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Abstract

Background: The biological world is replete with phenomena that appear to be ideally modeled and analyzed by
one archetypal statistical framework - the Graphical Probabilistic Model (GPM). The structure of GPMs is a uniquely
good match for biological problems that range from aligning sequences to modeling the genome-to-phenome
relationship. The fundamental questions that GPMs address involve making decisions based on a complex web of
interacting factors. Unfortunately, while GPMs ideally fit many questions in biology, they are not an easy solution to
apply. Building a GPM is not a simple task for an end user. Moreover, applying GPMs is also impeded by the insidious
fact that the “complex web of interacting factors” inherent to a problem might be easy to define and also intractable
to compute upon.

Discussion: We propose that the visualization sciences can contribute to many domains of the bio-sciences, by
developing tools to address archetypal representation and user interaction issues in GPMs, and in particular a variety
of GPM called a Conditional Random Field(CRF). CRFs bring additional power, and additional complexity, because the
CRF dependency network can be conditioned on the query data.

Conclusions: In this manuscript we examine the shared features of several biological problems that are amenable to
modeling with CRFs, highlight the challenges that existing visualization and visual analytics paradigms induce for
these data, and document an experimental solution called StickWRLD which, while leaving room for improvement,
has been successfully applied in several biological research projects.
Software and tutorials are available at http://www.stickwrld.org/
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Background
Many biological domains are foundationally based in the
study of complex systems of interacting parts. Unfor-
tunately, working biological researchers are caught in a
“Chicken and Egg” situation, where modeling approaches
that can appropriately represent the complexity, aren’t
available for lack of tools that support their creation, and
there are no tools to support complex model creation
because, due to scarcity and difficulty in creation, there is
little demand for the models.
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Our goal in this manuscript is to catalog the necessary
and sufficient features of a visualization or visual analyt-
ics system that enables development of useful statistical
models of these interactions, and to demonstrate that such
a system provides significantly improved insight into bio-
logical domains where current methods fail. Herein we
document the variety of complex interactions that are
critical components of usefully powerful models in many
biological systems, outline the characteristics of statisti-
cal models that are appropriate for these systems, item-
ize the requirements for a visualization system intended
to support development of such statistical models, and
demonstrate that a prototype visual analytics system that
addresses these requirements, provides novel and pow-
erful insights into significant and challenging biological
problem domains.
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Complex networks of interacting features abound in
biology
Proteins are molecular machines composed of a limited
number of basic building blocks, assembled in a myr-
iad of combinations and orders. Not only is the order of
assembly important, but for appropriate function, the way
that each of the building blocks fits together and inter-
acts with its many spatially proximal (and not necessarily
sequentially proximal) neighbors is critical. Tomake accu-
rate predictions about how a change—a mutation—to a
protein will affect its function, requires examining how
that change will fit, and function, with many other build-
ing blocks in that specific protein. Genomic studies face
similar challenges. The panoply of differences between
one genome and another, ultimately make each individual
distinct, but few of the the differences—inherited Single
Nucleotide Polymorphisms, or de-novo mutations—act
alone. Instead it is the combinations and mutual interac-
tions of these differences that, in concert, determine the
final phenotypic expression of each individual’s genomic
blueprint. On a larger scale, the complex interplay of nor-
mally commensal flora and fauna that inhabit the body
is responsible for maintaining a dynamic polymicrobial
homeostasis in the gut, mouth, nose, and elsewhere across
the body, andminor perturbations to the supportive, com-
petitive, antagonistic or symbiotic relationships amongst
themicrobial populations are the cause of many infectious
diseases.
In each of these cases, domain researchers wish to

understand how the system works, by cataloging the
observable features of many individuals. From these
observations, statistical models are built, that can for
example, predict the likelihood that a newly observed
individual is a member of the same population that
defined the model. Alternatively they can be used to
predict the likelihood that, if modified at some feature,
a member of the population will still remain a mem-
ber. In most domains the current state of the art is to
build these models as though the features are statistically
independent—despite a widespread understanding that
this is not appropriate. This happens because there sim-
ply isn’t a good, accessible way for the domain researchers
to define appropriate statistical models that account for
the dependencies. It is harder to find biological domains
where this situation is not true, than additional domains
where it is the standard.
An example of the type of data under consideration, and

several canonical summarizations of this data are shown
in Figure 1. These data are prototypical of any collec-
tion of ordered categorical data: each row i contains a
vector of categorical values representing one individual
in the training set; each column j contains the categor-
ical value assigned to each individual, for some specific
feature; each letter Ci,j is simply a single-character symbol

denoting the categorical value possessed by individual i,
for some feature j. In practice, sequences in real biologi-
cal domain problems can be a few hundred positions in
length, and might require representing a few dozen dif-
ferent categories. While considerably larger domain prob-
lems do exist, in our experience we have found that being
able to work with 500 positions and 26 categories has
been sufficient to address the large majority of questions
in several diverse domains.

Useful and appropriate statistical models must incorporate
interactions
In all of these domains, the basic data are often rep-
resented as sequences, but are fundamentally about
networks at the functional level. As a result, the most
appropriate statistical models that can aid in understand-
ing the data, and in making predictions about it, will
be network-based, rather than sequence-based models.
Recent interest in building statistical models based on
weighted networks of interacting features holds great
promise for these domains. With some variation amongst
different graphical probabilistic model designs, the pro-
totypical GPM encodes the marginal distribution of cat-
egories observed for each feature using weighted nodes
in a graph, and the joint distribution of co-occurring fea-
tures using weighted edges. Given these weights, which
are annealed towards optimal values in a “parameter esti-
mation” step based on training data, the GPM can then
produce scores for new observations by integrating across
the nodes and edges that those observations select.
Formally, this is to say that generalized GPMs calcu-

late, based on a model-specific encoding of training data,
P(Y1 . . .Yn|X1 . . .Xm), for a set of labels Y , and a set of
observations X, where some or all of the elements of Y ,
may also be elements of X. Disguised by this description
is the detail that GPMs do not treat X1..m as indepen-
dent. Instead they also encode all pairwise, or potentially
higher-order tuple, combinations of elements of X. In
the specific varieties of GPMs in which we are inter-
ested, the pairwise combinations can have weights that are
themselves conditional on the actual observations at each
element of X.
In less formal terms, GPMs can calculate the probability

that some collection of features Y1..n are a good fit for the
training data, taking into account not just the individual
fit of each Yi to the training data, but also (because Y may
overlap X) the fit of each Yi in the specific context of the
other observed features in Y .
This algorithmic process is an excellent match for what

the real world is doing, when it integrates across, for
example, the positional and interaction characteristics of
a changed amino acid in a protein, to determine the rela-
tive activity of amutant protein compared to the wild-type
original. Biology does not evaluate the acceptability of
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Figure 1 Typical biological “sequence” data containing both positional and dependency information. Sequences from Archaeal tRNA genes
(A) and several canonical models and representations of this family of sequences. (B) Consensus, which simply represents the family in terms of the
most popular symbol found in each column. (C) shows a Position Specific Scoring Matrix (PSSM), in this case truncated to single digit precision,
which encodes the marginal distribution of each symbol in each column (D) shows a Sequence Logo, which convolves the marginal weights from a
PSSM, with an information-theoretic measure of the information available in each column, under an assumption of column-column independence.
(E) shows a sensory representation of the PSSM which provides some benefits for visually evaluating whether a candidate sequence fits the residue
distribution of the training data. None of these representations provide any information regarding dependencies between either their columns, or
between specific residues in specific columns. However, (E) provides a graphical starting point for an improved representation that can convey this
information.

the changed amino acid simply based on the character-
istics of the protein family, but rather it evaluates it in
the context of both the family characteristics, and of all
of the other amino acids in that specific protein and how
it has addressed the family needs. Unfortunately, despite
the surprising parallels between the algorithmic form, and
physical reality, these models have seen limited practical
use in the bio/life sciences.
This failure can primarily be laid at the feet of two issues

that have restricted the use of graphical probabilistic mod-
els largely to theory rather than practical application. The
first is that GPMs require, a-priori, a network of features
on which to compute statistics, and defining this network
for anything beyond trivial data, is beyond the means of
most domain researchers. This is especially true if the
network connections and weights that must be computed
upon, are dependent on the content of the data being ana-
lyzed. The second is that even when a realistic network of
interactions can be intuited by domain scientists, there is
no guarantee that a GPM based upon such a network can
be tractably built. In biological domains where the basic

understanding is that “everything is connected with every-
thing else at least at some level”, it is far too easy to build
networks with intractably conflicting dependency loops in
the network definition.

