
Paten et al. BMC Bioinformatics 2014, 15:206
http://www.biomedcentral.com/1471-2105/15/206

METHODOLOGY ARTICLE Open Access

A unifying model of genome evolution under
parsimony
Benedict Paten1*, Daniel R Zerbino2, Glenn Hickey1 and David Haussler1,3

Abstract

Background: Parsimony and maximum likelihood methods of phylogenetic tree estimation and parsimony methods
for genome rearrangements are central to the study of genome evolution yet to date they have largely been pursued
in isolation.

Results: We present a data structure called a history graph that offers a practical basis for the analysis of genome
evolution. It conceptually simplifies the study of parsimonious evolutionary histories by representing both
substitutions and double cut and join (DCJ) rearrangements in the presence of duplications. The problem of
constructing parsimonious history graphs thus subsumes related maximum parsimony problems in the fields of
phylogenetic reconstruction and genome rearrangement. We show that tractable functions can be used to define
upper and lower bounds on the minimum number of substitutions and DCJ rearrangements needed to explain any
history graph. These bounds become tight for a special type of unambiguous history graph called an ancestral
variation graph (AVG), which constrains in its combinatorial structure the number of operations required. We finally
demonstrate that for a given history graph G, a finite set of AVGs describe all parsimonious interpretations of G, and
this set can be explored with a few sampling moves.

Conclusion: This theoretical study describes a model in which the inference of genome rearrangements and
phylogeny can be unified under parsimony.

Keywords: Genome rearrangement, Phylogenomics, Ancestral reconstruction

Background
In genome evolution there are two interacting relation-
ships between nucleotides of DNA resulting from two key
features: DNA nucleotides descend from common ances-
tral nucleotides, and they are covalently linked to other
nucleotides. In this paper we explore the combination of
these two relationships in a simple graph model, allowing
for change by the process of replication, where a complete
sequence of DNA is copied, by substitution, in which the
chemical characteristics of a nucleotide are changed, and
by the coordinated breaking and rematching of covalent
adjacencies between nucleotides in rearrangement oper-
ations. These processes have quite different dynamics:
DNA molecules replicate essentially continuously, much
more rarely substitutions occur and more rarely still rear-
rangement operations take place. For this reason, and

*Correspondence: benedict@soe.ucsc.edu
1University of California, Santa Cruz, 1156 High St, 95064 Santa Cruz, USA
Full list of author information is available at the end of the article

because of inherent complexity issues, a wealth of models,
data structures and algorithms have studied these pro-
cesses either in isolation or in amore limited combination.
Such evolutionary methods generally start with a set of

observed sequences in an alignment, an alignment being
a partitioning of elements in the sequences into equiva-
lence classes, each of which represents elements that are
homologous, i.e. that share a recognisably recent common
ancestor. Though alignments represent an uncertain infer-
ence, and though there optimisation for standard mod-
els is intractable for multiple sequences ([1]), we make
the common assumption that the alignment is given, as
efficient heuristics exist to compute reasonable genome
alignments ([2-4]).
If the sequences in an alignment only differ from one

another by substitutions and rearrangements that delete
subsequences, or insert novel subsequences (collectively
indels), then the alignment data structure is naturally a 2D

© 2014 Paten et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto:benedict@soe.ucsc.edu
http://creativecommons.org/licenses/by/2.0

Paten et al. BMC Bioinformatics 2014, 15:206 Page 2 of 31
http://www.biomedcentral.com/1471-2105/15/206

matrix. In such a matrix, by convention, the rows repre-
sent the sequences and the columns represent the equiva-
lence classes of elements. The sequences are interspersed
with “gap” symbols to indicate where elements are missing
from a column due to indels. From such a matrix align-
ment, phylogenetic methods infer a history of replication
([5]). Such a history is representable as a phylogenetic
tree, whose internal nodes represent themost recent com-
mon ancestors (MRCA) of subsets of the input sequences.
To create a history including the MRCA sequences, addi-
tional rows can be added to the matrix ([6-8]). Both the
problem of imputing maximum parsimony phylogenetic
trees from matrix alignments and calculating maximum
parsimony MRCA sequences given a phylogenetic tree
and a matrix alignment are NP-hard ([9,10]).
In addition to substitutions and short indels, homolo-

gous recombination operations are a common modifier
of individual genomes within a population. The align-
ment of long DNA sequences related by these operations
is also representable as a matrix. However, the history of
replication of such an alignment is no longer generally
representable as a single phylogenetic tree, as each column
in the matrix may have its own distinct tree. To repre-
sent the MRCAs of such an alignment requires a more
complex data structure, termed an ancestral recombina-
tion graph (ARG) ([11,12]). It is NP-hard under the infi-
nite sites model (no repeated or overlapping changes) to
determine the minimum number of homologous recom-
binations needed to explain the evolutionary history of a
given set of sequences, and probably NP-hard under more
general models ([13]).
Larger DNA sequences, or complete genomes, are often

permuted bymore complex rearrangements, such that the
matrix alignment representation is insufficient. Instead,
the alignment naturally forms a graph called a break-
point graph ([14,15]). Assuming rearrangements are bal-
anced (neither involving the gain or loss of material),
inferring parsimonious rearrangement histories between
two genomes has polynomial or better time complex-
ity, whether based upon inversions ([16]), translocations
([17]) or double-cut-and-join (DCJ) operations ([18]).
However, for three or more genomes with balanced rear-
rangements ([19]) or when rearrangements are unbal-
anced (involving the gain or loss of material) leading to
duplications (additional copies of subsequences resulting
from rearrangement), these exact parsimony methods are
intractable. Exact solutions in the most general case are
therefore only feasible for relatively small problems ([20])
before heuristics become necessary ([21,22]).
Despite the hardness of the general case, there has been

substantial work on computing maximum parsimony
results, allowing for a wider repertoire of rearrangements.
El-Mabrouk studied inversions and indels, though gave
no exact algorithm for the general case ([23]). Recently

Yancopoulous ([24]) then Braga ([25]) considered the dis-
tance between pairs of genomes differing by DCJ opera-
tions and indels, the latter providing the first linear-time
algorithm for balanced rearrangements and indels, and
the former proposing a data-structure to model duplica-
tions. Many methods have been proposed that deal with
the combination of rearrangements and duplications, for
good recent reviews see ([26,27]), however until recently
there were no algorithms to our knowledge that explic-
itly unified both duplications and genome rearrangements
as forms of general unbalanced rearrangement. First [28]
provided a model allowing for a subset of duplications
and deletions as well as balanced DCJ operations, giving
a lower bound approximation, while [29] studied a model
allowing atomic (single gene) duplications, insertions and
deletions, but arrived at no closed-form formula for the
total number of rearrangements.
The graph model introduced in this paper is capable

of representing a general evolutionary history for any
combination of replication, substitution and rearrange-
ment operations, including duplications and homologous
recombinations. It therefore generalises phylogenetic
trees, graphs representing histories with indels, ancestral
recombination graphs and breakpoint graphs, building
upon the methods described above. We start by introduc-
ing this graph and then develop a maximum parsimony
problem that, somewhat imperfectly, generalises maxi-
mum parsimony variants of all the problems mentioned,
facilitating the study of all these subproblems in one uni-
fied domain. We adopt the common assumption that all
substitutions and rearrangements occur independently of
one another, and account for tradeoffs between them
by independent rearrangement and substitution costs,
which are themselves essentially sums over the num-
bers of inferred events. Importantly, replications that are
combined with unbalanced rearrangements are costed by
the underlying rearrangement cost. We finally provide
a bounded sampling approach to cope with the NP-
hardness of the general maximum parsimony problem.

Results
Sequence graphs and threads
Sequence graphs are used extensively in comparative
genomics, in rearrangement theory typically under the
name (multi or master) breakpoint graph ([14,15,22]) and
in alignment under the name A-bruijn ([30]) or adjacency
graph ([31]). We use the following bidirected form, which
is similar to that used by [32] for sequence assembly.
A (bidirected) sequence graph G = (VG,EG) is a graph

in which a set VG of vertices are connected by a set EG of
bidirected edges ([33]), termed adjacencies. A vertex rep-
resents a subsequence of DNA termed a segment. A vertex
x is oriented, having a tail side and a head side, respectively
denoted xhead and xtail. These categories {head, tail} are

Paten et al. BMC Bioinformatics 2014, 15:206 Page 3 of 31
http://www.biomedcentral.com/1471-2105/15/206

called orientations. An adjacency, which represents the
covalent bond between adjacent nucleotides of DNA, is a
pair set of sides. We refer to the two sides contained in an
adjacency as its endpoints. Adjacencies are bidirected, in
that each endpoint is not just a vertex, but a vertex with
an independent orientation (either head or tail). For con-
venience, we say a side is attached if it is contained in an
adjacency, else it is unattached. By extension, we say a ver-
tex is attached if either of its sides are attached, else it is
unattached.
Associated with a sequence graph is a labeling, i.e.

a function l : VG → �∗ ∪ {∅} where � =
{A/T ,C/G,G/C,T/A} is the alphabet of bases, which are
oriented, paired nucleotides of DNA, and �∗ is the set of
all possible labels consisting of finite sequences of bases
in �. Bases and labels are directed. For ρ/τ ∈ �, ρ is the
forward complement and τ is the reverse complement. If
a vertex is traversed from its tail to its head side, its label
is read as the sequence of its forward complements. Con-
versely, if traversed from head to tail, the label is read as
the reverse sequence of the reverse complements. A vertex
x ∈ VG for which l(x) = ∅ is unlabeled. A label represents
a multibase allele. A path through the sequence there-
fore represents a single DNA sequence (and its reverse
complement) whose bases are encoded by the labels of
the vertices, where unlabeled vertices represent missing
information.
A thread is a connected component in a sequence

graph in which each side is connected to at most one
adjacency. A thread graph is a sequence graph in which
every connected component is a thread. In this paper
we limit ourselves to investigating thread graphs. A
thread may be a simple cycle, representing a circular
DNA molecule, or have two unattached sides, in which
case it represents a linear DNA molecule or fragment
of a larger DNA molecule. An example thread graph
is shown in Figure 1. A thread graph is phased, in

that each thread is assigned a maximal DNA sequence
(and its reverse complement), and any path though that
thread corresponds to a subsequence of these maximal
sequences. In contrast, a sequence graph that is not a
thread graph may be unphased, in that there exist many
possible maximal sequences for each of its connected
components.

