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Background: Ongoing advancements in cloud computing provide novel opportunities in scientific computing,
especially for distributed workflows. Modern web browsers can now be used as high-performance workstations for
querying, processing, and visualizing genomics’ “Big Data” from sources like The Cancer Genome Atlas (TCGA) and the
International Cancer Genome Consortium (ICGC) without local software installation or configuration. The design of
QMachine (QM) was driven by the opportunity to use this pervasive computing model in the context of the Web of

Results: QM is an open-sourced, publicly available web service that acts as a messaging system for posting tasks and
retrieving results over HTTP. The illustrative application described here distributes the analyses of 20 Streptococcus
pneumoniae genomes for shared suffixes. Because all analytical and data retrieval tasks are executed by volunteer
machines, few server resources are required. Any modern web browser can submit those tasks and/or volunteer to
execute them without installing any extra plugins or programs. A client library provides high-level distribution
templates including MapReduce. This stark departure from the current reliance on expensive server hardware running
"download and install” software has already gathered substantial community interest, as QM received more than 2.2

Conclusions: QM was found adequate to deliver the sort of scalable bioinformatics solutions that computation- and
data-intensive workflows require. Paradoxically, the sandboxed execution of code by web browsers was also found to
enable them, as compute nodes, to address critical privacy concerns that characterize biomedical environments.
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Availability

A supporting QM deployment is available at https://
vl.gmachine.org, and its source code is available at
https://github.com/wilkinson/qmachine. The illustrative
examples and their dependencies are provided for live
demonstration at http://q.cgr.googlecode.com/hg/index.
html along with a screencast and archived genomic data.

Background
High-performance computing (HPC) for the life sciences
is undergoing a fundamental reshaping [1]. The reliance
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on processor-intensive resources through which ever-
enlarging genomics workflows are funneled is giving way
to distributed data-intensive infrastructures like TCGA
and ICGC [2]. Accordingly, the immovable volumes that
are flooding data centers demand “beyond the data del-
uge” solutions [3] that invert the traditional transfer model
so that computations travel to the data and not vice versa.
The emphasis, then, is to maximize the availability of the
data and the portability of the application. The increas-
ing use of cloud computing infrastructure for biomedical
applications reflects the realignment of HPC, as exempli-
fied by the recent partnership between the National Insti-
tute for Health (NIH) and Amazon on the 1000 Genomes
Project [4].

At the same time, HPC projects such as SETI@home
[5], Folding@Home [6], and BOINC [7] have constructed
distributed platforms that aggregate commodity hardware
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and volunteer compute cycles in order to power compu-
tationally intensive scientific workflows. In fact, the Fold-
ing@Home project currently utilizes the central and/or
graphics processing units from more than 250,000 per-
sonal computers and video game consoles [8]. To orches-
trate concentrated efforts across such large numbers of
physical machines and hardware platforms, researchers
provide client applications that they must persuade vol-
unteers to download and install permanently on their
machines. These applications range in invasiveness from
programs that run only when a machine is idle, such as the
pioneering SETI@home, to always-on background ser-
vices like Condor [9] that may tangibly impact a machine’s
performance.

The World Wide Web provides a different avenue for
HPC, and this is what we explore with QM - a novel
direction. The temptation to optimize QM for a particular
problem domain was overcome by the greater challenge
of creating a system not only to distribute computation
across the Web, but also to be “of the Web” itself. A careful
study of the Web as a platform reveals that the necessary
components are indeed ready for assembly.

The JavaScript (JS) language is not only a “real lan-
guage” [10] but also a “Lisp in C’s clothing” [11] with
support for functional and object-oriented programming
styles. Unlike Lisp, however, JS is widely used outside of
academia and has ranked among the top twelve most pop-
ular languages for more than thirteen years [12]. Scientific
libraries in JS are relatively scarce, although a number of
specialized libraries such as EBI’s Bio]S [13], NIH/NHGRI
JBrowse [14], and the recent Genome Maps [15] have
emerged to capitalize on the widespread availability of
those computational resources, particularly in the genome
browsing application domain.