Visualization tools for building such models must
represent interactions with adequate detail
Both of these problems can be addressed, if not elimi-
nated, by visualization and visual analytics. However, no
current tools provide an appropriate view of the com-
plexity of the data that is necessary for this work. Stan-
dard approaches to network visualization are inadequate
for several reasons. Chief amongst these, is the condi-
tional existence and weight of network edges, dependent
on the data. However, other issues also exist. The pro-
totypical “node” in these domains is some measurable
biological feature, such as the nucleotide in a particu-
lar position in a gene. The “edges” reflect interactions
between that nucleotide and its neighbors. Because the
interactions depend on the identity of the nucleotide
found in that position in a specific instance of the
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gene, the edges, and edge weights between a node and
other nodes, are dependent on the value found at the
node.

It is important to understand that the bio/life-sciences
need is not simply cataloging the strongest of these edges,
but rather understanding the patterns and larger networks
of the edges, including conditional features of those net-
works. In practice it is frequently loosely clustered groups of
weak, conditional dependencies, that are more important
for the domain scientists to understand, than the stronger
singular dependencies within the data.

We could encode this as a vast number of alternative
graphs, and select amongst them based on the data, how-
ever, less traditional graph formalisms enable this data to
be encoded more intuitively. Because there is a fixed set
of possible nucleotides that might occur at any node, one
can model each node as containing a fixed set of weighted
sub-nodes, with each of the dependent edges connecting
appropriate sub-nodes from one node to another. As a
result, any node j can be connected to another node k by
multiple different weighted edges (possibly by the entire
weighted bipartite graph between the subnodes of j and
the subnodes of k).
Graphically, we can represent this structure as shown in

Figures 2 and 3.
Formally, this suggests that our data is most appropri-

ately modeled using either multigraphs, or metagraphs
[1]. There are features that appear typical in the biologi-
cal problems, however, that restrict the models to special
cases of these formalisms; most specifically the restricted
(typically identical) set of sub-nodes available in each
node, the omission of edges between nodes and subnodes,
and the omission of edges (because the subnodes are
mutually exclusive categories within the nodes) between
subnodes within the same node. As a result, general tools
for multigraphs and metagraphs are unlikely to be optimal
for addressing these problems.

User requirements
From the data shown in Figure 1, the working researcher
wants (and needs) to understand:

1. The sequential order and relative location in the
sequence, of each feature.

2. The marginal distribution of each nucleotide
(category) in each sequential position—i.e. the
sequences predominantly contain a C or G symbol in
the first position (Figure 2A, node 1, yellow and
green circles), with few As or Ts, the second position
contains an almost equal distribution of As, Gs and
Cs, with slightly fewer Ts (Figure 2A, node 2, similar
sized red, green and yellow circles, slightly smaller
blue circle).

Figure 2 The multigraph/metagraph structure underlying a
GPM. (A) Each position in the sequence, or distinct feature in the set,
can be modeled as a node, while each observed category present at a
location or feature, can be modeled as a subnode of that node. The
weight of each subnode encodes the probability of finding that
subnode’s category in the training data, in that position. (B) Between
every pair of nodes, there exists a complete bipartite graph of
(potential) edges from the subnodes of one node to the other. Each
edge encodes the probability of that connected pair of subnodes
occurring in the training data. While it is easy to build this structure
from the training data, it is almost always computationally intractable
to use it to build a functional GPM. To create a tractably trainable
GPM, the possible edges in (B) (and all other possible edges between
each pair of columns) must be reduced to only the edges
representing functionally important dependencies in the data.

3. The joint distribution of each possible pair of
nucleotides as observed in the training
sequences—i.e. a G at position 6, almost universally
co-occurs with a C at position 9 (Figure 3, blue arrow
between node 6, subnode G and node 9, subnode C);
C at position 6 universally occurs with a G at position
9, a G at 7, co-occurs with a C at 8, etc.

4. When the joint distribution is predictable from the
marginal distributions (implying independence), and
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Figure 3 Extracting a simplified dependency structure to build a
tractably trainable GPM. To overcome the intractability shown in
Figure 2B, we need to simplify the edge structure of the resulting
complete multi/metagraph such that it contains only the “most
important” edges representing dependencies in the training data.
Here we have shown a subset of the most important dependencies
present in the data shown in Figure 1. While edge weights are not
shown here, it is important in a working interface to provide the user
with edge-weight information, and to avoid arbitrarily filtering edges
based on their magnitude. To a biological end-user, small edges
between infrequently occurring subnodes can be as important as
larger edges between common subnodes, depending on the
features they connect. Edges are colored based on disjoint
subnetworks of dependencies .

when the joint distribution differs from the expected
distribution (implying dependence).

5. The localized and distributed patterns of the marginal
distributions, and interdependent joint distributions,
across the entire sequence space—i.e. there are
simultaneous dependencies between G6 and C9, C6
and G9, A6 and T9, T6 and A9, G7 and C8, C7 and G8,
A7 and T8, and T7 and A8 (Figure 3, blue, magenta,
red, brown and grey arrows between subnodes of
nodes 6, 7, 8 and 9) which implies a biological feature
called a “stem loop” structure. A biological expert
end-user would choose to retain these dependencies
in the model, regardless of their edge weights. There
is also a quite interesting set of dependencies between
different triples of nucleotides in columns 2, 3, and 4,
knowledge of which is critical to understanding the
biological function of these sequences, and which
belie the suggestion from Sequence Logos
(Figure 1D) that position 2 contains no information.

To put these needs and features in a biological context,
the data shown in Figure 1 are gene sequences belonging
to a subset of Archaeal transfer RNAs, and are the binding
motif for an endonuclease that removes an intron [2]. The
core of the biologically relevant motif is shown in Figure 4,
with the positions numbered as shown in Figures 1, 2

and 3. The paired nucleotides on the opposite sides of the
upper stem, internal helix, and lower stem regions each
mutually influence each others’ identities though well-
known Watson-Crick nucleotide interactions. Regardless
of the statistical strength, or magnitude of the edges
found between these in the training data, a biological
end-user would prefer to retain these dependencies in
the model, because properWatson-Crick pairing is essen-
tial for this motif ’s biological function. In addition to
these predictable dependencies however, there are addi-
tional interactions present between several unpaired posi-
tions, particularly in the 5’ loop. If we manually wrap
the dependency structure shown in Figure 3 around the
biological structure, we arrive at Figure 5. Despite the
fact that the majority of the interactions present are not
between sequential neighbors, it is critical to the biolo-
gist studying such a system, that the ordered, sequential
property of the nucleotides is maintained in any represen-
tation. It is also critical to represent dependencies not just
between the positions/nodes, but between the observed
categories within the nodes, even for sequentially distant
positions. At the same time, to support the researcher try-
ing to model their data, none of the interactions can be
arbitrarily sacrificed for simplification or clarity without
inspection.
For practical applications, the researcher needs to be

able to address similar problems with hundreds of sequen-
tial positions, and dozens of possible categories, and for
which there is no simple physical structure to guide
the layout. This makes manual layout and edge-routing
impractical as a general approach.

Overridingly, while all of these needs could be addressed
in, for example, a “small multiples” fashion by something
as simple as graphically-represented contingency tables, a
medium-sized sequence family with 300 positions, would
require visualizing

(300
2

) = 44850 contingency tables.
Visually integrating these to develop an understanding
of patterns in the data quickly fails to inattention and
change-blindness issues, and so ideally the end user needs
all of this data to be presented seamlessly within a single
visualization.