History graphs
Nucleotides of DNA derive from one another by a process
of replication. This replication process is represented in
history graphs, which add ancestry relationships to thread
graphs.
A history graph G = (VG,EG,BG) is a thread graph with

an additional set BG of directed edges between vertices,
termed branches. Each vertex is incident with at most one
incoming branch. The event graph D(G) is the directed
graph formed by the contractiona of adjacencies in EG. For
G to be a history graph D(G) must be a directed acyclic
graph (DAG), a property we term acyclicity. Example his-
tory graphs are shown in Figure 2(A,B), along with an
event graph in Figure 2(C) for the history graph shown
in Figure 2(B).
To avoid confusion we define terminology to discuss

branch relationships. Each weakly connected component
of branches forms a branch-tree. Two vertices are homol-
ogous if they are in the same branch-tree. A vertex y
is a descendant of a vertex x, and conversely y is an
ancestor of x, if y is reachable by a directed path of
branches from x. If two homologous vertices do not have
an ancestor/descendant relationship then they are indi-
rectly related. For a branch e = (x, y), x is the parent of
e and y, and y is the child of e and a child of x. Similarly,
e is the parent branch of y and a child branch of x. A ver-
tex is a leaf if it has no incident outgoing branches, a root
if it has no incident incoming branches, else it is internal.
We reuse the terminology of parent, child, homologous,

Figure 1 A thread graph. For visual appeal, vertices are the arrow shapes with the sides indicated by the ends of the arrows. Labels within the
arrows represent the subsequence of DNA when traversed from the tail to the head side of the arrow, and are read as the reverse complement
when traversed from the head to the tail side. Adjacencies are the lines connecting the ends of the arrow shapes. They are bidirected, i.e. there are 3
unordered types: head-tail (symmetrically tail-head), tail-tail and head-head adjacencies. In prior illustrations of bidirected graphs ([32]) orientations
were drawn on the lines, however the semantics of the graph are still the same, in that head and tail orientations are properties of the endpoints of
the adjacencies, not the vertices. The graph contains three linear threads. As an example, because the middle vertex is attached in the opposite
direction and therefore reverse-complemented when traversed left-to-right, the top thread represents the sequence “GAGGGTGGCCCGAGAA
TACTTTAAGGTTCTGAATA AACCCCAGCACAAATTTT” (from left-to-right, spaces used to distinguish vertex labels) and its reverse complement,
‘AAAATTTGTGCTGGGGTT TATTCAGAACCTTAAAGTA TTCTCGGGCCACCCTC” (from right-to-left). The colours of the arrows represent homologies
between the vertices, these are not part of the thread graph itself, but are used in subsequent figures that build on this example.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 4 of 31
http://www.biomedcentral.com/1471-2105/15/206

A

B C

D

Figure 2 History graphs. (A) A history graph representing homology relationships between the vertices in Figure 1. Due to space, colours are used
as labels (and match those in Figure 1), with unlabeled vertices shaded grey. Two vertices have the same colour shade if they have identical labels.
The dotted arrows represent branches. Four ancestral vertices are added relative to Figure 1 to represent the common ancestral vertices of the
subsets of homologous vertices in Figure 1. (B) An extension of (A). (C) The event graph for (B). (D) A simple history with four epochs (1 - 4), and
rearrangements given names corresponding to their type. It is a realisation for the graphs in (A) and (B).

ancestor, descendant and indirectly related with sides.
Two sides have a given relationship if their vertices have
the relationship and they have the same orientation. Sim-
ilarly, a side is a leaf (resp. root) if its vertex is a leaf
(resp. root).

Simple histories
We formally define a class of history graphs, called simple
histories, for which parsimonious sequences of substitu-
tions and rearrangements can be trivially derived.
A bilayered history graph is a history graph whose

threads can be partitioned into root and leaf layers, such
that every branch connects a vertex in the root layer
with a vertex in the leaf layer. A rearrangement epoch
is a bilayered history graph in which every branch tree
is a root with 1 child, every vertex is labeled, and any

set of homologous sides are either all attached or all
unattached. For n ≥ 2, an n-way replication epoch is a
bilayered history graph in which every branch tree is a
root with n children, every vertex is labeled, any set of
homologous sides are either all attached or all unattached,
if two root sides xα and yβ are attached by an adja-
cency then each child of xα is attached to a child of
yβ , and a root vertex has at most one child with a label
different from its own. An epoch is either a rearrange-
ment epoch or an n-way replication epoch for some n ≥
2. A layered history graph is a history graph that can
be edge partitioned into a finite sequence of bilayered
history graphs, such that the leaf layer of a contained
bilayered history graph is the root layer of the following
bilayered history graph. A simple history is a layered his-
tory graph whose bilayered subgraphs are all epochs. An

Paten et al. BMC Bioinformatics 2014, 15:206 Page 5 of 31
http://www.biomedcentral.com/1471-2105/15/206

example simple history with epoch subgraphs is shown in
Figure 2(D).
A substitution occurs on a branch if the labels of its

endpoints are not identical. Note that a substitution can
occur either in a rearrangement or a replication epoch.
The substitution cost of a simple history H is the total
number of substitutions, denoted s(H). The example sim-
ple history in Figure 2(D) has substitution cost 4. Note the
requirement that all homologous sides in a simple history
be either all attached or all unattached does not forbid
rearrangements involving the observed ends of chromo-
somes (linear threads), because it is always possible to
add material to a simple history at zero cost that attaches
such unattached sides and allows them to participate in
rearrangements.
The substitution cost defined deals, abstractly, with

changes of alleles in which any change between alleles is
scored equally. However for the case �∗ = �, i.e. single
base labels, the substitution cost is the minimum num-
ber of single base changes. Furthermore, any history graph
in which all homologous labels have the same length can
easily be converted to a semantically equivalent history
graph for which�∗ = �. More complex substitution costs
to deal with the case where the alphabet represents the
alleles of genes, as is commonly dealt with in rearrange-
ment theory, are straightforward but not pursued here for
simplicity.
A rearrangement cycle in a rearrangement epoch is a

circular path consisting of one or more repetitions of the
basic pattern consisting of an adjacency edge in the root
layer, a forward branch to the leaf layer, an adjacency edge
in the leaf layer and a reverse branch to the root layer. Its
size is the number of repetitions in it of this basic pattern
minus 1. A linear path that follows this same basic pat-
tern but does not complete every pattern and return to the
original vertex is a degenerate rearrangement cycle. Its size
is the size of the smallest rearrangement cycle that can be
obtained from it by adding edges. The rearrangement cost
of a simple history H is the total size of all rearrangement
cycles in it, denoted r(H). This cost is known to be the
number of double-cut-and-join (DCJ) operations needed
to achieve all the rearrangements.

Lemma 1. The rearrangement cost of an epoch is the
minimum number of double-cut-and-join (DCJ) opera-
tions required to convert the root layer’s adjacencies into
the leaf layer’s adjacencies.

Proof. Similar to that given in [18].

The example simple history in Figure 2(D) has rear-
rangement cost 3.
Because different studies lay different emphases on sub-

stitution or rearrangement (e.g. because of the available

data) and because the events do not have the same
probability in practice, we allow for a degree of freedom
in the definition of the overall cost function. A (simple his-
tory) cost function for a simple history is any monotone
function on the substitution and rearrangement costs in
which both substitutions and rearrangements have non-
zero cost.

Reduction
Not all history graphs are as detailed as simple histories.
We define below a partial order relationship that describes
how one graph can be a generalization of another graph,
so for example, a less detailed history graph can be used
to subsume multiple simple histories.
A branch whose child is unlabeled and unattached is

referred to as having a free-child. A branch whose parent
is unlabeled, unattached and a root with a single child is
referred to as having a free-parent. A vertex is isolated if it
has no incident adjacencies or branches.
A reduction operation is an operation upon a history

graph that either:

• Deletes an adjacency, an isolated vertex or the label of
a vertex.

• Contracts a branch with a free-child or free-parent.

See Figure 3(A-E) for examples. The inverse of a reduction
operation is an extension operation.

Lemma 2. The result of a reduction operation is itself a
history graph.

Ahistory graphG is a reduction of another history graph
G′ if G is isomorphic to a graph that can be obtained
from G′ by a sequence of reduction operations, termed a
reduction sequence.

Lemma 3. The reduction relation is a partial order.

We write G � G′ to indicate that G is a reduction
of G′ and G ≺ G′ to indicate that G is a reduction of
G′ not equal to G′. Like reduction and extension opera-
tions, if G is a reduction of G′, G′ is an extension of G. An
examination of the reduction relation is in the Discussion
section.

History graph cost
Using the parsimony principle, we now extend parsimony
cost functions, previously defined on simple histories, to
all history graphs.
A simple history H that is an extension of a history

graph G is called a realisation of G. The set H(G) is the
realisations of G.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 6 of 31
http://www.biomedcentral.com/1471-2105/15/206

A D

E

B

C

Figure 3 Reduction operations. (A-E) For each case the graph on the left is a reduction of the graph on the right. (A) A label deletion. (B) An
adjacency deletion. (C) A vertex deletion. (D) A contraction of a branch with a free-child. (E) A contraction of a branch with a free-parent.

For a given cost function c the cost of a history graph
G isb

C(G, c) = min
H∈H(G)

c(s(H), r(H)).

Lemma 4. The problem of finding the cost of a history
graph is NP-hard.

Proof. There are parsimony problems on either substi-
tutions or rearrangements alone that are NP-hard and
can be formulated as special cases of the problem of
finding the minimum cost realisation of a history graph
([9,34]).

The lifted graph
Although determining the cost of a history graph is NP-
hard, we will show that the cost can be bounded such that
the bounds become tight for a broad, characteristic sub-
set of history graphs. To do this we introduce the concept
of lifted labels and adjacencies, which are used to project
information about labels and adjacencies from descendant
to ancestral vertices and are useful in reasoning about the
cost of a history graph.
The free-roots of a history graphG are a set of additional

vertices such that a single, unique free-root is assigned
to each root vertex in G (see the top of Figure 4(A)). For
a vertex x, its lifting ancestor A(x) is the most recent
labeled ancestor of x, else if no such vertex exists, the
free-root of the branch-tree containing x. For a side xα its
lifting ancestor (overloading notation) A(xα) is its most
recent attached ancestor, else if no attached ancestor
exists, its ancestral side in the free root of the branch tree
containing it.
For a labeled vertex y, a lifted label is a label identi-

cal to l(y) on its lifting ancestor. For a vertex the lifted
labels is therefore a multiset, because the same lifted
label may be lifted to a lifting ancestor from multiple dis-
tinct descendants and each is considered an element of
the multiset.

For an adjacency {xα , yβ}, a lifted adjacency is a bidi-
rected edge {A(xα),A(yβ)}. In analogy with the lifted
labels for a vertex, the lifted adjacencies for a side is the
multiset of lifted adjacencies incident with the side.
A history graphGwith free-roots, lifted labels and lifted

adjacencies is a lifted graph L(G). Figure 4(A) shows an
example lifted graph that outlines these concepts.
Some lifted elements do not imply change between

descendant and ancestral states, while others do. To for-
malise such a notion we define trivial and non-trivial
labels and and adjacencies. A lifted label ρ of a labeled
vertex x is trivial if l(x) = ρ. A lifted label ρ on an
unlabeled vertex x (necessarily a free root) is trivial if it
is the only lifted label on x. Otherwise a lifted label is
non-trivial.
A junction side is a most recent common ancestor

(MRCA) of two attached, indirectly related sides. For a
history graph G, a lifted adjacency e = {A(xα),A(yβ)}
is trivial if there exists no unattached junction side on
the path of branches from (but excluding) A(xα) to (but
excluding) xα , or on the path of branches from (but
excluding) A(yβ) to (but excluding) yβ and either there is
a (regular) adjacency between A(xα) and A(yβ) in G or
A(xα) and A(yβ) are free roots, else e is non-trivial. See
Figure 4(A) for examples of trivial and non-trivial labels
and adjacencies.