Web browsers execute JS in sandboxed environments
that rigorously control access to machine resources, and
now those sandboxes implement standardized APIs that
provide native capabilities like hardware-accelerated 3D
graphics. All modern browsers and even a few browser
plugins include just-in-time (JIT) compilers to boost per-
formance [16]. Regular expressions in JS, for example,
perform at levels that are no longer matched by Perl
[17], the language most often associated with string pro-
cessing in bioinformatics applications. Moreover, these
high-performance JS environments come pre-installed
on every personal computer sold today, as well as on
smartphones, tablets, gaming consoles, and even tele-
visions. Thus, web browsers represent a modern route
for high-performance computing that is well-suited for
the “crowdsourcing” model [18]. Indeed, the current
fast proliferation of bioinformatics libraries in JS also
reflect the advent of web-based “social coding” envi-
ronments which present entirely novel opportunities for
large-scale collaboration [19]. Furthermore, the network-
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ing capabilities of the browser platform allow it to import
code and data dynamically and thereby orchestrate dis-
tributed workflows across multiple browsers on distinct
machines, a feature at the core of social computing
[20]. Therefore, what is described in this report could
be construed as social computing for machines [21],
extending the reach of loose distribution models such as
mGrid [22].

The emergence of Big Data in the biomedical sciences
has been associated with the proliferation of reference
databases such as those reviewed yearly by Nucleic Acids
Research [23]. The aggregation of the Web of Linked
Data resources independent of the institutions that host
them has been approached by comprehensive data mod-
els such as the Distributed Annotation System [24], which
we have also explored as a backbone for workflow assem-
bly [25]. It is now amply clear, however, that the linking of
data resources, regardless of the domain, is itself domain-
neutral and best described by dyadic predicates of W3C’s
Resource Description Framework (RDF) that underlies
the third generation of Web technologies [21,26,27].

The RDF approach has expanded the basic reliance of
unique resource identifiers (URIs) both to identify and
locate data (via URLs) which require only a web browser
to be put to good use by any researcher, regardless of
his expertise or domain of interest. The current extent
of its use is dramatically illustrated by the adoption of
the RDF framework across all data services of the Euro-
pean Bioinformatics Institute [28]. As also illustrated by
some of our work [29-31] developing SPARQL endpoints
for TCGA, the volume of the server-side hosted data
is not a significant obstacle to developing web appli-
cations (“web apps”) that consume those data. On the
other hand, mechanisms to assemble workflows for data
analysis have not yet matured as user-friendly commodi-
ties, despite the availability of excellent frameworks like
Taverna [32] and SHARE [33]. One possibility is that the
underlying web services themselves need to be amenable
to assembly at a moment’s notice — even for deprecated
or outdated versions of a procedure. This is an absolute
requirement of the modern focus on reproducibility of
workflow results [34]. We have explored the use of modu-
lar browser-based web apps to deliver this functionality in
standard bioinformatics applications such as image anal-
ysis [35] and sequence analysis [36]. The success in those
two efforts strengthens the claim that script tag loading,
the same mechanism web browsers use to load web apps,
can orchestrate and distribute the execution of bioinfor-
matics workflows across multiple physical machines. The
illustrative, and validating, example detailed in the Results
section below will extend the same example of sequence
analysis approached in the second of those two reports
by analyzing twenty different genomes of Streptococcus
prneumoniae in parallel.
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Methods

QM provides a distributed computing platform as a web
service (PaaS). Its architecture (see Figure 1 in Results)
combines the general pattern of Web 3.0 technologies
with the model used by modern social networking sites
by decoupling the presentation/analytical layer from the
persistent representation layer so that the former runs on
the client side as a web app that consumes an applica-
tion programming interface (API) presented by the latter
on the server side. QM also decouples the presentation
and analytical layers of the web app so that third par-
ties may embed the QM web service as part of their own
web apps.

To provide this functionality, QM contains three main
components: an API server, a web server, and a web-
site. The API and web servers are written completely in
JS, and the website is written in HTML5, CSS, and JS.
Nothing about QM’s design or interface binds it to a par-
ticular development stack, but our desire to construct the
project as a true Web Computing “device” motivated us to
implement as much of the code in JS as possible. The strat-
egy paid unexpected dividends, as well; the server-side
components are free from assumptions about the hard-
ware and operating systems on which they run, which
vastly simplifies deployment to the cloud via Platform-as-
a-Service (PaaS) [37].

This report also presents code examples (see Results)
which can be run from any website that embeds the QM
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web service. The examples are all written in JS, but some of
them also make use of CoffeeScript, “a little language that
compiles into JavaScript” [38]. Many common scientific
languages can be translated to and from JS, and a com-
prehensive list of projects for this purpose is available at
http://bit.ly/altjsorg.