Results of biological application
We have applied these ideas in the development of a
prototype visualization system, StickWRLD, and used
this system in collaboration with several biological labs
to create novel and powerful statistical models that are
being used for productive work today. While StickWRLD
was originally developed as an expedient solution to
visually explore evolutionary dependencies in biological
sequence families, our recent work has converted this sys-
tem from one which simply displays dependencies, into
one that supports the development of complex predictive
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Figure 4 The bulge-helix-bulge structure targeted by an archaeal tRNA intron endonuclease is responsible for the data shown in
Figure 1. The exon positions are indicated by filled blocks while the intron positions are indicated by open blocks. The sequence consensus for
each position is indicated beside its corresponding block. Position numbers correspond to the data shown in Figure 1.

statistical models for the dependencies it displays. And,
as reported here, these statistical models are superior to
models developed without an adequate understanding of
the interdependency structure of the model features.
Amongst these are projects that examine the protein

sequence–function relationship, and that identify nucleic-
acid sequence motifs that are intractable to traditional
alignment and search methods due to interaction of both

sequence and structure information. In addition to these
end-user projects that we briefly report on here, Stick-
WRLD has also been applied to identifying interactions
between treatment variables and their concerted effect
on outcomes in premature infant care(in press), expres-
sion Quantitative Trait Locus analysis [3], and Personal-
ized/Precision medicine [3]. In all of these applications,
the complex statistical models that have been successful,

Figure 5 The simplified dependency structure found in the data from Figure 1, and shown in Figure 3, cast into the biological context of
the molecular family fromwhich the data was derived. The aligned PSSM and interpositional dependencies for a sequence family identified by
MAVL/StickWRLD correspond to a GPM where each possible base in each position represents to a node, and dependencies form edges. In this
representation of a portion of the endonuclease target, the color of each node represents the base identity, and the size represents the frequency
distribution of that base at that location in the sequence. Important positive dependencies are shown as black edges, and important negative
dependencies are shown as dashed light-red edges. The “X shaped” dependencies in the lower stem correspond to the Watson-Crick interactions of
a stem-loop structure. The dependencies within the bulge, and between the central stem and the bulge, are non-Watson-Crick, and are completely
lost by other modeling methods. A few additional edges that are implied by the data are shown here, that could not be shown without overly
cluttering Figure 3. Fundamentally, the universal domain need is for a method of producing figures with similar information, without the need for
significant manual intervention.
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would not have been possible without a tool that sup-
ported visualizing and exploring the complex networks of
conditionally-interacting features that are present in the
data. While we do not propose that StickWRLD is an ideal
solution for visualizing these features, we suggest that it
is a prototype for building these important models, from
which improved tools may be derived.
Through the rest of this manuscript we will: examine

the properties of a particular variety of GPM, the Con-
ditional Random Field(CRF), that make them particularly
appropriate for modeling many types of biological data
and that must be usefully conveyed in visualizations for
them; highlight the utility of CRFs in 2 distinct biolog-
ical applications; illustrate the representational needs of
CRFs and their similarity to categorical parallel coordi-
nates; and suggest extensions to the parallel coordinates
paradigm that we have found useful for applying CRFs
to biological-domain problems in our group and for our
collaborators.

Graphical probabilistic models
GPMs have a long and convergent history, originating
in several fields including physics [4], genetics [5] and
statistics [6,7]. In each, the idea originated as a means
to describe the interaction of variables. The common
paradigm is of a set of nodes that describe variables or
marginal distributions of variables, and a set of edges that
connect these nodes, which encode the joint distribution
of variables in the nodes that they connect.
Amongst the simplest GPMs, Markov Chain models

are an example of a chain-topology probabilistic graphi-
cal model where the training data is used to generate a
sequence of states, and transition probabilities between
sequentially neighboring states [6,8]. While such a model
is typically thought of as generative, it can be used to
determine the probability that a sequence of observed
data was generated by the same process that produced the
training data, essentially by walking the chain of states,
following transitions based on the observations. Applica-
tions of this nature are frequently found in bioinformatic
questions such as “is this gene a member of the same
family as the genes in my training set?” Markov Chain
models however, are memoryless. That is, the conditional
distribution of future states in the chain at any given
state, depends only on the current state, and not on the
series of states that preceded it. Therefore, the transition
followed based on an observation, depends only on the
current state and the observation. This limitation is appro-
priate, only if the underlying data domain truly obeys
this memoryless “Markov Property”. If the underlying
data can contain dependencies on distant states, violat-
ing the Markov Property, Markov Chain models are at
best approximations of the characteristics of the training
data.

Significantly, Markov Chain models can be well-
represented by Parallel Coordinates visualizations of the
node and transition structure. This near isomorphism
(the potential for Markov Chain states to loop is omit-
ted) between Parallel Coordinates and association rules on
item sequences has been previously reported by Yang [9].
We propose that there is a more complete isomorphism
between some classes of Graphical Probabilistic Models,
and parallel axes on which a fully-connected graph for
each feature vector is projected. The fundamental map-
pings are between nodes and categorical parallel axes, and
conditional weighted edges and linked categories on the
axes. Limitations on this mapping, and potential exten-
sions to the parallel axis schema to overcome these limi-
tations is outside the scope of this manuscript, but is the
subject of another manuscript in preparation.

Generalized Graphical Probabilistic Models attempt to
overcome the limitations of chain models, at least concep-
tually, by encoding arbitrarily complex networks of depen-
dencies between states. For classification purposes, this
provides significant benefits over previous methods that
were limited to either assumptions of strict independence
between features, or, assumptions of Markov Property
memoryless dependence. Again conceptually, this means
that GPMs can encode models for domains that violate
the Markov Property. Such problem domains abound in
areas from the biological sciences, where protein function
is modulated by the dense network of contacts between
amino acids in a three-dimensional structure, to eco-
nomics, where stock prices are influenced by a dense
network of suppliers, consumers and competitors. From
identifying sites in the genome that possess complex
combinations of signal sequences, to linguistics, to med-
ical diagnoses, where a problem domain possesses inter-
action networks more complicated than linear graphs,
GPMs that can encode this additional network informa-
tion, produce more accurate results than linear chain
models.
Unfortunately, these features are largely conceptual

benefits of generalized GPMs, because due to viola-
tion of the Markov Property, network-connected GPMs
cannot be “stepped through” in the same fashion that
Markov Property chains can. Instead, to evaluate an
observation at a particular state, the observations at
all states connected to that state must be evaluated. If
the graph-connectivity of the GPM is such that it con-
tains cycles, then all of the nodes in the cycle must
be evaluated simultaneously. As a result, the successes
of GPMs, to date, are limited to domains where the
interaction network is tree structured, or, where there
are few conflicting observations found along any cycles
in the network. For complex connectivity with many
overlapping cycles and biologically realistic noisy data,
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annealing optimal node and edge weights to correctly
represent the training data, becomes computationally
intractable.
As a result, GPMs have the peculiar property that it is

quite easy to describe the “conceptual GPM” that mod-
els a collection of training data—one simply builds a
graph with nodes for the measurable features in the train-
ing data and connects them with edges describing the
dependencies—but it is quite hard to convert this con-
ceptual model into one that is actually computable. The
currently extant solutions involve heuristic unrolling of
cycles, or manual specification of the dependency graph,
limiting practical applications of GPMs to either quite
small, or to topologically simple problems.
For the purpose of this paper we are interested in undi-

rected GPMs in which:

• The dependency network may (theoretically) be
complete across the nodes.

• The node weights are conditional on the observations.
• The dependency network edges and weights can be

conditioned on the observations.

