomly selected
genes to IPA to determine the number of shortest paths
of zero (path length = 1), one (path length = 2) and two
(path length = 3) intermediates among the individually
uploaded gene sets. Here we provide a toy example to
illustrate the definition of different path lengths in
Additional file 3: Figure S1. The number of shortest
paths was higher for our distinct ABs compared to the
randomly selected genes in both input sets (Figure 8).
A similar result in terms of the distance of shortest
paths among genes could also be seen in another pub-
licly available database called HGC [37]. Overall, the
average distances among ABs in the gene connectome
network were shorter/closer than the average distances
among the randomly selected genes (Figure 9). There-
fore, this evaluation demonstrates that the improved
c-LMs-involved ABs are strongly associated with cancer
development as well as highly connected in a biological
network.
Among the distinct ABs, 10.8% (33/305 in ESCC) and

16.3% (47/288 in HCC) of the genes were included in at
least two models. These overlapped genes ordered by
their number of appearances across models are shown in
Table 3. In terms of frequency of occurrence, the top
three ranked candidate genes in the ESCC set were
COL3A1 (collagen, type III, alpha 1), COL1A2 (collagen,
type I, alpha 2) and FNDC3B (fibronectin type III do-
main containing 3B), and in the HCC set were PPIA
(Peptidylprolyl Isomerase A (Cyclophilin A)), CXCL14
(chemokine (C-X-C motif ) ligand 14), CAP2 (CAP,
adenylate cyclase-associated protein, 2 (yeast)), CDKN2A
(cyclin-dependent kinase inhibitor 2A) and ECM1 (extra-
cellular matrix protein 1). Coincidently, the most-
observed (top-1) gene COL3A1 and COL1A2 (top-2) for
ESCC, seen across at least 9 models, were also identified
by Su et al. in the original input dataset [5]. COL3A1 was
consistently expressed in people with a family history of
upper gastrointestinal cancer [38]. This gene has been
identified as a potential biomarker in human cutaneous
squamous cell carcinoma tissue samples and cell lines
[39]. Additionally, up-regulation of COL1A2 expression
has been identified to be significantly associated with early
ESCC in another Chinese population [40]. Although
FNDC3B has not been reported as biomarker, it
co-occurred with the top-1 COL3A1 in two improved
c-LMs (#13 and #30 in Additional file 1: Table S1).
We postulated that a classifier based on gene expres-

sion of the genes from the discovered models was more
likely to be applicable with a high confidence in the
clinic. For the HCC set, the most-observed (top-1) gene
PPIA has been characterized as a biomarker for the diag-
nosis of liver cancer under a patent Publication Number

http://www.ingenuity.com/


Figure 8 Number of shortest paths among genes in network. A) Number of shortest paths as a function of different lengths for ESCC input
set. B) Number of shortest paths as a function of different lengths for HCC input set. ABs: associated biomarkers; Random: randomly selected
genes from array platforms.

Figure 7 Enrichment analysis of cancer-related GO terms. A) Performing the test in ESCC set. B) Performing the test in HCC set. ABs:
associated biomarkers; Random: randomly selected genes from array platforms. Error bars indicate standard error of the means.
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Table 3 List of ABs observed in multiple improved c-LMs

Input
set Overla

ESCC
COL3A1(10), COL1A2(9), FNDC3B(8), ID4(7), PMEPA1(7), BID(6), CDH
VPS8(3), ASXL1(2), C9orf100*(2), CHEK1(2), ECT2(2), FST(2), HMGB3(
RPS20*(2), RUNX1*(2), STYXL1(2), TCFL5(2), TOB1(2), TSGA14(2)

HCC

PPIA(14), CXCL14(8), CAP2(6), CDKN2A(6), ECM1(6), APBA2BP(5), CL
SHFM1(3), SNRPE(3), SUB1(3), YWHAQ(3), AKR1C3(2), ATP6V0E1(2),
(2), GM2A(2), GTPBP9(2), HBB(2), ITGA6(2), LOC390998*(2), MEA1(2)
REEP6*(2), SNW1(2), STAB2(2), TMED9(2), TNS1(2), VAMP4(2), XLKD1