APl server

The API server is a program which responds to requests
sent by clients over the standard Hypertext Transfer Pro-
tocol (HTTP). The program then interprets the requests
according to their methods, target URLs, and embed-
ded data. QM’s API presents three operations, as shown
in Table 1. Data sent as part of a POST should be for-
matted in JavaScript Object Notation (JSON) format;
response data from QM are JSON-formatted, too. Note
that clients need not be browsers — any software pack-
age that can communicate over HTTP and manipulate
JSON-formatted data can use QM directly.

The API server is implemented as a simple Node.js
[39] program that loads and executes all of its appli-
cation logic from QM'’s own publicly available module,
“qm’, using the Node Package Manager (NPM) [40]. The
module supports five different databases as targets for
persistent storage: Apache CouchDB [41], MongoDB [42],
PostgreSQL [43], Redis [44], and SQLite [45]. These five
open-source databases were chosen for support based
on their high performance and popularity, and their

QMachine

on QM where it is picked up by the volunteering browsers.

Figure 1 The abstract architecture. Architecture of a self-assembled QMachine highlighting the distribution of processing (rectangles) and
transfer bandwidth (arrows). QM distributes not only the compute cycles needed to execute the n different procedures (215, 5), but also the
bandwidth needed the retrieve the corresponding input data (D1 »,...») being processed from their respective URLs (d1 2.... ). The assembly is started
by a submitter who issues a key that is endorsed by a number of volunteering web browser sessions (V4 ). The code is then transferred to a queue
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Table 1 HTTP API

HTTP request HTTP response
Method Example URL Data Code Data
GET /box/sean?key=some_job_id 200 {}
GET /box/sean?status=waiting 200 [
POST /box/sean?key=some_job_id {} 201

This table specifies the Application Programming Interface (API) understood by
QM'’s API server. Request and response data use JavaScript Object Notation
(JSON) format, but data may be omitted where values are left blank. The “{ }”
denotes a JSON object, and the “[ 1" denotes a JSON array.

differences in design help to guide the development of
QM as an HPC solution for a heterogeneous database
landscape. The relative merits of the alternative imple-
mentations to the default use of MongoDB are as fol-
lows. CouchDB and MongoDB are both document-centric
NoSQL databases with MapReduce APIs that understand
JS, but their designs are very different. CouchDB is more
than just a database — it is nearly sufficient to imple-
ment QM by itself because it bundles a web server and an
HTTP-accessible API. MongoDB, by way of contrast, has
an API that mimics the traditional relational style used by
PostgreSQL and SQLite, with a much stronger focus on
clustering and “sharding” (horizontal partitioning) across
nodes. PostgreSQL represents relational database man-
agement systems (RDBMS), the workhorses that tradi-
tionally power enterprise applications and data ware-
houses, while SQLite represents embedded (serverless)
databases. Redis is an in-memory key-value store that is
often referred to as a “data structure server” because its
keys can contain strings, hashes, lists, sets, and sorted sets.
The ability to map QM’s persistent representation layer
across such a wide variety of storage systems simplifies
deployment and maintenance significantly. The service
that backs this report’s illustrative examples, available at
https://vl.qmachine.org, uses MongoDB.

QM’s API server supports Cross-Origin Resource Shar-
ing (CORS) [46] so that any webpage can embed QM to
distribute workflows across web browsers without violat-
ing the Same-Origin Policy [47]. There is wide support for
CORS in web browsers [48].

Web server

The web server, like the API server, is implemented as a
Node.js program, and its logic is contained in the same
NPM module, “gm”. That is, the installation of all of
QMachine’s base libraries can be achieved simply by
running Node’s built-in module management system:
npm install gm.Itis worth recalling the minimal role
played by the server-side components of QM (see Figure 1
in Results). The web server exists only to provide the pre-
sentation/analytical layer’s resources to client machines.
Because these resources are static, the web server can be
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replaced by off-the-shelf web servers like Apache [49] and
Nginx [50].

Website

The website functions as the presentation/analytical layer
of QM. It was developed as a browser client for the
QM AP], and thus it is implemented in HTML5, CSS,
and JS, as can be verified by inspecting its source code
at https://github.com/wilkinson/qmachine. The website
consists of a single webpage that communicates with the
API server periodically via XMLHttpRequest (XHR) using
a technique known as Asynchronous JavaScript and XML
(AJAX). The “AJAX” name is a bit misleading, however,
because XHR is not limited to handling XML data; all of
the browser client’s communications with the API server
use JavaScript Object Notation (JSON).