Such models, where the set of variables over which a
joint distribution must be considered, and the weight-
ings of their combinations are dependent on the values
observed for the variables, are exemplified by Condi-
tional Random Fields (CRFs). Much of the work presented
here is guided by requirements for working with CRFs,
but it is equally applicable to simpler densely connected
dependency graphs models as well.
CRFs were originally described by Lafferty et al. in

2001, as an alternative to Markov Chain, and other GPMs,
for building probabilistic models to segment and label
sequence data [10]. Their development was motivated by
the inability of Markov Chain models to address mul-
tiple interacting features and long-range dependencies
between observations, and by branching biases in other
models.
Lafferty proposed that CRFs be constructed by explicit

manual specification of the connection topology for the
states, and heuristic determination of transition parame-
ters to fit the training data characteristics onto this a priori
specified topology. In their development, Lafferty consid-
ered fully-hierarchicalized linearizations of the training
model, and rejected these due to the potential combi-
natorial explosion that can occur if the training data
implies many dependent transitions at each state (effec-
tively, fully-hierarchical linearizations quickly reach a
state where the number of linearized sub-models exceeds
any possible number of observations in the training data,
resulting in dramatic over-fitting errors). Likewise, initial-
izing fully-connected training models and annealing them
into a tractable state was also considered, and rejected due

to difficulties in imposing prior structural knowledge on
the final model.
Lafferty demonstrated that CRFs with low-ordermodels

of higher-order data, outperform chain GPMs with equiv-
alent limitations, however the exact relationship between
the predictive accuracy of a CRF model, and the detail
with which it reproduces the real dependency structure
of the training data, has not, to our knowledge, been
described.
Several schemes have been proposed for using training

data to estimate parameters in a computably-simple CRF,
including two in the original description, and others that
attempt to enhance the accuracy of CRFs for data that
contains higher-order dependencies in the actual data dis-
tribution, than are encoded in the model. None of these
produce stable solutions for systems containing complex
graph connectivity, and usually only perform well with
topologies no more complex than isolated cycles with no
shared nodes or edges.

Results and discussion
The results we present here are the culmination of several
years’ analysis of what is required to solve typical biophys-
ical domain tasks using GPMs in our labs, and those of
our collaborators, as well as two examples of problems
to which we have applied these techniques, through an
experimental approach to meeting the analysis needs.

Analysis of typical domain tasks
A typical end-user comes to the world of GPMs with a
collection of training data, and a desire to use that data
to build a model that can identify other data that are
“like” the members of the training set. It is trivially easy
to develop a model that accepts only data that is iden-
tical to members of the training set, but developing one
that accepts things that are similar can require consider-
ably more insight into the important features of the data,
and into exactly what is meant by “similar”. Tradition-
ally, if the important features are not either statistically
independent, or the user cannot a priori define the impor-
tant dependencies, the standard best practice has been to
feed the data to a chain-model GPM such as a Hidden
Markov Model, and to hope that whatever other depen-
dencies exist, they aren’t such critical features as to make
the chain-model GPM completely irrelevant.

We note, with some foreshadowing, that this situation is
strikingly analogous to users relying on traditional paral-
lel coordinates’ representations of the correlations between
“sequential” axes, as a hopeful proxy for the full complexity
of the data.

The overriding goal towards which our work is therefore
directed, is displaying and facilitating user-interaction
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and editing of the complete data-implied dependency
structure from a collection of data, into a computationally
tractable dependency structure from which existing GPM
parameter estimation methods can model the training
data.

Visual features
For the bio/life-scientist then, in addition to meeting the
User Requirements the important features of a visualiza-
tion or visual analytics tool directed at developing CRF
models are:

1. There must be a “node” concept that maps to the
biologist’s understanding of a measurable feature in
the data.

2. The natural ordering of the nodes should be
maintained to provide context and landmarks.

3. The possible categorical values of each node must
have distinct representations (we consider these to
be subnodes).

4. Identical categories (subnodes) in different nodes,
must have identical representations.

5. The subnode representation must be able to encode
the weight of each category in each node—for
example, the marginal probability of observing each
category at that node.

6. There must be an “edge” concept that maps to the
biologist’s understanding of a relationship between
different measurable features in the data.

7. The edge representation must be able to convey
“when we observe categoryM at node j, we will
observe category N at node k”.

8. The edge representation must convey the strength of
the expectation—for example the joint probability of
observing both linked categories.

9. The edge representation must be able to convey the
extent to which the joint probability is predictable
from the marginal probabilities—i.e., the extent to
which the features are dependent or independent.

10. The edge representation must be able to
simultaneously convey such relationships betweenM
at j, and any other categories, at any other nodes.

11. It must be possible to simultaneously visualize all
relationships forM at j, as well as all relationships for
any other category found at j, to all of their respective
subnode partners.

12. It must be possible to simultaneously visualize the
complete set of relationships between subnodes, for
every node in the data.

13. The representation must be robust to
simplifications—the node landscape and sub-node
arrangement must be invariant to filtering or
changing subsets of displayed joint-probability edges.

14. No edge may be occluded within any other edge or
edges (the layout of the subnodes must be such that
no subnode-to-subnode edge is co-linear with, and
overlaps any other edge).

Identification of these User Requirements and Visual
Features are the accumulated work of almost 20 years of
continuous application in our own biophysical work and
in collaboration with several other biological labs, and
the evolution of a system to address the complex system
modeling needs that we have discovered that our diverse
domains share. The results of addressing these require-
ments and providing the desired features, has been data
and insights, unaccessible by other means, of sufficient
interest to have resulted in numerous papers, and funded
research projects for our, and several other labs.

Approaches using existing parallel coordinates
representations
Parallel coordinates [11] are an interesting visualization
paradigm to consider in relationship to GPMs, because
they can, with minor adaptation, be used to visualize
and manipulate the dependency structure of the chain-
structured subclass of GPMs.
In a traditional parallel-coordinates plot, the multiple

axes of a high dimensional space are arrayed in parallel
on a plane, rather than being arranged orthogonally. Each
multidimensional feature vector in the data, is then dis-
played as a polyline that passes through each parallel axis,
and that links the coordinate that it possesses on each axis.
Parallel coordinates plots have interesting applications in
computational geometry, because points lying on or near
certain high-dimensional geometric surfaces produce dis-
tinct patterns on the parallel axes, enabling the presence
of these surfaces to be detected visually.
More frequently however, parallel coordinates are used

to visualize and understand general patterns of depen-
dencies within high dimensional data. Parallel coordinates
provides advantages for this use, over visualizations using
isometric-style 2-dimensional projections of high dimen-
sional spaces because it does not ambiguously collapse
an entire line of high-dimensional points into a single
displayed 2D point—every point in the high-dimensional
space can be unambiguously represented in the parallel
coordinates plot by a distinct polyline. In exchange for
this increase in representational accuracy, parallel coor-
dinates trade complexity with respect to the ordering
of the axes—changing the ordering in which the paral-
lel axes are shown, can generate dramatically different
understandings of the patterns in the data.
Parallel coordinates have typically been applied to

continuous-valued data, and using strictly parallel repre-
sentations of the axes, but more recent developments have
explored extensions that broaden both the approach and
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the application. Approaches for categorical data [12,13],
multiply-connected axes [14], and arbitrarily arranged
axis segments in the plane [15] have been developed. To
successfully connect many-to-many parallel coordinates
axes in a planar plot, Lind [14] and Claessen [15] both
sacrifice polyline connectedness for their point represen-
tations, and accept that a single axis may have multiple
representations in the plane, to capture all necessary dis-
joint polyline edges. The work onmany-to-many, multiply
connected, and flexible linked axes attempts to address
the issue that the information transfer from parallel coor-
dinates plots, depends on the axis ordering. Other work
has attempted to address this same problem by identifying
the “best” order for the axes, based on statistical mea-
sures of shared information between the axes ([16,17], and
many others). Most of these developments have focused
on retaining the traditional restriction of parallel coordi-
nates to axes in a single plane, to avoid 3D occlusion and
view dependency issues.
In addition to 2D representations, extensions of paral-

lel coordinates into 3 dimensions have been approached
in several ways. Fanea [18], Johansson [19] and Kerren
[20] have each attempted very different representations.
Fanea’s approach uses 3D to decompress the overlaid
polylines representing each data point in traditional par-
allel coordinates, by “fanning out” each axis into multi-
ple representations of itself, each slightly rotated around
the horizontal axis. This representation improves under-
standing for the behaviors of individual polylines in the
image, and in a small-multiples sense, enables the user
to mine more distant relationships than traditional par-
allel coordinates, by visually tracing individual polylines.
Johansson’s approach moves still-parallel axes off the
plane and into an axially-aligned star topology around
a central axis, and displays relationships from each of
the “tip” axes back to the singular central axis. This
approach enables an enhanced view of a single coordi-
nate, but sacrifices connections between the star tips to
accomplish this. Kerren’s 3D Kiviat diagrams are a hybrid
of categorical parallel coordinates, and Fanea’s “fanned
out” axes. In the 3D Kiviat diagram, categorical paral-
lel axes are laid out radially from a single point form-
ing a sort of parallel-coordinate star diagram. Individual
points of the star can then be interactively “fanned out”
into additional representations of that axis so that details
of the poly-category-line trajectory can be more easily
seen.
While all of these parallel coordinates approaches