Ancestral variation graphs
We can now define a broad class of history graphs for
which cost can be computed in polynomial time. To do
this we will define ambiguity, information that is needed
to allow the tractable assessment of cost. There are two
types of ambiguity. The substitution ambiguity of a history
graph G, denoted us(G), is the total number of non-
trivial lifted labels in excess of one per vertex. Substitution
ambiguity reflects uncertainty about MRCA bases. The
substitution ambiguity of the history graph in Figure 2(B)
is 1, as there exists one vertex with two non-trivial
lifted labels.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 7 of 31
http://www.biomedcentral.com/1471-2105/15/206

A

B

Figure 4 A lifted graph. (A) The lifted graph for the history graph in Figure 2(B). The blue and red lines represent, respectively, trivial and non-trivial
lifted adjacencies. Similarly, the blue and red stars represent, respectively, trivial and non-trivial lifted labels. The free-roots are shown as a set of
vertices above the other vertices, with a grey line identifying their matching branch-tree. (B) The module in (A) containing non-trivial lifted edges.
Lower case letters are used to identify the sides..

The rearrangement ambiguity of a history graph G,
denoted ur(G), is the total number of non-trivial lifted
adjacency incidences in excess of one per side.
Rearrangement ambiguity reflects uncertainty about

MRCA adjacencies. The rearrangement ambiguity of the
history graph in Figure 2(B) is 5, because two sides have
three incident non-trivial lifted edges and one side has two
incident non-trivial lifted edges.
The ambiguity of a history graph G is u(G) = us(G) +

ur(G). An ancestral variation graph (AVG) H is a history
graph such that u(H) = 0, i.e. an unambiguous history
graph.

Lemma 5. Simple histories are AVGs.

While simple histories are AVGs, so are many other his-
tory graphs that are far less detailed. For example, the
AVG in Figure 5 is not a simple history.

Bounds on cost
We provide trivially computable lower and upper bound
cost functions for history graphs that are tight for AVGs.
The lower bound substitution cost (LBSC) of a his-

tory graph G, denoted sl(G), is the total number of dis-
tinct (not counting duplicates in the multiset) nontrivial
lifted labels at all vertices minus the number of unla-
beled vertices with non-trivial lifted labels (necessarily
free roots). The LBSC of the history graph in Figure 2(B)
is 4.
The upper bound substitution cost (UBSC) of a history

graph G, denoted su(G), is the total number of nontriv-
ial lifted labels at all vertices minus the maximum number

of identical lifted labels at each unlabeled vertex with
non-trivial lifted labels (again, necessarily free roots). The
UBSC of the history graph in Figure 2(B) is 5. For the AVG
in Figure 5, LBSC = UBSC = 4.
The module graph of a history graph G is a multi-graph

in which the vertices are the sides of vertices in L(G) that
have incident real or lifted adjacencies and the edges are
the real and lifted adjacencies in L(G) incident with these
sides. Each connected component in a module graph is
called a module. The set of modules in the module graph
for G is denotedM(G). Figure 4(B) shows the modules for
Figure 4(A).
The lower bound rearrangement cost (LBRC) for a his-

tory graph G is:

rl(G) =
∑

M∈M(G)

(
 |VM|
2

� − 1).

For a history graph that is a simple history this definition
is equivalent to the earlier definition of rearrangement
cost for simple histories.
The upper bound rearrangement cost (UBRC) of a his-

tory graph G, denoted ru(G), is the total number of
non-trivial lifted adjacencies in L(G) minus the number
of modules in M(G) in which every side has exactly one
incident non-trivial lifted edge. The LBRC of the history
graph in Figure 2(B) is 3 and its UBRC is 6. For the AVG
in Figure 5 LBRC = UBRC = 3.

Theorem 1. For any history graph G and any cost func-
tion c, c(sl(G), rl(G)) ≤ C(G, c) ≤ c(su(G), ru(G)) with
equality if G is an AVG.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 8 of 31
http://www.biomedcentral.com/1471-2105/15/206

Figure 5 The lifted graph for an AVGwith (simple) modules containing non-trivial lifted adjacencies highlighted. Uses the same notation as
in Figure 4(A).

The proof is in given the Methods section.
Theorem 1 demonstrates that LBSC and LBRC are lower

bounds on cost, UBSC and UCRC are upper bounds on
cost, and that all these bounds become tight at the point
of zero ambiguity. This implies that to assess cost of an
arbitrary history graph G we need only search for exten-
sions of G to the point that they have zero ambiguity and
not the complete set of simple history realisations of G.
For an AVG H , as the lower and upper bounds on cost
are equivalent, we write r(H) = rl(H) = ru(H) and
s(H) = sl(H) = su(H).

G-optimal AVGs
We now explore the process of sampling AVG extensions
of an initial starting graph. Though it is possible to start
from any history graph, in practice we are likely to start
from a history graph G based on sequence alignments,
such as that shown in Figure 2(A). If G is already an AVG,
by Theorem 1, it is trivial to assess its cost. If not we
sample AVG extensions of G in order to assess cost and
explore the set of most parsimonious realisations of G.
With the aim of restricting this search, ultimately to a
finite space, we first define the set of G-optimal AVGs.
An AVG extension H of a history graph G is G-

parsimonious w.r.t. a cost function c if C(G, c) =
c(s(H), r(H)). The set of G-parsimonious AVGs is neces-
sarily infinite: it is always possible to add arbitrary vertices
without affecting substitution or rearrangement costs. To
avoid the redundant sampling of AVG extensions ofG and
their own extensions we define the notion of minimality.

An AVG extension H of G is G-minimal if there is
no other AVG H ′ such that G ≺ H ′ ≺ H . The set of
G-minimal AVGs contains those AVGs that can not be
reduced without either ceasing to be AVGs or extensions
of G. This set is also infinite for some DNA history graphs
(Lemma 9 below).
An AVG is G-optimal w.r.t. a cost function c if it is both

G-parsimonious w.r.t. to c and G-minimal. We establish
below that the set of G-optimal AVGs is finite for any his-
tory graph G. By definition, any G-parsimonious AVG is
either G-minimal or has a G-minimal reduction therefore
we can implicitly represent and explore the set of parsi-
monious realisations of G by sampling just the G-optimal
AVGs.

G-bounded history graphs
Unfortunately, because the history graph cost problem is
NP-hard, it is unlikely that there exists an efficient way
to sample only G-optimal. Instead, we now define a finite
bounding set that contains G-optimal and can be effi-
ciently searched. Conveniently this bounding set is the
same for all cost functions.
A label of a vertex x is a junction (overloading the term

junction, but using it analogously) if x has more than one
lifted label, else it is a bridge if x has one lifted label, its
lifted label is non-trivial, the most recent labeled ancestor
of x is labeled the same as x and this ancestor has at least
one non-trivial lifted label (see Figure 6(A,B)).
A side xα is a bridge side if it is not a junction, is incident

with one non-trivial lifted adjacency and an adjacency e

Paten et al. BMC Bioinformatics 2014, 15:206 Page 9 of 31
http://www.biomedcentral.com/1471-2105/15/206

A B C D E

Figure 6 Categorising labels and adjacencies. (A) A junction label. (B) A bridge label. (C) A junction adjacency. (D) A bridge adjacency. (E) An
example of a pair of ping-pong adjacencies. The named elements are outlined in red.

that defines a trivial lifted adjacency e′ whose A(xα) end-
point is a junction side incident with a non-trivial lifted
adjacency, and such that if e is deleted at least one end-
point of e′ in the original graph remains a junction side in
the resulting graph (see Figure 6(C,D)). An adjacency is a
junction (again, overloading the term junction) if either of
its endpoints are junctions, else it is a bridge (overloading
bridge) if either of its endpoints are bridge sides.
An element is non-minimal if it is a branch with a

free-child or free-parent, an isolated vertex, or label or
adjacency that is not a junction or bridge.
For G � G′, an element in G′ is G-reducible if there

exists a reduction operation in a reduction sequence from
G′ to G that either deletes the element if it is an adjacency,
label or vertex or contracts it if it is a branch.We are inter-
ested in the set of G-reducible elements of an extension
of G, as they are the elements which may be added and
removed during an iterative sampling procedure.
For G � G′, the G-unbridged graph of G′ is the reduc-

tion resulting from the deletion of all G-reducible bridge
adjacencies in G′. A side xα that has no attached descen-
dants is a hanging side. A pair of adjacencies e and e′, each
with a hanging side, and such that e has an endpoint whose
most recent attached ancestor is incident with e′, form a
pair of ping-pong adjacencies. We call e the ping adjacency
and e′ the pong adjacency (Figure 6(E)).
A history graphG′ isG-bounded if it is an extension ofG

that does not contain a G-reducible non-minimal element
and itsG-unbridged graph does not contain aG-reducible
ping adjacency.

Theorem 2. The set of G-bounded AVGs contains the G-
optimal AVGs for every cost function.

The proof is given in the Methods section.
Importantly, the following theorem demonstrates that

there is a constant k such that any G-bounded history
graph is at most k times the cardinality of G.

Theorem 3. A G-bounded history graph contains less
than or equal to max(0, 10n − 8) G-reducible adjacencies

and max(0, 2m − 2, 20n − 16, 20n + 2m − 18) additional
vertices, where n is the number of adjacencies in G and m
is the number of labeled vertices in G. This bound is tight
for all values of n and m.

The proof is given in the Methods section.
The set of G-bounded history graphs and, by inclusion,

the set of G-optimal AVGs are therefore finite.

The G-bounded poset
Finally we demonstrate how to navigate between G-
bounded history graphs using a characteristic set of oper-
ations that define a hierarchy between these graphs.
For a vertex x in aG-bounded history graph the compos-

ite minimisation of x is as follows:

• If x is unattached and unlabeled and has aG-reducible
parent branch, the contraction of the parent branch,
renaming the resulting merged vertex x.

• If x is then an unattached, unlabeled root and has a
single G-reducible child branch, the contraction of
the child branch, renaming the resulting merged
vertex x.

• The deletion of x if subsequently isolated, unlabeled
and G-reducible.

A G-bounded reduction operation on a G-bounded his-
tory graph is one of the following operations, provided it
results in a G-bounded history graph.

• a label detachment: the deletion of a G-reducible
label on a vertex x, followed by the composite
minimisation of x (Figure 7(A-C)).

• an adjacency detachment: the deletion of a
G-reducible adjacency {xα , yβ} followed by the
composite minimisation of x and y (Figure 7(D-F)).
The inverse of an adjacency detachment is an
adjacency attachment.

• a lateral-adjacency detachment: the adjacency
detachment of a pair of G-reducible junction
adjacencies {xα , yβ} and {A(xα),A(yβ)}, and a
subsequent adjacency attachment that creates an

Paten et al. BMC Bioinformatics 2014, 15:206 Page 10 of 31
http://www.biomedcentral.com/1471-2105/15/206

A B C

D E F

Figure 7 A sequence of G-bounded extension operations. The sequence converts the graph in (A) into the AVG in (F) through the sequence of
intermediate graphs shown in (B-E).

adjacency that includes xα or yβ as an endpoint
(Figure 7(D-E)).

Note that the first two G-bounded reduction opera-
tions are combinations of reduction operations, while the
lateral-adjacency detachment, which proves necessary to
avoid creating intermediate graphs withG-reducible ping-
pong edges, involves both reduction and extension opera-
tions, but always reduces the total number of adjacencies.
As with reduction operations, the inverse of a G-bounded
reduction operation is a G-bounded extension operation.
A G-bounded history graph G′ is a G-bounded reduction
(resp. extension) of another G-bounded history graph G′′
ifG′ is isomorphic to a graph that can be obtained fromG′′
by a sequence of G-bounded reduction (resp. extension)
operations.

Lemma 6. The G-bounded reduction relation is a par-
tial order.

The G-bounded poset is the set of G-bounded his-
tory graphs with the G-bounded reduction relation. We
write ≺G to denote the G-bounded reduction relation and
≺ ·G to denote its covering relation (i.e. A ≺ ·GB iff
A ≺G B and there exists no C such that A ≺G C ≺G B).