When a browser loads the webpage, it initially loads
only the presentation layer, comprised of the HTML, CSS,
and JS resources necessary to render the graphical user
interface (GUI). Immediately after the GUI loads, the
browser retrieves QM’s analytical layer, which is written
entirely in JS. This design improves the user experience
by loading the GUI faster, and it isolates the presenta-
tion layer’s code from the analytical layer’s code. Thus,
third parties can embed QM’s analytical layer and thereby
use QM'’s persistent representation layer without load-
ing QM’s presentation layer, as shown by the examples at
https://vl.qmachine.org/barebones.html and http://q.cgr.
googlecode.com/hg/index.html.

QM'’s browser client models a workflow as a set of trans-
forms that should be applied to input data in a specific
order to produce output data. A “task description” is an
object that contains the transform f, the data x, and any
information needed to prepare the environment prior to
execution.

As described above, the client-side application that
is distributed when a browser is pointed to https://v1.
gmachine.org was developed using only web technologies:
HTMLS5, JS, and CSS. In order to stay within the core
JS syntax that is supported by all browsers and all plat-
forms — including mobile devices — code development was
assisted by JSLint [51]. JSLint is also used directly within
the analytical layer as a static analysis tool to identify tasks
which can be serialized faithfully into JSON for distri-
bution to volunteer machines. A generic library, Quanah
[52], was also developed to solve the numerous con-
currency challenges faced in asynchronous data transfer
by QM,; it is therefore a key component of the proto-
type described here and is accordingly also made publicly
available with open source. The presentation layer uses
jQuery [53] and Twitter Bootstrap [54] to ensure consis-
tent look-and-feel across a variety of mobile and desk-
top browsers. The GUI additionally attempts to support
outdated browsers through optional integration with
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Google Chrome Frame [55], HTML5 Shiv [56], and
json2.js [57], but it does so only as a courtesy.

Demonstration program

The demonstration program is written in pure JavaScript
so that it can be run in an ordinary web browser with-
out dependencies on any native applications, plugins, or
add-ons. It extends a demonstration from a previous study
[36] in which a MapReduce decomposition of a sequence
analysis procedure was used to find the longest similar
segment between a user-given sequence and a full bac-
terial genome. The demonstration in this study will not
only reproduce the previous results using remote execu-
tion on another machine, but it will do so in parallel for all
of the twenty strains of Streptococcus pneumoniae that are
currently available from the National Center for Biotech-
nology Information (NCBI). It uses an updated version
of the same Universal Sequence Maps (USM) [58] library
used by the previous study, as referenced directly by exact
version from its online repository.

Results

The architecture of a QMachine detailed in Figure 1 fol-
lows the general pattern of Web 3.0 technologies by using
the server side exclusively for persistent representation
and leaving the rest of the program logic to run on the
client side. QM uses a key-value architecture to orches-
trate volunteering client machines in a manner that max-
imizes the distribution of the computational resources
required for data transfer and subsequent data process-
ing. This orchestration is highlighted in Figure 1: QM
distributes not only the compute cycles needed to exe-
cute the n different procedures (X1, ), but also the
bandwidth needed the retrieve the corresponding input
data (D13, ) being processed from their respective URLs
(d1,2,..,n)- This design is motivated by the constraints of
biological applications such as next generation sequenc-
ing in which the limiting factor is more often the available
memory than the processor speed.

The operation of QM relies on the creation of unique
identifiers to define “boxes” that are then shared with the
volunteering browsers in a manner resembling traditional
API keys. This operation will be described in a series of
four examples that increase in complexity, beginning with
(1) the remote execution of a simple algebraic operation,
followed by (2) distribution of the same operation as a
parallel (map) transformation of the elements of an array
and (3) distribution again as part of a MapReduce pro-
cedure; finally, the (4) parallel execution of a real-world
genomic sequence analysis in which both the code and
the data needed to perform the analysis are invoked by a
single submitter but then entirely resolved and executed
asynchronously by multiple volunteer browsers. The final,
real-world example distributes both the processing and
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networking loads, as described in Figure 2. It illustrates
the ability of volunteer nodes to call code and data from
multiple sources which are independently developed and
maintained. This illustrative series is also available as a
YouTube webcast at http://goo.gl/tnpMiQ.