enable some intuition into a subset of relationships
amongst the axes, none attempt to display the entire rela-
tionship structure simultaneously. Moreover, the primary
intent of the traditional parallel coordinates approach, and
of its many derivatives, has been to represent the features
of the data, rather than to provide an interface by which

the important features could be selected and combined
into statistical models. As a result, none are well-tuned
to the task of extracting tractable GPMs from interaction
patterns in visualized data.
Despite these limitations, if one re-imagines parallel

coordinates to be visualizing a multigraph/metagraph
as described previously, categorical parallel coordinates
becomes a good reproduction of a chain-structured linear
GPM. Each axis becomes a node, with subnodes arrayed
along its length. The relative extent of each category on
an axis, corresponds to its relative sub-node weight in the
GPM. Likewise, the magnitude of the edge between cate-
gories corresponds to the “transition” weight accumulated
by the GPM when shown a feature vector that contains
that particular pair of subnodes. This re-imagining can be
most immediately applied to linearMarkov Chainmodels.
A Markov Chain model can be thought of as represent-
ing the characteristics of a collection of time-series data.
The model presents each point in time as a collection
of possible states. We can consider each time-point to
be a node. From each state “in the present node”, edges
describing transition probabilities pass to the states at
the next time point/node “in the future”. Any particu-
lar time-series in the training data, describes a trajec-
tory through a specific state at each time point/node.
If we map each time point/node to parallel-coordinates
dimensions, then each time series in the training data
describes a multidimensional vector with state-values
as components. This structure naturally fits a paral-
lel coordinates representation, with categorical-valued
axes.
Unfortunately, while traditional parallel coordinates

capture the features of a linear-chain GPM (where only
interdependencies to the immediately preceding and fol-
lowing nodes must be understood), they cannot reason-
ably accommodate the arbitrary dependency structure of
a random-field GPM such as a CRF. If categories are
assigned ordinal values, traditional parallel coordinates
can satisfy User Requirement 1, and partially accommo-
datesUser Requirements 3 and 5. It also addressesVisual
Features 1-4, 6, 7, and 13.
Parallel Sets [13], is more recent evolution of paral-

lel coordinates, better adapted to categorical data. Par-
allel sets have features that convey subnode weights
and edge weights, improving information transfer for
these features. Moving to Parallel Sets again satisfies
User Requirement 1, additionally satisfies 2, and further
addresses 3 and 5. Amongst theVisual Features, it retains
1-3, 6, and 7, sacrifices 4 (Parallel Sets also sacrifices
13, but this is an implementation issue), and additionally
satisfies 5 and 8.
While both traditional parallel coordinates, and cat-

egorical parallel sets representations show a plethora
of interesting features about the data, neither are
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particularly informative regarding the complexly con-
nected, biologically important patterns in the data, and
neither provide intuition about how to build a biologi-
cally relevant, computationally useful model of the train-
ing data. In particular, our domain knowledge says that
there are likely to be dependencies between sequentially-
distant features, due, for example, to folding of molecules.
These sequentially-distant dependencies are often more
important signatures of family membership, than either
the specific positional identities, or sequentially-proximal
dependencies. To address this, at a minimum User
Requirements 4 and 5, and Visual Features 10-12 must
be also be satisfied. Additionally satisfying Visual Fea-
tures 9 and 14 are a significant priority.

Extending parallel coordinates to address additional
requirements
What is striking is that the manually laid-out dependency
andweight diagram shown in Figure 5, is not very different
from a Parallel Sets representation, but now satisfies User
Requirements 1-5, and Visual Features 1-7, and 10-13.
Capturing Visual Features 8 and 9, requires only adding
visual weights to the edges.
The primary representational differences (aside from

a layout conformed to the shape of Figure 4 for conve-
nience), are that Figure 5 does not waste ink redundantly
displaying joint distributions that are entirely implied by
the marginal distributions, and that it does not restrict the
displayed edges to only being between sequential nodes.

This linkage of non-sequential nodes, is critically impor-
tant to adequately understanding the data because the
data cannot be assumed to obey the Markov property. In
fact, understanding where, and to what extent the data vio-
late the Markov property, is a defining characteristic of the
biological needs in all of the domains that we are trying to
address. No representation that limits the display of depen-
dencies to “sequential” positions, will ever inform the user
of non-sequential dependencies.

We know about some of the dependencies in the
Archaeal tRNA splice sites a priori from domain knowl-
edge, but importantly, given an adequate visual repre-
sentation, the data can inform us of these dependencies
even without that prior knowledge. It can also tell us
about other dependencies that are no less important sig-
natures of family membership, but for which the domain
knowledge is silent.
While similar biological data can only rarely be attached

to a biologically-relevant shape, an expedient, automat-
able, and near-universally applicable general solution
which simultaneously satisfies Visual Feature 14, is sim-
ply to allow the parallel-coordinate axes off the plane, and
array them around a cylinder.

With categorical parallel-coordinates axes arrayed
around a cylinder, and fixed categories arrayed at specific
locations along the cylinder’s length, we can overcome
the Markov-Property-like character of the polyline used
to represent each feature vector in traditional planar par-
allel coordinates, and replace this polyline with a formally
complete undirected graph between all of the subnodes
traversed by the feature vector. If we cast a set of fea-
ture vectors into this space, and weight the subnode-to-
subnode edges based on the number of features sharing
those sub-nodes, we can visualize the entire

(SequenceLength
2

)

set of contingency table joint and marginal distributions
in the same figure. Figure 6 shows the results of this
approach. It is clearly cluttered, and on paper, densely
occluded and difficult to interpret, but even with these
impediments it is already showing us that there are quite
strong patterns of co-occurence between the A at posi-
tion 2, with C at 1, T at 3, A at 4, and also with occluded
sub-nodes at several other positions. The strength of the
A2 ↔ C1 and A2 ↔ T3 relationships are visible with some
study of Figure 6, however the other relationships with A2
are not conveyed by any canonical alternatives. Because
these dependencies involve non-sequential columns, even
with this limited view, this intuition is beyond what is
easily attainable with traditional parallel coordinates or
parallel sets.
If we further calculate the difference between the

observed joint distributions, and the predicted joint distri-
butions based on the marginal distributions, and use these
as edge weights instead of using the observed joint distri-
butions, we can eliminate ink wasted on joint distributions
that are entirely predictable, and focus the user’s attention
on the patterns of dependencies they need to understand.

The requirement for interactive analysis
One step remains to convert this visualization both into
something visually understandable, and simultaneously
into a dependency structure amenable to creating a com-
putable CRF; engaging the user in the task of simplifying
the dependency structure. The raw dependency structure
implied by the training data is often both too complex, and
too specific for practical use without further refinement.
The primary interaction required is for the user to filter
the dependencies displayed, such that those that are rea-
sonable based on domain expertise remain, while as many
others as possible are eliminated.
In addition, we have found that for some tasks, a sim-

ple threshold is insufficient to segregate the important
and unimportant dependencies. In some cases to capture
biologically important features of the model, it is neces-
sary to let the user retain dependencies with statistically
or quantitatively small weights. A prototypical example of
this need is demonstrated by stem structures in nucleic-
acid sequence families. In these cases a domain user
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Figure 6Wrapping categorical parallel-coordinate axes around a cylinder. Arranging parallel coordinates axes around a cylinder, enables the
complete graph of each feature vector to be displayed on the axes, rather than just one particular spanning walk. Using fixed vertical positions for
each category and using scaled glyphs to represent node weights, enables the simultaneous display of all of the marginal probabilities of each
category in each position, and all of the joint probabilities of every pairwise combination. We do not claim that this figure is visually tractable in this
form, only that it does contain the features required for building useful GPMs.