Theorem 4. The G-bounded poset is finite, has a sin-
gle least element G, and its maximal elements are all
AVGs. Also, G′ ≺ ·GG′′ iff there exists a single G-bounded
reduction operation that transforms G′′ into G′.

The proof is given in the Methods section.

As the G-bounded poset is finite, it can be represented
by a Hasse diagram whose nodes are the G-bounded
history graphs and whose edges, which are the cover-
ing relation, represent equivalence classes of G-bounded
operations. Figure 8 shows a simple G-bounded poset
Hasse diagram.

A basic implementation
The previous four theorems establish the mechanics of
everything we need to sample the finite set of G-optimal
AVGs, and thus, amongst other things, determine the cost
of a history graph. Although it will require further work
to establish practical and efficient sampling algorithms,
we have implemented a simple graph library in Python
that for an input history graph G iteratively generates
G-bounded AVGs (https://github.com/dzerbino/pyAVG)
through sequences of G-bounded extension operations.
To test the library we used simulations. For each simu-

lation we generated a simple history H by forward simu-
lation, starting from a genome with 5 vertices in a single
thread and simulating 4 epochs in which either whole
chromosome replication or rearrangements occurred and
substitutions were made at a constant rate at each branch.
The labels in the simulation correspond to single DNA
bases. To ensure complexity, we selected histories with
substitutions, rearrangements and at least two epochs of
replication. We created a reduction G of H by removing
from H all labels of internal vertices and adjacencies inci-
dent on internal vertices and finally contracting the parent
branch of all internal vertices. As a result, the reduced
history contained only the leaf threads and branch trees
that, containing no internal vertices, simply indicate the
homologies between the vertices. To simulate incomplete

https://github.com/dzerbino/pyAVG

Paten et al. BMC Bioinformatics 2014, 15:206 Page 11 of 31
http://www.biomedcentral.com/1471-2105/15/206

A

B C D

E F

Figure 8 A Hasse diagram of the G-bounded poset for an example history graph. The graph (A) is G, the graphs in (A-F) represent the
G-bounded extensions.

genome assemblies, we randomly removed, on average,
10% of the adjacencies, labels and vertices from these leaf
threads. To test our library we enumerated sequences of
G-bounded history graphs starting at G, at each step pick-
ing at random a possible G-bounded extension operation
until we reached an AVG. We sampled 20,000 starts for
each of 20 randomly sampled pairs of history and starting
graph. To make the search strategy efficient, we restarted
the search if we reached an extension with a higher total
sum of lower bound substitution and rearrangement costs
than su(G) + ru(G), initially, and then subsequently the
sum of the substitution and rearrangement costs of the
best AVG found up to that point. Tables 1 and 2 show
the results of these 20 sampling runs. Figure 9 shows one
example ofH, G and a sampled AVG.
For these simulations the minimum rearrangement cost

of any sampled AVG is often close or equal to rl(G),
while the maximum rearrangement cost of any sampled
AVG is generally slightly greater than ru(G). Notably, we
found that AVG extensions sometimes had lower cost
than the original simple history, this occurring because of
the information loss that resulted from reducingH to G.
Repeating these experiments with histories that started

with 10 root vertices in the simple history, but which

were otherwise simulated identically, demonstrates that
the naive random search procedure implemented here
fails to find reasonable histories within a set of only
20,000 random samples (data not shown), so, as might
be expected, more intelligent sampling strategies will be
needed to find parsimonious interpretations of even mod-
erately complex datasets. However, with more efficient
sampling algorithms, a history graph sampling algorithm
could be applied to find solutions to various established
parsimony problems, such as the DCJ median problem, or
be used for less explored problems, such as the inference
of gene trees incorporating synteny information.

Discussion
We have introduced a general model for genome evolu-
tion under parsimony, but the reduction relation and the
definition of the G-bounded set may appear arbitrary. We
highlight below the reasons for our choice of reduction
relation, how reduction relates to other orderings over
graphs, and how we can easily approximate a set of G-
reducible elements, something critical to the sampling of
G-bounded extensions of a given graph. We then briefly
discuss the possibilities of yet more compact graphical
representations.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 12 of 31
http://www.biomedcentral.com/1471-2105/15/206

Table 1 Simulation results assessing substitution
ambiguity and cost

exp. s(H) us(G) sl(G) su(G) s(Hsmin) s(Hsmax)

1 3 10 1 1 1 2

2 1 14 1 2 2 3

3 2 15 2 3 3 3

4 3 12 2 2 2 4

5 2 13 2 2 2 4

6 2 12 2 2 2 5

7 2 10 1 1 1 2

8 1 13 1 1 1 2

9 3 11 0 0 0 0

10 4 8 2 2 2 3

11 2 10 2 2 2 3

12 2 13 1 1 1 1

13 2 11 1 2 2 3

14 2 11 2 2 2 4

15 3 14 2 2 2 2

16 2 10 1 1 1 1

17 2 30 1 1 1 1

18 3 13 1 1 1 1

19 2 10 0 0 0 0

20 1 9 1 1 1 1

Each row represents a separate initial history. The cost s(H) is the substitution
cost of the simple history from which G is derived. Also given are the ambiguity
us(G), lower sl(G), and upper su(G) substitution cost bounds for G. The minimum
and maximum substitution costs of G-bounded AVG extensions found by
sampling are denoted s(Hsmin) and s(Hsmax), resp.

In the reduction relation, we allow the deletion of ver-
tices, vertex labels and adjacencies, but forbid branch
deletion. Otherwise, extensions would allow the inven-
tion of homology between vertices (see Figure 10(A)).
Conversely, branches can be contracted but not adjacen-
cies, otherwise extensions could create interstitial vertices
without any rearrangement (see Figure 10(B)).
We disallow the non-trivial contraction of the incom-

ing branch of attached or labeled vertices, with the
one exception for branches with free-parents, because
it would allow a reduction to merge previously separate
threads (see Figure 10(C)), and because vertices could
be reduced to become ancestors of originally indirectly
related vertices (see Figure 10(D)). We allow the one
exception for the contraction of the incoming branch of
attached or labeled vertices when the branch has a free-
parent because disallowing it would forbid reductions that
removed information from root vertices (see Figure 10(E))
and allowing it does not permit the issues highlighted in
Figures 10(C-D).
It is informative to consider the relationship between

reduction operations and the reduction relation. When a

Table 2 Simulation results assessing rearrangement
ambiguity and cost

exp. r(H) ur(G) rl(G) ru(G) r(Hrmin) r(Hrmax)

1 2 12 2 10 2 9

2 2 20 2 14 2 14

3 2 20 2 14 2 12

4 2 20 2 14 2 14

5 2 18 1 13 1 11

6 2 8 2 7 2 6

7 2 8 0 7 0 4

8 2 18 1 13 2 10

9 2 10 1 7 1 7

10 2 14 0 11 0 8

11 2 6 0 6 0 4

12 2 6 1 7 1 4

13 2 16 0 12 0 9

14 2 20 2 14 4 12

15 2 20 1 14 1 10

16 2 6 0 5 0 5

17 1 26 1 17 1 13

18 2 18 1 13 1 11

19 2 6 0 6 0 5

20 2 4 2 5 2 2

Each row represents a separate initial history. The cost r(H) is the rearrangement
cost of the simple history from which G is derived. Also given are the ambiguity
ur(G), lower rl(G), and upper ru(G) rearrangement cost bounds for G. The
minimum and maximum rearrangement costs of G-bounded AVG extensions
found by sampling are denoted r(Hrmin) and r(Hrmax), resp.

graph contains multiple copies of isomorphic structures,
distinct reduction operations can result in isomorphic
reductions (see Figure 10(F-I)), therefore each possible
reduction in the covering set (transitive reduction) of
the reduction relation represents an equivalence class of
reduction operations.
A valid permutation of a reduction sequence is a permu-

tation in which all operations remain reduction operations
when performed in sequence. Clearly not all permutations
of a reduction sequence have this property, however the
following lemma illustrates the relationship between valid
permutations.

Lemma 7. All valid permutations of a reduction
sequence create isomorphic reductions.

Reduction is somewhat analogous to a restricted form
of the graphminor. Importantly, the graphminor is a well-
quasi-ordering (WQO) ([35]), i.e. in any infinite set of
graphs there exists a pair such that one is the minor of the
other.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 13 of 31
http://www.biomedcentral.com/1471-2105/15/206

Figure 9 History graph examples generated by simulation. (A) H, (B) G, (C) An example of Hrmin and Hsmin . Example corresponds to experiment
1 in Tables 1 and 2. The G-bounded extension sequence from G to this AVG involved the creation of just 7 adjacencies, 5 vertices and 7 labels. Graph
layouts were computationally derived.

Lemma 8. Reduction is not a WQO.

Proof. Consider the infinite set of cyclic threads, they
are not reductions of one another.

An ordering is a WQO if every set has a finite subset
of minimal elements. In contrast, it can be shown that for
the reduction relation, even the set of AVG extensions of
a single base history G can have an infinite set of minimal
elements.

Lemma9. There exists a history graphGwith an infinite
number of G-minimal extensions.

The proof is given in the Methods section.

One barrier to exploring the G-bounded poset is decid-
ing for a pair of history graphs G and G′ such that G � G′
if an element is G-reducible. This problem is of unknown
complexity, and may well be NP-hard. To avoid the poten-
tial complexity of this problem we can define an alterna-
tive notion of reducibility. A fix for (G,G′), where G � G′,
is a history subgraph of (VG′ ,EG′ ,B+

G′) isomorphic to G,
where B+

G′ is the transitive closure of BG′ . Starting from
an input history graph G and a fix isomorphic to it, we
can easily update the fix as we create extensions of G. For
an extension of G, elements in the fix become the equiva-
lent ofG-irreducible, while elements not in the fix become
the equivalent of G-reducible. From a starting graph we
can therefore explore a completely analogous version of
G-bounded, replacing the question of G-reducibilty with
membership of the fix.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 14 of 31
http://www.biomedcentral.com/1471-2105/15/206

A

B

C

D

E

F

G

H

I

Figure 10 Justifying the reduction relation. (A,B,C,D) The graphs on the left side are not reductions of the graphs on the right. (E) The graph on
the left is a reduction of the graph on the right. (F,G,H,I) Examples of equivalence classes of reduction operations, where multiple distinct reduction
operations result in the same reduction.

Following from Lemma 7, there is a bijection between
the set of fixes for G � G′ and the set of equivalence
classes of reduction sequences that are all valid permuta-
tions of each other. This is the limitation of considering
membership of a fix instead of assessing if an element
is G-reducible, it limits us to considering only a single
equivalence class of reduction sequences in exploring the
analogous poset to G-bounded.
It is in general possible to reduce the size of the set G-

bounded while still maintaining the properties that it can
be efficiently sampled and contains G-optimal. However,
this is likely to be at the expense of making the defini-
tion ofG-bounded more complex. One approach is to add
further “forbidden configurations” to the definition of G-
bounded, like the G-reducible ping adjacencies that are
forbidden in the current definition of G-bounded. Forbid-
ding these was essential to making G-bounded finite, but
we might consider also forbidding other configurations
just to make G-bounded smaller.
It is possible to consider a graph representation of his-

tories that use fewer vertex nodes if we are willing to
allow for the possibility that a subrange of the sequence
of a vertex be ancestral to a subrange of the sequence
of another vertex. This is a common approach in ances-
tral recombination graphs ([11]). Such a representation
entails the additional complexity of needing to specify the
sequence subranges for every branch, but may in some
applications be a worthwhile trade off for reducing the
number of vertices in the graph. The theory of such graphs

is mathematically equivalent to the theory of the his-
tory graphs presented here, but the implementation would
differ.