Loading the client-side library

QM’s analytical layer is provided by a JS library that can
be loaded by any web browser automatically as part of any
webpage that contains the following code:

<script src="https://vl.gmachine.org/qg.js">
</scripts>

Once loaded, the JS environment will contain a global
object named QM with convenient high-level methods that
can be used to reproduce the results of the four examples
that follow.

(1) Simple algebraic operation

For the first illustrative example, let f be a function that
increments a given number x by 2, and let x = 2. To com-
pute the result, f(x), on a volunteer machine, we could use
the QM. submit method:

QM. submit (2,
return x + 2;

)

As in the rest of the illustrative series, this example is
described and demonstrated in the accompanying screen-
cast (http://goo.gl/tnpMiQ). Note also that this simple
operation is easily expressed in other languages such as
CoffeeScript [38]):

QM. submit (2,

function (x) {

"(x) -> x + 2");

As discussed in “Methods”, QM’s architecture does not
impose the use of a specific programming language, as
long as a compiler to JS, the web’s “assembler language”
[35], is distributed with the remote call. To support this
claim, the QM client library delegates to a compiler —
written in JS — for the CoffeeScript language. For a list
of compilers that can translate programs written in other
languages into JS so that they can be interpreted by volun-
teering browsers, see http://bit.ly/altjsorg.

(2) Simple distributed map

Because each QM. submit operation is an asynchronous
call, multiple calls can run simultaneously. Thus, it is
straightforward to distribute the execution of a “map”
function, a higher-order functional pattern that applies
the same operation to each element of an array. This
pattern is so ubiquitous in scientific computing that it war-
rants a dedicated method, QM. map, that can be used as
follows:

QOM.map([1, 2, 3, 4, 5], "(x) ->x + 2");
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vL.amachine.org

Submitter's
Browser

results from QM's APl server.

Volunteers'
Browsers

Figure 2 A workflow for real-world genomic analysis. (1) The submitter interactively calls the high-level oM. map function from a web browser
with the URLs of twenty different Streptococcus pneumoniae genomes as input, causing the client to submit twenty individual task descriptions to
QM'’s APl server. (2) A volunteer's browser, polling for new task descriptions on QM's APl server, finds and downloads a task description. (3) The
volunteer's browser executes the task after downloading three external resources: the USM library served from GitHub, the JMat library served from
Google Code, and the bacterial genome served from NCBI. (4) The volunteer's browser returns the results of the task execution to QM’s APl server
and resumes polling for new task descriptions. (5) The submitter’s browser, polling for updates to the individual task descriptions, retrieves the

(3) Simple distributed MapReduce

Just as in the “map” function shown above, it is straightfor-
ward to distribute the execution of a “reduce” function, a
higher-order functional pattern which combines elements
of an array two at a time until only one value remains.
As recently surveyed by Zou et al. [59], the MapReduce
programming template is at the very core of modern com-
putationally intensive bioinformatics applications. This
third illustration demonstrates the MapReduce pattern as
an extension of the second example by subsequently sum-
ming the results of the distributed “map” using a “reduce”
also distributes across QM’s volunteers:

QM.mapreduce ([1, 2, 3, 4, 5],

"(x) -> X + 2", -> a + b");

(4) Real-world genomic analysis

The fourth illustrative example assesses QM’s abil-
ity to scale the asynchronous operations demonstrated
above for use in a real-world bioinformatics workflow.
The example is a Fractal MapReduce decomposition of
sequence alignment [36] which distributes both the pro-
cessing and networking loads across QM’s volunteers, as
described in Figure 1. It also demonstrates that libraries

of any complexity or elaboration can be distributed to the
volunteers along with the commands that invoke those
libraries. Specifically, both the data and the library encod-
ing for the sequence analysis procedure are invoked by
QM but entirely resolved and executed by the volunteer
browsers. It also illustrates the ability of a volunteer node
to call code and data from multiple sources which are
independently developed and maintained.