knows that there are specific nucleotide-to-nucleotide
pairings allowed, and may know that certain positions
in the sequence absolutely must be paired, to retain
functionality. It does not matter if the training data repre-
sents all of the biophysically relevant pairings with similar
frequency for those positions—the user must be able to
retain the absolute conditional dependency edges for the
paired positions, even if some combinations only appear
in the training data with very low frequency. In other
cases, users prioritize retention of coherent groups of
weaker dependencies over scattered weak dependencies,
and sometimes even over scattered stronger dependen-
cies, based on domain intuition regarding the biological
origin and function of the dependencies.
The choices involved in selecting these groups are par-

tially influenced by domain knowledge, partly by a learned
understanding of certain archetypal visual motifs that
appear in the domain data, and partially by untrained
visual intuition. The exact mechanisms applied, and how
to best support them in a user interface remain to be
studied in greater detail, however, it is clear that this
interactive selection process provides a mechanism for
exploratory experimentation with the structure of the
CRF, wherein users can easily try different choices for
retaining or excluding dependencies.
To support this final interactive refinement of the raw

dependency structure into a tractable subset, our experi-
mental StickWRLD interface enables the user to adjust the
residual magnitude and significance thresholds (and sev-
eral other threshold parameters) for selecting the subset
of the raw dependencies to display. We also detect edge
cycles and highlight these for the user with edge coloring,

and enable the interactive selection and removal of edges
from the dependency data structure. We are currently
experimenting with on-the-fly parameter estimation for
several GPM varieties and estimation algorithms [21]
and painting of the visualized edges with the estimated
parameters. If acceptable performance can be attained,
this shows promise for informing the user of situations
where a removed edge dramatically affects the GPM
parameter landscape.
Putting all these things together, we can simplify the par-

allel coordinates in a volume view, starting from where we
began in Figure 6, and ending in a visualization such as
Figure 7C. As with all representations, the strong depen-
dencies between G in column 7 and C in column 8, and
vice versa are apparent. The similar strong dependence
between G6 and C9, and C6 and G9 is now also visi-
ble. Several unexpected dependencies have also appeared
amongst columns 1, 2, 3, and 4. This simplified model
of the Archaeal tRNA sequence motif makes surpris-
ingly good predictions about other candidate sequences’
biological functionality, when these alternative sequences
are biologically substituted in place of members of the
training set [2].

Alternatives, and issues with 3D layout
Extending traditional parallel coordinates to higher
dimensions, effectively displaying the complete graph of
each element of the training data, upon the parallel
axes in the plane addresses the concern that dependen-
cies between sequentially distant columns are invisible
in the traditional parallel coordinates representation, but
simultaneously brings to the fore a host of complications
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Figure 7 By exploring, filtering, andmanually eliminating or
saving various dependencies by brushing, a significantly
simplified picture of the dependency network emerges.
Successive refinement from the raw dependency data shown in
Figure 6, to a computationally tractable dependency structure for a
CRF that enables accurate identification of other members of the
sequence family.A) By applying the reduction of the displayed data to
only the unexpected residuals, Figure 6 becomes much more sparse.
B) Applying threshold filters to the magnitude of the residuals, further
reduces the visual complexity of the model and simultaneously
decreases the likelihood of overfitting the data with the CRF model,
and brings the dependency network closer to being computationally
tractable. C) Finally applying statistical filters, and manual editing of
the dependency structure, results in a CRF dependency model that
captures the important family sequence signatures. It is also relatively
easy to browse and understand in the interactive interface, despite
casting the parallel axes in a volume rather than a plane .

ranging from the fact edges can now be co-linear, obscur-
ing their actual positions, to the potentially overwhelm-
ing clutter that appears when visualizing every edge of

every element in this fashion. In fact, with even a small
amount of heterogeneity in the identities found in the
training data, a complete-graph-per-feature visualization
in a planar figure quickly devolves into a completely unin-
formative image where every possible edge is displayed,
and there is no visual weight given to any of the impor-
tant features. Attempting to alleviate these difficulties by,
for example brushing and linking from a secondary dis-
play of the training data provides some improvements, but
relies on the user’s memory to identify clusters and com-
monalities in the trajectories of the training data through
the axes. A similar extension of parallel sets meets with
similar difficulties, and even greater visual clutter.
Claessen attempted to deal with connecting each

parallel-coordinate axis to more than two neighboring
axes, by giving each axis multiple representations in a
planar figure [15]. This paradigm may be useful for rep-
resenting biological data of this nature for sequences
with quite limited length, or for re-representing subse-
quences of data from longer sequences. However, for
surveying the dependency structure of large sequences,
this approach fails to the same issue that prevents small-
multiples contingency tables from being useful. The need
to maintain natural ordering aside, fundamentally the
researcher cannot know which pairs of axes are impor-
tant to look at together, until they have looked at all of
them together. A typical sequence family of length 300,
which has 300 actual axes amongst which dependencies
must be explored, would require over 22,000 displayed
planar copies of these axes (half as many as the con-
tingency tables, since each visualized axis can display
dependencies with two neighbors rather than one). Keep-
ing track of which are replicates, and traversing complex
networks of dependencies within this display would not be
practical.
Wrapping categorical parallel coordinate axes around

a cylinder clearly violates the visualization design rubric
that good visualizations should constrain themselves to 2-
dimensional representations. It also obviously introduces
issues where occlusion is viewpoint dependent. How-
ever, even our simple 9-column example would require
36 purely 2D plots to present the data without obscur-
ing edges, and because we are interested in combinations
of (≥ 2) columns with dependencies, we would need
to look at every possible ordering of those 36 plots. In
practice, applied over almost 20 years to real data from
several collaborating labs, the impediments induced by
the 3D visualization are overwhelmingly outweighed by
the benefits of being able to see all of the data in a sin-
gle interactive model. Application of these techniques, in
our lab and those of our collaborators, has regularly been
found to replace months of laborious examination of 2D
contingency results, with minutes of interactive explo-
ration of a 3D model. This benefit accrues even when the
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competing 2D contingency tables are supplemented with
a planar node-to-node dependency graph as an index into
the sub-node contingencies.
Despite these successes, we do not claim that this rep-

resentation is optimal, and many possible alternatives
remain to be explored. Chief amongst these are interactive
techniques where a planarized subset of interdependent
features is displayed in a brushing-and-linking fashion
based on selections in a circular node-to-node (rather
than subnode-to-subnode) overview. We argue only that
our results unequivocally demonstrate that conveying
full, weighted networks of subnode-to-subnode depen-
dencies, is a critically underserved need inmany biological
domains, and that approaches to conveying this informa-
tion to the end user provide enormous analytical benefits.
Our hope is that other researchers will identify alterna-
tive representations that maintain the analytical power of
our 3D presentation, while eliminating its less desirable
side-effects.

Case study : protein mutations and function
Adenylate Kinase (ADK) is an extensively studied and
characterized enzyme with a unique molecular/sequence
feature [22-24]. Across evolutionary history, the family
of ADKs has bifurcated into two groups that have the
same protein structure, but that produce this structure
using quite different biophysical stabilizing forces, pro-
duced by quite different amino acid residues in each
family. Most prominently, one subfamily possesses a tetra-
Cysteine Zinc-chelating motif, while the other stabilizes
the same structure using a hydrogen-bonding network
between His, Ser, Asp and Tyr in the same locations. The
latter four are also associated with the presence an Arg
and Glu in nearby positions, while the tetra-Cys motif
is ambivalent about these positions [25]. This has made
ADK a popular protein in which to study the relationship
between protein sequence and protein function. Because
each subfamily has an almost equal number of members,
naïve models that look only at the residue distribution in
the family, suggest that substituting any residue from the
hydrogen-bonding subfamily into the tetra-Cys subfam-
ily, should have no effect on function. Not surprisingly,
this turns out not to be the case [26]. The acceptability
of such residue substitutions is conditional on the context
in which they are put. In fact, even swapping the com-
plete hydrogen-bonding tetrad for the tetra-Cysmotif, still
results in a non-functional protein.
Following our earlier work in which we described a

more extensive network of ancillary dependent residues
around both the tetra-Cys and hydrogen-bonding net-
works [25], we developed a CRF that accurately predicts
the changes in ADK function (enzymatic activity) that
are produced by multi-point mutations in its sequence.
The ADK family was visualized using StickWRLD, and