Conclusion
We have introduced a graph model in which a set of
chromosomes evolves via the processes of whole chro-
mosome replication, gain and loss, substitution and DCJ
rearrangements. We have demonstrated upper and lower
bounds on maximum parsimony cost that are trivial to
compute despite the intractability of the underlying prob-
lem. Though these cost bounding functions are relatively
crude and can almost certainly be tightened for many
cases, they become tight for AVGs. This implies that we
only need to reach AVG extensions to assess cost when
sampling extensions.
To our knowledge, this is the first fully general model

of chromosome evolution by substitution, replication, and
rearrangement. However, it has its limitations. For exam-
ple, it treats common rearrangements, such as recom-
binations and indels as any other rearrangement, and
only takes into accountmaximumparsimony evolutionary
histories. We anticipate future extensions that incorpo-
rate more nuanced cost functions, as well as probabilistic
models over all possible histories.
The constructive definition of the G-bounded poset,

coupled with the upper and lower bound functions, sug-
gests simple branch and bound based sampling algorithms
for exploring low-cost genome histories. To facilitate the

Paten et al. BMC Bioinformatics 2014, 15:206 Page 15 of 31
http://www.biomedcentral.com/1471-2105/15/206

practical exploration of the space of optimal and near
optimal genome histories, we expect that more advanced
sampling strategies across the G-bounded poset could be
devised.

Methods
Proof of Theorem 1
We first define some convenient notations to describe
lifted labels and edges. For a vertex x let L′

x = (Lx,Nx)
be its multiset of lifted labels, where L(x) is the set of dis-
tinct lifted labels for x, and for each lifted label ρ, Nx(ρ)

is the number of times ρ appears as a lifted label for x, i.e.
Lx = {l(y) : A(y) = x} ⊆ �∗ and Nx : Lx → Z+ such that
Nx(ρ) = |{y : A(y) = x, l(y) = ρ}|.
For a side xα , and overloading notation, let L′

xα
=

(Lxα ,Nxα) be its multiset of lifted edges, where L(xα) is the
set of distinct lifted adjacencies incident with xα , and for
each lifted adjacency {xα ,wγ }, Nxα ({xα ,wγ }) is the num-
ber of sides whose lifting ancestor is xα , and which are
connected by an adjacency to a side whose lifting ancestor
is wγ , i.e. Lxα = {{xα = A(yα),A(zβ)} : {yα , zβ} ∈ EG} and
Nxα = Lxα → Z+ such that Nxα ({xα ,wγ }) = |{yα : {xα =
A(yα),wγ } ∈ Lxα }|.
Note that for a side xα , Nxα ({xα ,wγ }) gives the mul-

tiplicity of lifted adjacency incidences with xα , not the
multiplicity of {xα ,wγ }. In particular, if two sides xα and
x′
α are attached and share the same lifting ancestor A(xα),
then NA(xα)({A(xα),A(xα)}) is incremented by 2. On the
contrary, if xα is connected to wγ and A(xα) is dis-
tinct from A(wγ), then both NA(xα)({A(xα),A(wγ)}) and
NA(wγ)

({A(xα),A(wγ)}) are incremented by 1.
For a vertex (resp. side) x the multi-set of non-trivial

lifted labels (adjacencies) is L̃′
x = (L̃x, Ñx) ⊆ L′

x.

The equivalence of LBSC to UBSC and LBRC to UBRC for AVGs
Lemma 10. For any AVG H, sl(H) = su(H).

Proof. For a vertex x without substitution ambiguity
there is at most one non-trivial lifted label, that, if it exists,
has a multiplicity of one, therefore |L̃x| = |L̃′

x| = 0 or 1.
Let δa,b be the Kronecker delta, i.e. δa,b = 1 if a = b, else
0. It is easily verified for every possible case:

max(0, |L̃x| − δl(x),∅) = |L̃′
x| − δl(x),∅ × max

ρ∈L̃′
x

Nx(ρ),

summing over modules, therefore:

sl(H) =
∑

x∈VL(H)

max(0, |L̃x| − δl(x),∅)

=
∑

x∈VL(H)

|L̃′
x| − δl(x),∅ × max

ρ∈L̃′
x

Nx(ρ) = su(H).

A module is simple if each side has at most one inci-
dence with a non-trivial lifted adjacency.

Lemma 11. All modules in an AVG are simple.

Proof. Follows from definition of rearrangement ambi-
guity.

Lemma 12. For an AVG H, rl(H) = ru(H).

Proof. Let M be a simple module and let kM =∑
xα∈VM δ1,|L̃′

xα |, i.e. the number of sides in VM with a
single incidence with a non-trivial lift.
As the module is simple it is a path or a cycle, and hence

|VM| − kM = 0, 1 or 2, from which it is easily verified that:

 |VM| − kM
2

� − 1 = −
∏

xα∈VM

δ1,|L̃′
xα |.

Summing over modules in H, which are all simple,
therefore:

∑
M∈M(H)

 |VM| − kM
2

� − 1 =
∑

M∈M(H)

−
∏

xα∈VM

δ1,|L̃′
xα |.

As all modules of H are simple, kM is always even and
kM = ∑

xα∈VM |L̃′
xα

|, therefore:
∑

M∈M(H)

(

 |VM|

2
�−1

)
−1
2

∑
xα∈VM

|L̃′
xα

|=
∑

M∈M(H)

−
∏

xα∈VM

δ1,|L̃′
xα|,

therefore, for an AVG H

rl(H) =
∑

M∈M(H)

(

 |VM|

2
� − 1

)

=
∑

M∈M(H)

⎛
⎝1
2

∑
xα∈VM

|L̃′
xα

| −
∏

xα∈VM

δ1,|L̃′
xα |

⎞
⎠=ru(H).

A bounded transformation of a history graph into an AVG
In this section we will prove that any history graph G
has an AVG extension H such that su(G) ≥ su(H)

and ru(G) ≥ ru(H). To do this we define sequences of
extension operations that when applied iteratively and
exhaustively construct such an extension.
A vertex or side x is ambiguous if |L̃′

x| > 1. For
an ambiguous free-root x′ and unlabeled root vertex x
such that A(x) = x′, a root labeling extension is a
labeling of x with a member of the set argmax

ρ∈L̃x′
Nx′(ρ)

(See Figure 11(A)).

Paten et al. BMC Bioinformatics 2014, 15:206 Page 16 of 31
http://www.biomedcentral.com/1471-2105/15/206

A

B

E

C

D

Figure 11 Extension operations used to demonstrate the upper bound. (A) A root labeling extension. (B) A substitution ambiguity reducing
extension. (C-D) Junction side attachment extensions. (E) A rearrangement ambiguity reducing extensions. Elements in red/outlined in red are
those added in extension.

Lemma 13. For any history graph G containing an
ambiguous free-root there exists a root labeling extension
G′ of G such that su(G) = su(G′), ru(G) = ru(G′) and
u(G) > u(G′).

For a branch (x, x′) an interpolation is the extension
resulting from the creation of a new vertex x′′ and
branches (x, x′′) and (x′′, x′) and the deletion of (x, x′). Let
x be a labeled and ambiguous vertex and x′ be a labeled
vertex such that A(x′) = x and l(x) �= l(x′). A substitu-
tion ambiguity reducing extension is the interpolation of a
vertex x′′ along the parent branch of x′ labeled with l(x)
(See Figure 11(B)).

Lemma 14. For any history graph G containing no
ambiguous free-roots and such that us(G) > 0, there exists
a substitution ambiguity reducing extension G′ of G such
that su(G) = su(G′), ru(G) = ru(G′) and u(G) > u(G′).

The following is used for eliminating rearrangement
ambiguity. For an unattached junction side xα a junction
side attachment extension is the extension resulting from
the following: If xα has no attached ancestor, the cre-
ation of a new vertex and adjacency connecting a side of
the new vertex to xα (see Figure 11(C) for an example),
else {A(xα), yβ} ∈ EG and the extension is the creation

of a new vertex y′, branch (y, y′) and adjacency {xα , y′
β}

(See Figure 11(D)).

Lemma 15. For any history graph G containing an
unattached junction side, there exists a junction side
attachment extension G′ of G such that su(G) = su(G′),
ru(G) ≥ ru(G′), u(G) ≥ u(G′) and G′ contains one less
unattached junction side than G.

Let {xα , yβ} and {A(xα), zγ } be a pair of adjacencies and
A(xα) be ambiguous. A rearrangement ambiguity reducing
extension is the interpolation along the parent branch of
x a vertex x′, the creation of a new vertex z′, new branch
(z, z′) and new adjacency {x′

α , z′γ } (See Figure 11(E)).

Lemma 16. For any history graph G containing no
unattached junction sides and such that ur(G) > 0, there
exists a rearrangement ambiguity reducing extension G′ of
G such that su(G) = su(G′), ru(G) ≥ ru(G′) and u(G) >

u(G′).

We can now prove the desired lemma.

Lemma 17. Any history graph G has an AVG extension
H such that su(G) ≥ su(H) and ru(G) ≥ ru(H).

Paten et al. BMC Bioinformatics 2014, 15:206 Page 17 of 31
http://www.biomedcentral.com/1471-2105/15/206

Proof. Using the previous 4 lemmas it is easily verified
the result of the following algorithm is an AVG extension
H for a history graph G such that su(G) ≥ su(H) and
ru(G) ≥ ru(H).

H ← G
while u(H) > 0 do

if H contains an ambiguous free-root then
H ← root labeling extension of H .

else
if us(H) > 0 then

H ← substitution ambiguity reducing extension
of H .

else
if H contains an unattached junction side then

H ← junction side attachment extension of
H .

else
H ← rearrangement ambiguity reducing
extension of H .

end if
end if

end if
end while

A bounded transformation of an AVG into a realisation
In this section we will prove that any AVG H has a
realisationH such that sl(H) = s(H) and rl(H) = r(H).
A vertex connected by an adjacency to another ver-

tex with more child branches has missing children. A
root vertex that is connected to a non-root vertex has
a missing parent. Missing parents and missing chil-
dren are collectively missing branches. An unattached
side with homologous attached sides has a missing
adjacency.
We will define a series of extension types that when

combined iteratively create an extension in which all ver-
tices are labeled and no elements have missing adjacen-
cies or branches. For each extension type defined below
Figure 12 shows an example.
For an attached root vertex x, the creation of a new ver-

tex x′ and branch (x′, x) is a case 1 extension. The case 1
extension is used iteratively to initially ensure all roots are
unattached.
For an attached leaf vertex, the creation of a new ver-

tex x′ and branch (x, x′) is a case 2 extension. The case 2
extension is used iteratively to initially ensure all leaves are
unattached.
For a side xα ifA(xα) is in amoduleM, xα is in the face of