Consider, as in the first example, that we have some x
that we wish to transform via some function £, so that x is
now an array of URLs that reference FASTA files hosted
by NCBI:

x =
"http://ftp.ncbi.nlm.nih.gov/genomes/" +
"Bacteria/Streptococcus_pneumoniae " +
"670_ 6B _uid52533/NC_014498.fna",

/ *
* (eighteen URLs omitted)
*/
"http://ftp.ncbi.nlm.nih.gov/genomes/" +
"Bacteria/Streptococcus_pneumoniae " +
"gamPNI0373 uidl75861/NC_018630.fna"
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We want to perform a particular sequence analysis on
each FASTA file, namely a Fractal MapReduce decompo-
sition of the Chaos Game Representation [36]. Thus, we
define a function f for use with the QM. map method that
will take a URL as input and return the results of the
sequence analysis as output:

f =
var seq =

function (url) {
"TCCACAGCATGCGTGACGATGACACG";
return new usm(url, "ACGT").alignQ(seq) ;

Vi

There is a key challenge, however, in that our function £
depends on a usm function that exists only after an exter-
nal library has been loaded. Therefore, to specify the task
completely, we will need either to include usm as part of
f or else to pass a reference to the library in the form of
a URL. We chose the latter strategy in this case so that
the library can be downloaded in parallel by each vol-
unteer simultaneously without burdening the API server.
Each external function may have multiple dependencies,
and thus QM. map accepts an optional env parameter so
that the dependencies for each external function can be
specified as an array of URLs to be loaded sequentially:

env = {
usm: [
"http://goo.gl/RSQ5i",
"http://git.io/tAeG_w"
1
i

Finally, we will specify the box parameter explicitly for
demonstration purposes. The box parameter takes the
place of an API key and allows volunteers to execute tasks
in a particular queue. This mechanism allows submitters
to direct tasks into different queues and further enables
the use of abstractions like MapReduce:

box = "fasta-demo";

Putting these definitions together, we now launch twenty
individual genomic sequence analyses for simultaneous
execution via

OM.map (x, £, box, env);

A full version of these examples can be found online at
http://q.cgr.googlecode.com/hg/index.html. The version
there includes the full URLs to all twenty Streptococcus
pneumoniae genomes and also to the versioned libraries
specified by env. An accompanying screencast for these
examples is also provided in that page.

Usage statistics

The dissemination of browser-based tools in social cod-
ing environments like GitHub [19] is characterized by the
same expansive dynamics as social media. For example,
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although this is our first report describing it, QM can
be — and has been — discovered by the community at large.
During the 12 months period beginning in April 2013, QM
received more than 2.2 million API calls from 2,100 IP
addresses in 87 countries to more than 1,800 QM “boxes”
(the code and results exchange domains defined by token),
with 98 boxes receiving more than 1,000 calls each and
16 boxes receiving 10,000 calls or more. The statistics
of QM usage are described in Figure 3, and the geo-
graphic distribution of its users is described in Figure 4.
It is unclear exactly how much of QM'’s usage is asso-
ciated with the distributed computational genomics web
apps that motivated its development, but the wide geo-
graphic distribution of its users suggests an appeal driven
by a more general interest in distributed computing. This
interpretation is reinforced by unsolicited reports about
QM in HPC media such as HPCwire (article at http://
g00.gl/9H5W03) and insideHPC (http://goo.gl/bDKJZL).
Finally, as noted in Methods, all of the server- and client-
side software are open-source and permissively licensed.
The browser client requires nothing more than script tag
loading to be included in a web app, and the server is just
as accessible through NPM [40]. It is therefore conceivable
that other QM deployments are in use at other addresses,
perhaps even within the firewall of medical centers, as was
the specific intention of QM’s development.

The server load associated with orchestrating this ini-
tial heavy use of QM is very modest because of the
reliance on code distribution rather than on code exe-
cution. In fact, the deployment supporting the usage
statistics described above (the server behind https://api.
qmachine.org) was never overwhelmed by traffic spikes
even though it was running on a shared-tenant virtual
machine with just 512 MB of RAM, 2 x 512 MB MongoDB
databases, and no hard drive. Furthermore, the authors do
not incur any maintenance costs for the public tool dis-
semination, either from GitHub or from NPM’s package
repository. We are therefore committed not to collect any
data beyond the broad statistics described in Figures 3
and 4 for the reference deployment discussed here. Par-
ticularly relevant for the biomedical usage scenario that
motivated this work, we are also committed not to collect
any data at all from private deployments of QM; in other
words, no part of QM’s software ever sends data back to
our server(s) from other deployments. This design allows
administrators to deploy their own QM servers through
NPM and fully configure their own security as needed for
clinical and/or biomedical research usage. These assur-
ances can, of course, be verified through inspection of
QM'’s source code.