the dependency network found in it iteratively refined
to select the 4, 6, and 12 most strongly interdepen-
dent residues. Several steps in the refinement process
are shown in Figure 8. Figure 8A begins with the refine-
ment already well under way, with the initial roughly 4
million edge raw dependency structure reduced down to
several hundred edges using residual threshold cutoffs.
Figures 8B-D show additional refinement using statistical
cutoffs for the remaining residuals, with Figure 8D pass-
ing beyond the optimal refinement and losing significant
portions of the dependency network due to too-stringent
filters. After eliminating the majority of the positions
with only minor dependencies, we settled on Figure 9 as
the core of the CRF from which to select our 4, 6, and
12-dependency networks. CRFs were defined using each
of these dependency subsets. Several varieties of ADK
mutants were also made, with an assortment of substitu-
tions from the hydrogen bonding subfamily, into Bacillus
subtilis, which natively possesses a variant of the tetra-Cys
motif.
To evaluate these predictions, we constructed mutants

of B. subtilis ADK. B. subtilis ADK contains a rare vari-
ant of the lid that uses three Cysteines and one Aspartic
Acid. The mutants were B. subtilis domain substituted
with: the four hydrophilic residues (Tetra); the two asso-
ciated residues (Di); and all six hydrophilic-motif residues
(Hexa). A chimeric mutant (Chim) containing two of the
Cysteines and two of the hydrophobic residues is known
to be non functional [26]. Structural stability and enzy-
matic activity were assayed for each mutant. The wild-
type B. subtilis sequence, and each of the mutants, were
also scored by each CRF. Table 1 showsmutations created,
the results of the biological assays, and the score pro-
duced by CRFs using 4, 6 and 12 nodes of the relationship
network visualized in Figure 9. As expected, the mutant
activity correlated directly with the extent to which the
residues identified by the largest CRF, were replaced in
the B. subtilis background. This alone is a significant find-
ing in the protein sequence/function domain (Callahan,
Perera, Weppler, Ray, Magliery, manuscript in prepara-
tion). Moreover, not only did the visually-refined CRF
accurately identify the residues that were necessary to
swap to transfer function, the most complete CRF also
accurately predicted the extent of functional loss, in each
of the mutants. While still requiring further research and
validation, it appears that the 12-dependency CRF’s scor-
ing of “this sequence is a good match for the training data”
correlates with the stochastic probability of the enzyme’s
catalytic reaction taking place. In other words a mutant
sequence that scores similarly to members of the training
data, will have activity like the members of the training
data, while mutant sequences with scores significantly dif-
ferent from the training data will have activities that differ,
in correlation to the differences of their scores.
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A) B)

C) D)

Figure 8 Birds-eye views of the dependency network in ADK while being explored by a user to identify a subset suitable for building a
CRF. Views from StickWRLD being used to refine a GPM to identify the most critical determinants of catalytic activity in the Adenylate Kinase lid
domain. A) shows an overhead view of the 300-column, 21-category dependency network after it has already been filtered down to relatively large
residuals. B), C) and D) show successive refinements using a statistical threshold cutoff. By the time p = 0.001 has been reached in D), the majority
of the interesting interactions have been lost.

There are a number of algorithms that use statis-
tics based on per-position residue frequency to predict
the functional consequences of mutation ([27,28], are
amongst the most popular). None of them canmake accu-
rate predictions in this protein, because the consequences
of a mutation depend on other residues in this protein,
not just on the mutation itself. Even HMM-based meth-
ods that evaluate sequentially-proximal dependencies are
unable to accurately predict these functional changes,
because the dependency network is both dense, and spans
over 50 positions.
Only the CRF model is able to make accurate predic-

tions regarding functional changes. Notably the predic-
tive correlation does not appear for the 4-dependency
CRF, begins to show correlation with the 6-dependency
version, and does not become completely predictive
until 12 dependencies around the primary (Cys or
hydrogen-bonding) tetrad are included in the CRF.
This not only supports our contention that more com-
plete GPMs make better predictors, but also high-
lights the importance of simultaneously visualizing the
more complete dependency graph over the categorical

parallel coordinates. The 12 most predictive residues
were identified because of their complex and highly con-
nected dependencies with the well-documented primary
tetrad - not based on the statistical strength of those
dependencies.

Case study: polyadenylation signaling DNAmotifs
A completely different problem is presented by the ques-
tion of identifying the genomic signals that govern the
addition of the “poly-A” tail to messenger RNAmolecules.
Messenger RNAs are molecules that are used to trans-
mit the genomic blueprint for proteins from an organism’s
DNA, to the cellular machinery that makes proteins. The
longevity of these messages, as well as several other fea-
tures of their use by the cell, is governed by the length
and location of poly-adenosine-monophosphate tails that
are independently added to the message after it has been
synthesized. The signals that direct this polyadenyla-
tion are not well understood, and modulating polyadeny-
lation is an interesting research focus with potential
impacts that range from fighting disease to biofuels. We
have been developing improved models of two different
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Figure 9 An adequately refined view of the ADK dependencies for building a CRF. Eliminating the majority of columns with no dependencies
from Figure 8C, focuses attention on the known interacting tetrad of residues in the lid domain, and on other residues that show dependencies with
these. Our 4, 6 and 12 dependency CRF models were derived from this view.

types of polyadenylation signals found in the human
genome.
Unlike with Adenylate Kinase, where an unambiguous

alignment of the proteins lets us say “the symbols in col-
umn i of each data vector all are functionally equivalent”,

in the case of polyadenylation signals, we know neither the
pattern, nor exactly how the sequences should be aligned.
What looks like column i in one member of the train-
ing data, can be column j in another. In general, these
shifts are small, but they result in either weakening of

Table 1 B. subtilismutants and activity fold changes
Position

Mutant 4 7 10 24 27 29 Fold CRF4 CRF6 CRF12

BsADK C C T C D G 1 1 1 1

Chim C C T D T G −∞ 10−68 10−150 10−248

Tetra H S T D T G inactive + + 101 10−70 10−146

Di C C R C D E normal− 101 10−2 10−2

Hexa H S R D T E normal − − 103 102 10−46

Residues changed from wild-type are indicated in bold.
The relative activities of these mutants show that not only the identities of the residues in each position, but also the relationships between these residues play a key
role in enzyme activity. Position 24, for example, has an almost equal probability of containing a C, orD residue, across the ADK family. The functional consequences of
changing a C to a D in a specific protein however, must be calculated in the context of the other residues in that specific protein for which relational dependencies
exist. Our assays show that activity correlates well with the predictions from a CRF defined using the network formed from these relationships. The Dimutant retains
activity, only slightly impaired from wild-type. The Tetramutant shows barely detectable activity. The Hexamutant recovers a significant amount of activity, but
remains an order of magnitude less active than wild-type. CD thermal denaturation shows little difference in stability between the wild-type andDimutants and only
a small destabilization in the Tetra and Hexamutants.
All of these activity changes agree with predictions for the modified B. subtilis sequence, by a CRF defined by the interdependencies between the residues of these
motifs—with one caveat. If only these residues are used to define the CRF, it predicts that the Hexamutant will have better activity than the wild-type protein.
This caveat highlights the danger of assuming that only the very strongest co-evolutions are necessary to define an adequate CRF. The CRF defined with the 6 residues
most obviously involved (CRF6), fails to evaluate those residues in the context of the rest of the specific B. subtilis residues in the protein. Because the hydrophilic residue
motif is more prevalent in the training set, the CRF predicts that a mutant containing it, will be more likely to be functional. This failure is exactly why network models
of interdependency are critical for developing accurate predictive methods for protein sequence → function.
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the apparent specificity of the model, or in the gener-
ation of an unnecessarily complex model that contains
separate sub-models to address each of the alignment
possibilities.
Rather than accept either of these non-optimal mod-

eling situations, with this data our task is not simply to
model the training data, but to successively refine a model
derived from some of the training data, such that more of
the training data fits, and improves the model, with each
refinement. The ability to visualize the dependency struc-
ture, and to interact with and edit the dependencies to
generate a model, is once again critical for developing an
accurate understanding of the sequence family properties,
and to generating an accurate model that can select and
align polyadenylation signals correctly.
The starting point for this analysis was a pair of data