ESCC: esophageal squamous cell carcinoma; HCC: hepatocellular carcinoma; N: # of

Figure 9 Distance of shortest paths among genes in network.
The distance of shortest paths among genes for ESCC and HCC
input sets. ABs: associated biomarkers; Random: randomly selected
genes from array platforms.
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“US20100203510 A1”. Sun et al. reported that protein
CXCL14 (top-2) is a member of 8 markers complemen-
tary to a currently used marker, alpha-fetoprotein (AFP)
[41]. Interestingly, the CXCL14 gene also co-occurred
with PPIA in three of our improved c-LMs (#11, #14 and
#22 in Additional file 1: Table S2). We postulated that
this gene might be the best proxy for the AFP. For the
rest of the top three ranked genes including CAP2,
CDKN2A and ECM1, Sakamoto et al. reported that both
CAP2 and HSP70 (heat shock protein 70) were molecu-
lar markers for early HCC detection [42], CDKN2A has
been shown as a diagnostic and prognostic molecular
marker through its epigenetic alteration in HCC [43],
and ECM1 was identified as a prognostic factor associ-
ated with metastatic potential of HCC [44]. It is well
known that cancer development is not caused by a
group of unassociated genes. For this reason, we took
into account the associations among these individual
genes in this study. By comparing the results for the top
three ranked candidate ABs in both input sets to previ-
ously published results, we find that the genes in the
candidate ABs are biologically relevant. Additionally, the
genes associated with the top-1 genes COL3A1 (ESCC)
and PPIA (HCC) may provide important biological infor-
mation that can help identify the function of these genes
in their respective cancers.
Among the ABs of c-LMs shown in Additional file 1:

Table S1 and S2, we can observe that certain genes are
not common to all microarray platforms in the input data-
sets yet and are capable of being associated with other
genes on the platforms to achieve accurate cancer classifi-
cation. If we only focused on the common genes, these
valuable genes might be lost from the resulting ABs.
Therefore, mining ABs using genes not common to

the microarray platforms allows for new potentially rele-
vant genes to be discovered. These findings may be very
important to biologists for investigating putative cancer
mechanisms and identifying drug targets.

Conclusions
In this study, we developed an approach to efficiently
identify associated biomarkers (ABs) across different
array-based platforms. We then successfully developed a
pped ABs (N)

11(4), COL11A1(4), ETV5(4), AGRN*(3), DHRS7(3), MMP11(3), TOM1L2(3),
2), IGF2BP2(2), KIF14(2), KIRREL(2), NETO2(2), PGM5(2), PKD1*(2), PSME4(2),

EC4M(5), ACLY(4), CXCL12(4), CYP1A2(4), SAC3D1(4), COX8A(3), FOS(3),
BMI1(2)), CELSR3*(2), CUL4B(2), DR1(2), FASTK(2), FHIT(2), FLAD1(2), GABRP
, MRPS35(2), NPM1(2), PCDHGC3*(2), PDCD5(2), PPP2R5A(2), PRKDC(2),
(2), ZRF1(2)

appearance times; *: uncommon genes across a set of array platforms.
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new meta-analysis method called MiningABs for mining
ABs using an improved common logit-model (c-LM).
Finally, we evaluated our method using 2 cancer
(esophageal squamous cell carcinoma and hepatocellu-
lar carcinoma) gene expression datasets as a case study
to demonstrate the utility of MiningABs for cancer
biology. The main results of MiningABs include: i) by
measuring the similarities among any paired probe
sequences to link different platforms, the resulting ABs
are not limited to the genes common to all platforms,
ii) in our scalability experiment, we demonstrated that any
one gene in a group of ABs was necessarily required for
high cancer sample classification accuracy, iii) in terms of
efficiency, the running time of the MiningABs does not
increase exponentially when mining for larger sets of ABs,
and iv) testing our ABs using GO enrichment, a literature
survey, and a network analysis indicated that our ABs are
not only strongly associated with cancer development but
also highly connected in a biological network, supporting
the biological validity of the ABs.
There are several extensions that can be performed.

According to our computational design, a c-LM is devel-
oped by combining a few sibling-like LMs that were
derived from each dataset. Over tens of thousands of
iteratively-derived c-LMs are evaluated and improved
using the genetic algorithm. These processes could be
executed in a parallel way on a GPU (graphics process-
ing unit) to reduce the time cost.

Additional files

Additional file 1: List of 48 improved c-LMs (k = 8) trained from all
datasets in ESCC and HCC input sets.

Additional file 2: List of ABs involved in cancer-related GO terms
for the ESCC and HCC input sets.

Additional file 3: Example of different path lengths examined in this
study.
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