Discussion
QMachine is a web service for executing distributed
workflows that can use ordinary web browsers as the
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Figure 3 Three representations of usage data. This plot illustrates worldwide usage of the QMachine web service from log data collected from
April 2013 to April 2014. More than 2.2 million calls were made to its Application Programming Interface (API), the details for which are shown in
Table 1. The thin, solid curve represents the number of calls made to its Application Programming Interface (API) server by hour; QM was idle (no
calls received) during approximately 79% of all one-hour periods, and those hours were omitted. The thin, dashed line represents the number of AP
calls aggregated by IP address. The thick, dashed line represents the number of API calls made to a particular “box” on QM; see the Results section

Figure 4 Geographical distribution of API calls. This illustrates the usage of the QMachine web service by country as a world map. More than 2.2
million API calls were received from visitors in 87 countries, as identified by IP address. Each country’s shade of green varies from pale to dark in
relation to its rank as sorted from greatest to least.
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ephemeral compute nodes of a crowdsourced supercom-
puter. The idea here is simple: commodity computers
equipped with web browsers join an abstract machine by
visiting a website, and they unjoin by navigating to a dif-
ferent site or by closing the browser. While a browser
remains on the site, it reacts to input from the user and
from the site’s backend infrastructure by executing JS,
which provides the abstract machine with some potential
to perform computations. At any instant, the net compu-
tational potential available to a high-traffic website falls
well within the HPC range, as shown in Figure 5. QM
enables this potential to be harnessed with no nominal
cost through volunteer computing.

MapReduce

Many researchers with access to large-scale computa-
tional resources still find those resources inaccessible
because “everyday” workflows often require more than
just fast computers — they require programming skills that
are harder to acquire. Bioinformatics workflows increas-
ingly rely on MapReduce as an abstraction, but available
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MapReduce resources still expose researchers to pro-
gramming environments with strict procedural require-
ments and steep learning curves. QM is much simpler to
set up and operate than Apache Hadoop [61], for exam-
ple. It allows users to run MapReduce jobs on multiple
physical machines and to crowdsource elastic computing
resources with the simplicity of writing and loading a web-
page — skills performed every day by millions of people
worldwide. We argue that using the web computing archi-
tecture explored by QM - that is, without installing a
dedicated application — is a natural evolution of current
cloud-based MapReduce services, just as Hadoop was a
step up from one-off compile-and-run workflows.

Distributed computing

QM’s web service provides a message passing interface for
distributed computing. This statement may at first sound
paradoxical, but JS’s single-threaded programming model
does not limit JS programs to single-threaded execution;
external execution contexts can be used to support con-
currency via event-driven programming. QM leverages

304

Representative Commodity Laptops

Figure 5 Performance distribution of the “Top500” supercomputers. This histogram shows the floating-point performance distribution of the
“Top500” fastest supercomputers, given in terms of representative commodity laptops. The data used were taken from the list published in
November 2013 at http://top500.0org and compared to the results obtained by running the same LINPACK benchmark [60] on a commodity laptop
(Core i7-2720QM, 8GB 1333MHz DDR3 SDRAM). Simple division of the real-world performance yielded the estimated performance as multiples of
the commodity laptop.
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browsers” asynchronous (non-blocking) network commu-
nications layers to connect multiple machines’ execution
contexts, but browsers that support Web Workers [62] can
execute concurrent programs within the same physical
machine.

Cloud browsers

An interesting new twist in the development of web
computing architectures is the emergence of the “cloud
browser” [63]. In these systems, a mobile browser behaves
as a thin client when a webpage’s scripts demand
heavy computation. Cloud browsers therefore demon-
strate browser scaling in the vertical direction, whereas
QM demonstrates browser scaling in the horizontal
direction. Because QM makes no assumptions about its
volunteers’ underlying resources, cloud browsers can vol-
unteer for QM alongside ordinary browsers without loss
of generality. In other words, cloud browsers repre-
sent enhancements of present-day browsers, while QM
presents a solution for HPC that advances the under-
lying architecture of the Web towards that of a Global
Computer [64,65].