sets, both derived from genomic regions purported to
signal for polyadenylation. The first data set contained
sequences in which traditional sequence-similarity met-
rics such as Position Specific Scoring Matrices (PSSM)
and Hidden Markov Models (HMMs) had detected a con-
sistent pattern. The second data set contained sequences
for which PSSM and HMM methods failed to find any
pattern, and in which the models created using the first
data set, failed to identify matching regions. Visualizing
the first, “signal” data set, as shown in Figure 10, we see
a strong pattern in the marginal distribution of bases in
each column (which is what the PSSM andHMMmethods
identified).
Our real focus in this project however, was in identi-

fying any signal in the data where there was thought to
be none. Visualizing this “non-signal” data, as shown in
Figure 11, it is clear that distribution of bases, at least with

the original alignment of the sequences, is uninforma-
tive. However, within the dependencies, we see a peculiar
feature: There is a pattern of dependencies between bases
in several positions, that appear as a repeated “echo” of the
same dependency between the same categories, shifted
to different columns. This repeating dependency pattern
is a sign that some of the sequences are misaligned. By
interactively selecting the sequences that participate in
the misaligned echo (a feature available through the Stick-
WRLD interface) and aligning the dependencies (rather
than the bases) within the data, we are able to correct
the alignment of the “non signal” data to the state shown
in Figure 12. This new model of the “non-signal” signals
demonstrates that these signaling regions actually do have
a strongly conserved regulatory motif that is not very dif-
ferent from the previously well-defined “signal” motifs. It
allows somewhat more variation in base identities than
the “signal” motif, and is dominated by different depen-
dencies between positions and bases, but it is nonetheless
a distinct identifiable pattern. Biological validation of this
new “non-signal” model is ongoing in our labs.
While this result itself is quite important, the real sig-

nificance of this work is that we have successfully aligned
a family of sequences that couldn’t be properly aligned
based on the per-position sequence statistics, by using
the discovered and visualized dependency structure found
within the data.

Conclusion
Moving parallel coordinates from the plane, into a vol-
ume in an interactive interface, enables the complete-
graph nature of dependency networks to be visualized,
understood and used in a fashion that is not possible

Figure 10 Visualized CRF of a known polyadenylation signal motif. A StickWRLD view of the genomic sequence motif that governs “signal”
based polyadenylation. Colors and categories are as previously shown. The motif representation starts in the back of the cylinder and proceeds
counterclockwise. It is relatively easily modeled as 4“don’t care” positions with no significant base preference, followed by 2 A bases (red balls), a
single T base (blue ball), and then three more A bases. There are a few very small residuals that attain statistical significance, but the marginal
distributions dominate the motif, allowing it to be found using both PSSM and HMMmethods.
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Figure 11 Visualized implied CRF from amisaligned polyadenylation signal model. Visualizing the “non signal” sequence regions, we see a
strong disposition towards A and T bases in the marginal distributions, but no overwhelming pattern. PSSM and HMMmethods fail to identify a
pattern in these sequences, however, the fact that we do not restrict StickWRLD to only sequentially adjacent dependencies lets us see that there is
a curious “echoing” pattern of dependencies between T15 and A17, T16 and A18, T17 and A19, and T18 and A20. This echo extends further, at lower
residual and significance thresholds. This echo is a highly suggestive fingerprint of a misalignment in the data. We are seeing an interdependency
between a T and an A base, 2 bases apart, occurring in several subsets of the input data, each shifted slightly from the next. Using StickWRLD to
interact with and realign the data, we arrive at Figure 12.

with the pairwise dependency information to which 2D
representations restrict the analysis. The ability to do
this is critical for improving the utility of GPMs, which
show significant promise for modeling many types of data
where features interact, but which have thus far seen only
restricted applications because of the difficulty in devel-
oping tractable, yet appropriately connected dependency
networks for complex data.

We have demonstrated the application of a modified
form of parallel coordinates in a volume, using our pro-
totype implementation StickWRLD, for two very differ-
ent types of GPM modeling problems. The first involved
the development of a CRF where the evaluation “this
new sequence is like (or unlike) the training data” can
be used to predict that the functionality of a changed
sequence will be like, or unlike the functionality of the

Figure 12 Corrected CRF for the apparently signal-less polyadenylation signals. After re-alignment, we can see that the “non signal”
polyadenylation signals actually do have a strongly conserved pattern of residues, but that unlike the “signal” motif, the motif also possesses
significant dependencies. Notably, rather than a pair of A residues followed by a single T (as seen in the “signal” motif), these sequences possess a
single A residue, followed with almost equal probability by an A or a T residue. That A or T residue strongly influences the identity of the subsequent
residue—if the first is a T , then the second is also a T , if the first is an A, then the second is also an A. This variable pair of residues is then followed by,
as in the “signal” motif, a trio of A residues ending the motif. Several other dependencies also show up. The interdependencies visualized here, are
why PSSM and HMMmodels have failed to identify an alignment in, or adequately model this “non signal” signaling motif.
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parent. The second involved iterative refinement of a
GPM from poorly aligned training data, where the detec-
tion of similar, but offset dependency networks in the
training data are used to realign the training data, repeat-
edly strengthening the model. In both cases the predic-
tions of the GPMs are being validated in our labs, with
manuscripts in preparation for each.
By applying appropriate visual weight to edges, and

eliminating from view, everything but the most important
features, the volume version of categorical parallel coor-
dinates can be transformed from a hopelessly complex
representation, into a useful visual analytics tool in which
users can explore the effect of different parameter choices
and interactively select the data-implied dependencies to
incorporate into a GPM model. Numerous filtering and
selection schemes, as well as domain-appropriate feature
clustering and display simplification schemes are present
in the StickWRLD software interface, and the fundamen-
tal representation paradigm can be adapted to any form
of mathematically symmetric statistical association detec-
tion. It is clear from testing that surprisingly simple statis-
tics provide useful insight for building GPM models—
simple residuals, as we originally described when casting
StickWRLD as simply an exploratory tool [29] remain one
of our most common approaches—though more sophisti-
cated analyses ranging from Fisher’s Exact Test of Associa-
tion [30] to data input from arbitrary external applications
have been applied as well. Experience with these options
and experiments performed with them [31] suggest that
there is no single scheme that is ideal for all data analy-
ses, further underscoring the need for robust exploratory
interfaces that enable the user to see and explore the net-
work of interactions revealed by different approaches and
focused upon by different filtering schemes. Experiments
and optimizations in this area are ongoing.
Our successes with parallel coordinates in a volume

demonstrate the improved understanding that derives
from more complete dependency visualization, but they
simultaneously open the door to new questions about
the most appropriate statistical measures to aid the user
in filtering the dependency network (is, for example, a
simple threshold, the most appropriate way to segregate
meaningful dependencies from unimportant ones?), and
to new questions about the most appropriate represen-
tation for this type of data. Categorical parallel coordi-
nates in a volume appear to be isomorphic to a type of
metagraph in which one variety of nodes corresponds
to parallel coordinate axes, with these nodes containing
a second type of node, corresponding to ordered cate-
gories. Dependencies, as we have measured them, occur
between the category-type sub-nodes, but there is no con-
ceptual reason that dependencies between axes (for exam-
ple, as detected by Mutual Information, or Joint Relative
Entropy), or between categories and axes, could not also

be incorporated in the model. Nor is there a reason that
dependencies must be limited to pairwise interactions.
Further exploration of visual paradigms for interacting
with this more complete metagraph structure remain an
interesting research topic, and will likely further improve
GPM development tools in the future.
It is also likely that there are further optimizations of

our visual representation that minimize the occlusion and
complexity issues inherent in our 3D display. While our
results demonstrate that static planar representations can-
not provide the detailed insights necessary to address
the domain needs for understanding complex metagraph-
type-data, and that these needs are usefully addressed
in the 3D domain, we do not suggest that there are
not other interactive paradigms that might make these
high-dimensional features accessible without requiring
3D exploration.We encourage further exploration of alter-
natives that retain the ability to display the full complexity
of networks demonstrated by our StickWRLD experimen-
tal system.

Methods
Requirements and prototype methods for addressing
these were developed by extensive study of several domain
user groups and iterative refinement of approaches to
address the shared needs across their domains.
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