M. Let M be a simple module containing an odd number
of sides and let xα be an unattached root side in the face
ofM. The following is a case 3 extension: the creation of a

pair of vertices y and y′, an adjacency connecting a side of
y to xα and the branch (y, y′). The case 3 extension is used
iteratively to ensure all modules contain an even number
of sides.
Similarly to vertices and sides, a thread X is ances-

tral to a thread Y in a history graph G, and reversely Y
is a descendant of X, if there exists a directed path in
D(G) from the vertex representing X to the vertex rep-
resenting Y , otherwise two threads are unrelated if they
do not have an ancestor/descendant relationship. For a
vertex x, T(x) is the thread it is part of. For a pair of
unattached root sides xα and yβ in the face of a sim-
ple module such that T(x) = T(y) or T(x) and T(y)
are unrelated, the creation of a new adjacency {xα , yβ}
is a case 4 extension. The case 4 extension is used
iteratively to ensure all modules contain attached root
sides.
Let xα be a side in the face of a simple module M such

that xα is internal, unattached and has an attached par-
ent. Let (y, y′) be a branch such that y′

β is a side in the
face of M, T(y) is not descendant of T(x), if T(y) =
T(x) then y is unattached, T(y′) is descendant or unre-
lated to T(x), and the sides A(xα) and A(y′

β) in M are
connected by a path containing an odd number of adja-
cencies/lifted adjacencies. If yβ is unattached and T(y) is
unrelated or equal to T(x) then the creation of the adja-
cency {xα , yβ} is the case 5 extension, else the interpolation
of a vertex y′′ on the branch (y, y′) and creation of the
adjacency {xα , y′′

β} is the case 5 extension. The case 5 exten-
sion is used iteratively to ensure all internal vertices are
attached.
For an adjacency {xα , yβ} such that y has fewer chil-

dren than x, the creation of a new vertex y′ and branch
(y, y′) is a case 6 extension. The case 6 extension is used
iteratively to ensure there are no vertices with missing
children.
Let xα and yβ be a pair of unattached leaf sides in the

face of a simple module M such that T(x) and T(y) are
unrelated or equal, A(xα) and A(yβ) are attached and are
either connected by an adjacency or both not incident
with a non-trivial lifted adjacency. The creation of a new
adjacency {xα , yβ} is a case 7 extension. The case 7 exten-
sion is used iteratively to ensure there are no leaf vertices
with missing adjacencies.
For a branch-tree containing no labeled vertices, the

labeling of any single vertex in the branch-tree with
a member of �∗ is a case 8 extension. For a branch
(x, y), such that y is labeled and x is unlabeled the
labeling of x with the label of y is a case 9 exten-
sion. For a branch (x, y), such that x is labeled and y
is unlabeled the labeling of y with the label of x is
a case 10 extension. The case 8, 9 and 10 extensions
are used iteratively to ensure there are no unlabeled
vertices.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 18 of 31
http://www.biomedcentral.com/1471-2105/15/206

Figure 12 Case 1 to 10 extensions. Adjacencies with lightning bolts may be expanded to include additional elements within the simple module.
Elements in red/outlined in red are those added in extension.

Lemma 18. For an AVG H, if H ′ is obtained from H by
any of the 10 extensions cases above then sl(H) = sl(H ′)
and rl(H) = rl(H ′).

Lemma 19. For an AVG H, each of the ten types of
extensions above can only be applied consecutively a finite
number of times until there are no more opportunities in
the graph to apply an extension of that type.

Lemma 20. Any AVG H has an AVG extension H ′ with
no missing labels, adjacencies or branches and such that
sl(H) = sl(H ′) and rl(H) = rl(H ′).

Proof. Wewill demonstrate that the following algorithm
converts an AVG into an AVGwith nomissing adjacencies
or branches or unlabeled vertices.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 19 of 31
http://www.biomedcentral.com/1471-2105/15/206

H ′ ← H
i ← 1
while i ≤ 10 do

while H ′has a case iextension do
H ′ ← case i extension of H ′

end while
i ← i + 1

end while

It follows from Lemma 19 that the algorithm always ter-
minates and from Lemma 18 that H ′ is an AVG such that
sl(H) = sl(H ′) and rl(H) = rl(H ′).
It remains to prove that H ′ has no missing branches or

adjacencies or unlabeled vertices. Call the AVG extension
resulting at the end of the ith loop of line 5 of the algo-
rithm the case i complete extension. The following series
of compounding statements are straightforward to verify.

• The case 3 complete extension contains no modules
with an odd number of sides.
The case 2 extensions ensure that all root vertices are
unattached, and every case 3 extension attaches a
root vertex in a module with an odd number of sides
to a newly created root vertex, so ensuring the
module contains an even number of sides, so for
every module with an odd number of sides there
exists a case 3 extension.

• The case 4 complete extension additionally contains
no root sides with missing adjacencies or root
vertices with missing parents.
The case 3 extensions ensure that there always 0 or 2
unattached root sides in a module, so any unattached
root side in a module always has a potential
unattached partner root side within the module. The
requirement that sides connected in a case 4
extension be in the same or unrelated threads prior to
connection does not prevent any root side within the
face of a module from becoming attached, because
the case 1 extensions ensure that all root vertices are
unrelated, the case 2 extensions do not effect root
vertices and the case 3 and 4 vertices only result in
root vertices being connected to one another.

• The case 5 complete extension additionally contains
no internal vertices with missing adjacencies.
The case 4 extensions ensure that all root sides within
modules are attached. The case 2 extensions ensure
that all attached sides have children and the case 3, 4
and 5 extensions ensure this remains true. Given this,
and that every module has an even number of sides
within it (as a case 3 complete extension), it is
straightforward to verify that there is always a case 5
extension in a sequence of such extensions for any
internal side within the face of a module.

• The case 6 complete extension additionally contains
no vertices with missing child branches.

• The case 7 complete extension additionally contains
no leaf sides with missing adjacencies, and therefore
has no missing branches or adjacencies.
Analogously with the case 4 extensions, the
requirement that sides connected in a case 7
extension be in the same or unrelated threads does
not prevent any leaf side within the face of a module
from becoming attached by a case 7 extension, this is
because the case 2 extensions ensure all leaf vertices
are unrelated, the case 3, 4, 5 and 6 extensions do not
connect leaf vertices, and the case 7 extensions only
connect leaf sides to one another.

• The case 8 complete extension additionally contains
no branch-trees without any labeled vertices.

• The case 9 complete extension additionally contains
no unlabeled ancestral vertices that have labeled
descendants.

• The case 10 complete extension additionally contains
no unlabeled vertices, and therefore has no missing
adjacencies, branches or labels.

We can now prove the desired lemma.

Lemma 21. Any AVG H has a realisation H such that
sl(H) = s(H) and rl(H) = r(H).

Proof. Lemma 20 demonstrates there exists an AVG
extension H ′ of H with no missing labels, adjacencies or
branches such that sl(H) = sl(H ′) and rl(H) = r(H ′).
H ′ is converted to a simple history with the same cost as
follows.

• On every branch of H ′ interpolate a vertex.
• Label each interpolated vertex identically to its parent.
• Connect the sides of the interpolated vertices to one

another such that for any adjacency {xα , yβ}
connecting interpolated vertices,
{A(xα),A(yβ)} ∈ EH ′ .

It is easily verified that the result is an AVG that can
be edge partitioned into rearrangement and replication
epochs and hence is a simple history.

LBSC and LBRC are lower bounds

Lemma 22. LBSC is a lower bound on substitution cost.

Proof. From Lemmas 17 and 21 it follows that every his-
tory graph has a realisation. It is sufficient therefore to
further prove that for any simple history H, s(H) = sl(H)

and that a history graph G has no extension G′ such that

Paten et al. BMC Bioinformatics 2014, 15:206 Page 20 of 31
http://www.biomedcentral.com/1471-2105/15/206

sl(G) > sl(G′). The former is easily verified and we now
prove the latter.
Let (G = Gn) ≺ Gn−1 ≺ . . .G2 ≺ (G1 = G′) be

a sequence of n history graphs for a reduction sequence
of n − 1 reduction operations. For some integer i ∈ [1, n)

if the ith reduction operation is a vertex deletion, adja-
cency deletion or branch contraction, as these each have
no impact on the calculation of LBSC, sl(Gi+1) = sl(Gi).
Else the ith reduction operation is a label deletion. Let x
be the vertex whose label is being deleted. As the number
of non-trivial lifted labels for A(x) after the deletion of x is
less than or equal to the sum of non-trivial lifted labels for
x and A(x), it follows that sl(Gi+1) ≤ sl(Gi). Therefore by
induction sl(G) ≤ sl(G′).

Lemma 23. LBRC is a lower bound on rearrangement
cost.

Proof. Analogously to the proof of Lemma 22, from
Lemmas 17 and 21 it follows that every history graph has
a realisation. It is sufficient therefore to further prove that
for any simple history H, r(H) = rl(H) and that a history
graph G has no extension G′ such that rl(G) > rl(G′). The
former is easily verified and we now prove the latter.
Let (G = Gn) ≺ Gn − 1 ≺ . . .G2 ≺ (G1 = G′) be a

sequence of n history graphs for a reduction sequence of
n − 1 reduction operations. For some integer i ∈[1, n) if
the ith reduction operation is a label deletion, vertex dele-
tion or contraction of a branch with a free-parent, as each
removes an element that has no effect on the calculation
of the LBRC, rl(Gi+1) = rl(Gi).
Else if the ith reduction operation is a contraction of

a branch with a free-child, as the child is unattached the
only possible effect on the LBRC calculation is the conver-
sion of non-trivial lifted adjacencies into trivial lifted adja-
cencies, therefore rl(Gi+1) ≤ rl(Gi) (see Figure 13(A)).
Let q(M) and p(M) be the number of unattached and

attached sides in a moduleM, as q(M) + p(M) = VM:

rl(G) =
∑

M∈M(G)

(q(M) + p(M))/2� − 1.

As each side may be incident with at most one adjacency
p(M) is even and p(M)/2 is the number of adjacencies in
M, therefore:

rl(G) = |EG| +
∑

M∈M(G)

q(M)/2� − 1.

Hence rl(G) = |EG| + Q(G) − |M(G)|, where Q(G) =∑
M∈M(G)
q(M)/2�. Suppose rl(Gi+1) > rl(Gi). If the ith

reduction operation is an adjacency deletion, |EGi+1 | +
1 = |EGi |, therefore Q(Gi+1) − |M(Gi+1)| ≥ Q(Gi)−
|M(Gi)| + 2.

The removal of an adjacency can reduce the number of
modules by at most two, therefore |M(Gi)|− |M(Gi+1)| ≤
2. The number of modules decreases by the maximum of
two only when the adjacency to be deleted connects two
sides that each have no incident lifted adjacencies (see
Figure 13(B)). However, in this caseQ(Gi) = Q(Gi+1)+ 1,
as the number of unattached sides in a module decreases
by 2, therefore if |M(Gi)|−|M(Gi+1)| = 2 then rl(Gi+1) ≤
rl(Gi).
An unattached side in a module is the side of a free-root,

and such a free-root side has incident lifted adjacencies.
The side of a free-root with no incident lifted adjacencies
can not become part of a module by the removal of any
adjacency from the associated history graph, as by defi-
nition the homologous sides in its associated branch-tree
are all unattached. The removal of an adjacency can there-
fore only decrease or leave the same the total number of
unattached sides in modules. The only way for Q(Gi+1) −
Q(Gi) to be positive is therefore by the redistribution of
unattached sides between modules to exploit the ceiling
function. As in the removal of a single adjacency at most
two unattached sides can be redistributed from a single
module (see Figure 13(C)), thereforeQ(Gi+1)−Q(Gi) ≤ 1.
But if Q(Gi+1) − Q(Gi) = 1 then it is easily verified
|M(Gi)| − |M(Gi+1)| ≤ 0. This is all the cases, there-
fore rl(Gi+1) ≤ rl(Gi), by induction therefore rl(G) ≤
rl(G′).