Biomedical applications

In clinical environments, it can be difficult or even impos-
sible to distribute workflows due to privacy concerns that
prevent sensitive data from leaving the hospital environ-
ment, where conventional HPC is typically absent. QM
satisfies this preoccupation without requiring additional
resources. As shown in Figure 5, the median compu-
tational power of the Top500 HPC in November 2013
(http://goo.gl/XIUIDP) was roughly 2,600 times faster
than our lab’s standard-issue desktop machine. This is a
much smaller factor than the number of machines in a
typical medical center. Thus, even if restricted to a single
hospital environment, volunteer computing can still rival
the total capacity of very substantial HPC resources.

QM can also be used to power workflows inside of a sin-
gle workstation. In such a scenario, the workstation would
run QM’s API server locally and use multiple browser tabs
to execute the workflow in parallel. Such a workflow might
also incorporate existing bioinformatics tools such as the
Basic Local Alignment Search Tool (BLAST) [66] by using
traditional server-side scripting languages like Perl [67] or
Python [68] to connect to QM’s API or even directly to the
persistent storage layer.

Security

The security of workflows that use QM is handled orthog-
onally to QM by the selection of volunteers and by access
control to code and data. A number of considerations
should nevertheless be made to assist in the configura-
tion of its distributed operation. It is important to recall
that the web browser executes JS within a sandboxed
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environment, which, among other protections, prevents
programmatic access to the filesystem of the volunteer
machine. As a result, QM’s security is configured around
two firewalls.

The first and most basic protection is associated with
the uniqueness of the “box” (token) issued by the submit-
ter, which should be shared only with trusted volunteers.
An additional layer of security can be added through the
use of open authentication such as OAuth 2.0 [69] to ver-
ify that only trusted volunteers are involved. This second
layer of protection is particularly useful in creating audit
trails. These two mechanisms can be combined in many
ways, as appropriate for a particular workflow. For exam-
ple, different steps of a workflow could be assigned to
distinct cohorts of volunteers depending on the sensitiv-
ity of the code and data and/or the trustworthiness of the
volunteers. The resulting granularity could also be used to
build redundancy — and therefore robustness — into the
distributed QM operation.

In short, the weakest link in QM’s architecture — and
where the opportunities for abuse lie — derive from the
sharing of the “box” by members of a group of volunteers.
In this regard, the key feature of QM’s design is that the
abuse can target the submitters but not the volunteers,
because QM'’s operations take place within the sandbox of
the web browser.

Conclusions

QMachine was developed to respond to the challenges
of — and to capitalize on the opportunities of — bioin-
formatics applications encountered in biomedical envi-
ronments. For more than a decade, volunteer comput-
ing has enticed computational biology as a scalable and
cost-effective high-performance computing solution. QM
essentially ports that solution to the modern compu-
tational landscape, which is increasingly dominated by
mobile hardware platforms and the use of the web browser
as the universal software platform. The features of the
modern web browser go beyond those that make it a high-
performance computational environment with advanced
communication layers; they also include the transforma-
tive feature that computations run in a robust sandbox
that prevents access to the underlying machine’s poten-
tially sensitive filesystem. QM also responds to another
modern trend towards engaging HPC resources through
the use of the MapReduce programming pattern, rather
than through direct interactions with compute nodes. The
sequence analysis application that illustrates the use of
QM in this report offers the sort of immediate utility
that would benefit bioinformatics applications in Medi-
cal Genomics. It is argued, however, that QM, as an “of
the Web” distributed computing system, may be just as
useful in the identification of the fundamental features of
pervasive web computing.


http://goo.gl/XIUIDP

Wilkinson and Almeida BMC Bioinformatics 2014, 15:176
http://www.biomedcentral.com/1471-2105/15/176

Availability of supporting data

The Streptococcus pneumoniae genome data are used
directly from the publicly available online repository at
http://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/, and the
relevant FASTA files have also been archived to http://q.
cgr.googlecode.com/hg/data/, a version-controlled repos-
itory. The original data used to produce Figure 5
were taken from http://s.top500.org/static/lists/xml/
TOP500_201311_all.xml and are archived to http://q.cgr.
googlecode.com/hg/data/.

Source code

All source code for this paper is version-controlled and
open-sourced. The primary source for QMachine’s code
is located in a Git [70] repository at https://github.com/
wilkinson/qmachine. The code and data for the illustra-
tive examples shown in the Results section are available
in a Mercurial [71] repository at http://q.cgr.googlecode.
com/hg/. Quanah’s source code repository is available
at https://github.com/wilkinson/quanah, and the USM
repository is available at https://github.com/usm/usm.
github.com.
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