Theorem 1. For any history graph G and any cost func-
tion c, c(sl(G), rl(G)) ≤ C(G, c) ≤ c(su(G), ru(G)) with
equality if G is an AVG.

Proof. Follows from Lemmas 10, 12, 17, 21, 22 and 23.

Proof of Theorem 2
We first classify non-minimal adjacencies and labels.
A non-minimal label of a vertex x is (see Figure 14(A)):

• A leaf if L′
x = {},

• else, as it is not a junction, |L′
x| = 1 and:

– the label is redundant if L̃′
x = {},

– else complicating if l(A(x)) �= l(x),
– else l(A(x)) = l(x) and, as it is not a bridge,

then L̃A(x) = {} and it is an unnecessary
bridge.

A non-minimal adjacency {xα , yβ} is (see Figure 14(B)):
• a leaf if L′

xα
∪ L′

yβ = {},
• else, as it is not a junction, neither xα or yβ are

junction sides and it is complex if |L′
xα

| > 1 or
|L′

yβ | > 1,
• else |L′

xα
| ≤ 1, |L′

yβ | ≤ 1 and:

Paten et al. BMC Bioinformatics 2014, 15:206 Page 21 of 31
http://www.biomedcentral.com/1471-2105/15/206

A B

C

Figure 13 Demonstrating the lower bound. (A) A contraction of a branch with a free-child can only possibly result in non-trivial adjacencies
becoming trivial. (B) An adjacency deletion can at most reduce the number of modules by 2, and if the number of modules decrease by two then
the number of unattached sides in a modules decreases by 2. (C) An example of the deletion of an adjacency redistributing two unattached sides.

– the adjacency is redundant if
Lxα ∪ Lyβ = {{xα , yβ}},

– else complicating if {A(xα),A(yβ)} is a
non-trivial lifted adjacency,

– else {A(xα),A(yβ)} is a trivial lifted adjacency
and, as it is not a bridge either:

∗ L̃′
A(xα) ∪ L̃′

A(yβ) = {} and it is an
unnecessary bridge,

∗ else (L′
A(xα) ∪ L′

xα
) \ {{xα , yβ}} ≤ 1

and (L′
A(yβ) ∪ L′

yβ) \ {{xα , yβ}} ≤ 1
and it is a removable bridge.

Lemma 24. A G-minimal AVG contains no G-reducible
non-minimal elements.

Proof. We prove the contrapositive. It is easily verified
that the deletion of any single non-minimal vertex or con-
traction of a non-minimal branch from an AVG results
in a reduction that is also an AVG. It is also easily veri-
fied that the deletion of each possible type of non-minimal
label/adjacency from an AVG results in a reduction that
is also an AVG, with the exceptions of a complex non-
minimal adjacency, which can not be present within an
AVG (because such an edge implies ambiguity), and a
removable bridge adjacency. After deletion of a removable
bridge adjacency {xα , yβ} the adjacency {A(xα),A(yβ)}
ceases to be a junction adjacency, and may either become
a bridge, in which case the resulting graph is an AVG, or
it may become a non-minimal adjacency. If it becomes a
non-minimal adjacency, then, by the prior argument, if

A

B

Figure 14 Further classifying labels and adjacencies. (A) Classification of labels. From left-to-right labels of vertices outlined in red are: leaf,
junction, (another) junction, redundant, complicating, unnecessary bridge and bridge. (B) Classification of adjacencies. From left-to-right
adjacencies in red are: leaf, junction, complex, redundant, complicating, unnecessary bridge, removable bridge and bridge.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 22 of 31
http://www.biomedcentral.com/1471-2105/15/206

it is not a removable bridge adjacency then its deletion
results in an AVG, else if it is a removable bridge then after
the deletion of {A(xα),A(yβ)}, the process of considering if
{A(A(xα)),A(A(yβ))} is non-minimal and deleting if nec-
essary is repeated iteratively until the resulting graph is an
AVG.

Lemma 25. The only G-reducible adjacencies in the G-
unbridged graph of an extension of G containing no non-
minimal elements are junction adjacencies.

Proof. By definition, the only G-reducible adjacencies
in an extension of G with no G-reducible non-minimal

elements are junction adjacencies and bridges. Each dele-
tion of aG-reducible bridge adjacency does not create any
G-reducible non-minimal adjacencies, as a junction adja-
cency connecting sides that are the lifting ancestors of
the sides connected by a bridge adjacency remains a junc-
tion adjacency after the deletion of the bridge, and the
lifted adjacencies incident with the sides connected by the
bridge, which are non-trivial, lift to this junction instead
and therefore remain non-trivial.

Lemma 26. The G-unbridged graph of a G-optimal
AVG for any cost function contains no G-reducible ping
adjacencies.

A

B

C

D

E

F

Figure 15 Examples of ping-pong adjacencies. (A,B,C) The ping-pong adjacencies are shown in blue. (D,E,F) After modifications to remove the
ping-pong adjacencies, for each corresponding left side case, with the added elements shown in red.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 23 of 31
http://www.biomedcentral.com/1471-2105/15/206

Proof. Let H be a G-optimal AVG whose G-unbridged
graph H ′ contains one or more G-reducible ping adjacen-
cies. Example subgraphs containing ping-pong adjacen-
cies are shown in Figure 15(A-C). Let e = {xα , yβ} be such
a G-reducible ping adjacency and yβ a hanging endpoint
in H ′. From Lemma 25, the adjacency e must be a junc-
tion. Delete e from H ′ giving H ′′, note G � H ′′. If xα

has no most recent attached ancestor create a new ver-
tex and connect it with an adjacency to xα as shown in
Figure 15(D), else do the same but connect the new vertex
by a branch that makes it the child of the vertex connected
by an adjacency to the most recent attached ancestor of
xα , as shown in Figure 15(E). Note that it does not matter
in this second case if the most recent attached ancestor of
xα is a pong adjacency, as demonstrated in Figures 15(C)
and (F). It is easily verified that each modification defines
the G-unbridged graph of a valid AVG extension H ′′′ of
G that has one fewer G-reducible ping adjacencies in its
G-unbridged graph, one less rearrangement and the same
number of substitutions in its most parsimonious realisa-
tion as in the most parsimonious realisation of H . This
contradiction to the assumption that H was G-optimal
establishes the result.

Theorem 2. The G-bounded AVGs contain the G-
optimal AVGs for every cost function.

Proof. Follows from Lemmas 24 and 26.

Proof of Theorem 3
In the following let n be the number of adjacencies in a
history graph G.

Lemma 27. If n = 0 any G-bounded extension of G
contains 0 adjacencies.

Proof. Follows from Lemma 24.

As the n = 0 case is trivial now assume that n ≥ 1.
For an adjacency {xα , yβ} its received incidence is |L′

xα
| +

|L′
yβ | and its projected incidence is equal to the number

of members of {A(xα),A(yβ)} that are attached, either
0, 1 or 2. For an adjacency, the difference between pro-
jected incidence and received incidence is the incidence
transmission. A positive incidence transmission occurs
when the projected incidence is greater than the received
incidence number, conversely a negative incidence trans-
mission occurs when the projected incidence is less than
the received incidence. The incidence sum of a history
graph is the sum of the received incidences of its adjacen-
cies, or, equivalently, the sum of the projected incidences
of its adjacencies.

Lemma 28. The maximum possible incidence sum of G
is 2n − 2.

Proof. The 2n term is because each adjacency has a pro-
jected incidence of at most 2, the −2 term is because at
least one adjacency has a projected incidence of 0.

It is trivial to show this bound can be achieved for all
values of n.

Lemma 29. The G-unbridged graphG′′ for a G-bounded
history graph G′ has no G-reducible adjacencies with a
positive incidence transmission.

Proof. By Lemma 25, the only G-reducible adjacencies
in G′′ are junction adjacencies. Junction adjacencies have
an incidence transmission of 0 or less.

Lemma 30. The G-unbridged graphG′′ for a G-bounded
history graph G′ contains less than or equal to 2n − 1
adjacencies that either have a negative incidence trans-
mission, or which are G-irreducible and have an incidence
transmission of 0.

Proof. Let ki,j be the number of adjacencies in G′′ that
have a projected incidence of i and a received incidence
of j. As the sum of projected incidences equals the sum of
received incidences therefore:

2∑
i=0

∞∑
j=0

iki,j =
2∑

i=0

∞∑
j=0

jki,j

Figure 16 Demonstrating a larger graph. Ignoring the grey
elements, if there exists an adjacency e in a G-bounded and
G-unbridged graph with no projected incidences and one received
incidence, it must be G-irreducible and a larger graph, shown by the
elements in grey, exists that is H-bounded for a graph H with the
same number of adjacencies as G.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 24 of 31
http://www.biomedcentral.com/1471-2105/15/206

A

B

Figure 17 Demonstrating Lemma 31. (A) A junction adjacency with incidence transmission of 0 in a G-bounded AVG. (B) Ignoring the grey
elements, if the adjacency e in a G-bounded graph is a G-reducible junction adjacency with no projected incidences and no hanging endpoints, a
larger graph, shown by the elements in grey, exists that is H-bounded for a graph H with the same number of adjacencies as G.

Separating the contributions of adjacencies with a neg-
ative incidence transmission:

2∑
i=0

i∑
j=0

iki,j +
2∑

i=0

∞∑
j=i+1

iki,j =
2∑

i=0

i∑
j=0

jki,j +
2∑

i=0

∞∑
j=i+1

jki,j,

2∑
i=0

i−1∑
j=0

(i − j)ki,j =
2∑

i=0

∞∑
j=i+1

(j − i)ki,j,

2∑
i=0

i−1∑
j=0

(i − j)ki,j −
2∑

i=0

∞∑
j=i+1

(j − i − 1)ki,j =
2∑

i=0

∞∑
j=i+1

ki,j.

The first term of the left-hand side of the equation is the
total incidence transmission of all adjacencies in G′′ with
a positive incidence transmission. Using Lemma 29, these
adjacencies must all be G-irreducible. Let k be the num-
ber of G′′-irreducible adjacencies that have an incidence
transmission of 0, as:

2∑
i=0

i−1∑
j=0

ki,j < n − k,

2∑
i=0

i−1∑
j=0

(i − j)ki,j ≤ 2
2∑

i=0

i−1∑
j=0

ki,j ≤ 2n − 2k

A B

Figure 18 Toward demonstrating Lemma 33. (A) A graph with a single junction adjacency (coloured red) and two bridge adjacencies. (B) A
graph with the same size and cardinality as that in (A), but with an additional junction adjacency.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 25 of 31
http://www.biomedcentral.com/1471-2105/15/206

therefore b y substitution:

2n −
2∑

i=0

∞∑
j=i+1

(j − i − 1)ki,j ≥
2∑

i=0

∞∑
j=i+1

ki,j + 2k

The right-hand side of the inequality is the number of
adjacencies with a negative incidence transmission plus
two times the number of G-irreducible adjacencies with
an incidence transmission of 0.
As

∑2
i=0

∑∞
j=i+1(j − i − 1)ki,j can not be negative, it

remains only to prove that this term must be positive.
Assume that there are 2n or more adjacencies that either
have a negative incidence transmission, or which are G-
irreducible and have an incidence transmission of 0 (i.e.
a contradiction of the lemma). As n > 0, there must be
at least one adjacency in G′′ with a projected incidence
of 0 and a received incidence of greater than 0 in some
ancestral thread (i.e.

∑∞
j=1 k0,j > 0). Either such an edge

has a received incidence of 2 or greater, in which case
the considered term must be positive, or a larger graph
exists (see Figure 16) that isH-bounded andH-unbridged
with respect to a graph H , which has the same number of
adjacencies as G and an extra edge with a projected inci-
dence of 0 and a received incidence of 2 or greater, which
implies that

∑2
i=0

∑∞
j=i+1 ki,j + 2k < 2n. In either case we

derive a contradiction to the assumption of the number of
adjacencies, therefore:

2n − 1 ≥
2∑

i=0

∞∑
j=i+1

ki,j + 2k.

Lemma 31. The G-unbridged graph G′′ of a G-bounded
history graph G′ contains less than or equal to 3n − 3 G-
reducible adjacencies with an incidence transmission of 0.

Proof. Let X be the set of G-reducible adjacencies with
an incidence transmission of 0 in G′′. The sum of received
incidences equals the sum of projected incidences for
members of X, therefore the sum of received incidences
of other adjacencies in G′′ (≤ 2n − 1 G-reducible adja-
cencies with positive or negative incidence transmission
by Lemmas 29 and 30 and ≤ n G-irreducible adjacen-
cies) is equal to the sum of their projected incidences,
which by Lemma 28 is at most 2(n + 2n − 1) − 2 =
6n − 4. By Lemma 25, any adjacency e = {xα , yβ} in
X must be a junction adjacency, and, as it has 0 inci-
dence transmission, must have a hanging endpoint and
projected incidence of 2 (see Figure 17(A)). Let e′ and e′′
be the adjacencies incident with A(xα) and A(yβ), respec-
tively (see Figure 17(A)). As there exist no G-reducible

ping adjacencies, e′ and e′′ are either G-irreducible or G-
reducible junction adjacencies with a negative incidence
transmission. As e projects at least one incidence to each

A

B

Figure 19 Demonstrating the tightness of the adjacency bound
in Lemma 33. (A) A history graph with 3 adjacencies. (B) A
G-bounded AVG extension of the graph in (A) with 22 extra
G-reducible adjacencies and 44 extra attached vertices, the maximum
possible. The leaf adjacencies connecting the labeled leaves are
G-irreducible, as there are no other labeled vertices in G′ . All the other
adjacencies are junctions or bridges. The number of elements in the
red subgraph of (B) corresponds to the maximum number of
adjacencies and attached vertices that can be added given the
inclusion of the red subgraph in (A), and similarly for the blue
subgraph. By extrapolation this demonstrates the bounds on the
number of additional adjacencies and attached vertices are tight for
all possible numbers of adjacencies in the original graph.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 26 of 31
http://www.biomedcentral.com/1471-2105/15/206

such adjacency, X has a cardinality at most (6n − 4)/2 =
3n− 2. It remains to prove that it must be at least one less
than this bound.
Now let e be a G-reducible junction adjacency in G′′

that is contained in a thread that is ancestral or unre-
lated to all threads that contain a G-reducible adjacency
or label. IfG′′ contains more adjacencies thanG then such
an adjacency must clearly exist in G′′.
If e makes projected incidences to G-irreducible adja-

cencies then it makes projected incidences to adjacen-
cies not in X. If e does not make projected incidences
then it has negative incidence transmission, and either
e is a hanging adjacency, in which case it must receive
projected incidences from adjacencies that are not in X
(else there exists a G-reducible ping adjacency), or e is
not a hanging adjacency and a larger graph exists (see
Figure 17(B)) that is H-bounded with respect to a graph
H with the same number of adjacencies as G, in which
case, using Lemma 30, there must be less than 2n − 1
G-reducible negative transmission incidence adjacencies
in G′′. Therefore either there exist projected incidences
made between adjacencies not in X or there are fewer
than 2n − 1 G-reducible negative transmission incidence
adjacencies in G′′, either way, there are fewer than 6n − 4
projections made from adjacencies in X to adjacencies
not in X, and as there are no projections made between
adjacencies in X, and all adjacencies in X have a pro-
jected incidence of 2, therefore X has cardinality less
than 3n − 2.

Lemma 32. A G-bounded history graph G′ contains less
than or equal to 5n − 4 junction adjacencies.

Proof. From Lemmas 29, 30 and 31 it follows that the
unbridged graph of G′ contains less than 5n − 4 junc-
tion adjacencies. Extending the argument of Lemma 25,

it is easily verified that G′ contains the same number of
junction adjacencies as its unbridged graph.

Lemma 33. A G-bounded history graph G′ contains less
than or equal to 10n−8G-reducible adjacencies and 20n−
16 additional attached vertices. These bounds are tight for
all n ≥ 1.

Proof. Let i and j be the numbers of G-reducible junc-
tion and bridge adjacencies in G′, respectively. As bridges
and junctions are the only G-reducible adjacencies in G′,
i + j is equal to the total number of G-reducible adjacen-
cies in G′. Assume that i + j > 10n − 8. From Lemma 32
it follows that i ≤ 5n − 4, therefore j > 5n − 4. As j >

5n − 4, it follows from Lemma 32 there exists in G′ a pair
of G-reducible bridge adjacencies {xα , yβ}, {wα , zβ} such
that {A(xα),A(yβ)} = {A(wα),A(zβ)} (see Figure 18(A)).
However, in this case there exists an extension H of
G that contains the same number of adjacencies as G′
but one additional G-reducible junction adjacency (see
Figure 18(B)), therefore in H the number of G-reducible
junction adjacencies is greater than 5n−4, a contradiction
of Lemma 32, therefore i + j ≤ 10n − 8. From this bound,
trivially, the bound of the number of additional attached
vertices follows. Figure 19 shows both bounds are tight for
all n.

Let m be the number of labeled vertices in the history
graph G. As with the n = 0 case, the m = 0 case is sim-
ilarly trivial, but in terms of the number of G-reducible
labels.

Lemma 34. If m = 0 any G-bounded extension of G
contains 0 labels.

Proof. Follows from Lemma 24.

A B

Figure 20 Demonstrating the tightness of the vertex label bound in Lemma 35. (A) A history graph with 5 labeled vertices. (B) A G-bounded
AVG extension of the graph in (A) with 8 extra labeled vertices, the maximum possible. As only the leaf labels have the given label colour their labels
are G-irreducible, all the other labels in the graph are bridges or junctions. For each extra labeled leaf vertex added to (A) an extra pair of junction
and bridge adjacencies can be added to (B), thus the bound is tight for allm.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 27 of 31
http://www.biomedcentral.com/1471-2105/15/206

Now assume thatm ≥ 1 and that n ≥ 0.

Lemma 35. A G-bounded history graph G′ contains less
than or equal to 2m − 2 G-reducible vertex labels. This
bound is tight for all m ≥ 1.

Proof. Let i and j be the number of junction and bridge
labels, respectively, in G′. By Lemma 24, the total num-
ber of G-reducible labels in G′ is less than or equal to
i + j. The number of bridges j is less than or equal
to the total number of child branches of vertices that
are label junctions, which, as the connected components
of branches are trees, is equal or fewer than two times
the number of leaf labels minus 2, and therefore equal
or fewer than 2m − 2. Furthermore, by definition, the
lifting ancestor of a vertex with a bridge label has a non-
trivial lifted label, which implies such a vertex’s label is
not a bridge, therefore j ≤ 2m − 2 − i, therefore j +
i ≤ 2m − 2. Figure 20 shows this bound is tight for
allm.

We are now in a position to prove the desired theorem
for any value of n andm.

Theorem 3. A G-bounded history graph contains less
than or equal to max(0, 10n − 8) G-reducible adjacencies
and max(0, 2m − 2, 20n − 16, 20n + 2m − 18) additional
vertices. This bound is tight for all values of n ≥ 0 and
m ≥ 0.

Proof. Lemmas and 27 and 33 prove the bound on the
number of G-reducible adjacencies, it remains to prove
the bound on the number of additional vertices.
Let X, Y and Z be the total numbers, respectively,

of additional attached, labeled and both unattached and
unlabeled vertices in G′.
From Lemmas 27 and 33 it follows that X ≤

max(0, 20n − 16). From Lemmas 34 and 35 it follows that
Y ≤ max(0, 2m − 2). Combining these results X + Y ≤
max(0, 2m − 2, 20n − 16, 20n + 2m − 18).
Assume X + Y + Z > max(0, 2m − 2, 20n − 16, 20n +

2m − 18). As X + Y ≤ max(0, 2m − 2, 20n − 16, 20n +
2m − 18), Z ≥ 1. As G′ contains no non-minimal
branches, Z is a count of additional root vertices that
are unlabeled, unattached and have two or more chil-
dren, all of which are either labeled, attached or both.
Using this information, it is straightforward to demon-
strate that there exists a modified pair of history graphs
(H ,H ′) such that H has the same size and cardinal-
ity as G, and H ′ is a H-bounded extension of H that
has more labeled or attached vertices than G′. The exis-
tence of (H ,H ′) contradicts either or both Lemmas 35 or
Lemma 33.
Figure 21 shows this bound is tight for all n andm.

A

B

Figure 21 Demonstrating the tightness of Theorem 3. (A) The
combination of the history graphs in Figures 19(A) and 20(B),
constructed by merging their root vertices. (B) A G-bounded AVG
extension of the graph in (B) with 22 extra adjacencies and 54 extra
vertices, the maximum possible. The colouring of the elements is
used to demonstrate the bound is tight for any combination ofm and
n, and follows that used in Figure 19.

Proof of Theorem 4
A adjacency {xα , yβ} is old if both A(xα) and A(yβ) are
each independently either the side of a free-root or inci-
dent with a G-irreducible adjacency.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 28 of 31
http://www.biomedcentral.com/1471-2105/15/206

ABC

F E D

Figure 22 A sequence of label/adjacency detachments that transform a G-bounded history graph into G. Label detachments of a (A-B)
bridge label and (B-C) junction label. Bond detachments of a (C-D) bridge adjacency and (old) (D-E-F) junction adjacencies. Elements outlined in
red are those being removed.

Lemma 36. For any G-bounded history graph G′ not iso-
morphic to G there exists a label detachment or adjacency
detachment that results in a G-bounded history graph.

Proof. As G is not isomorphic to G′, G′ contains one or
more G-reducible elements. If there exists a G-reducible

label that is a bridge then its label detachment results
in a G-bounded reduction (see Figure 22(A-B)). Else if
there exists a G-reducible label it is a junction label and
its label detachment results in a G-bounded reduction
(see Figure 22(B-C)). Else if there exists a G-reducible
adjacency that is a bridge then its adjacency detachment

A B

C

Figure 23 Lateral-adjacency detachments. (A-B) The elements in red are G-reducible. (C) A not G-bounded intermediate of the lateral-adjacency
detachment that contains a G-reducible ping adjacency.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 29 of 31
http://www.biomedcentral.com/1471-2105/15/206

results in a G-bounded reduction (see Figure 22(C-D)).
Else there exists a G-reducible adjacency that is an
old junction adjacency and whose adjacency detachment
results in aG-bounded reduction (see Figure 22(D-E-F)).

The previous lemma implies that for any G-bounded
history graph there exists a sequence of label and adja-
cency detachments that results in G. We now seek the
inverse, to demonstrate the existence of a sequence of
moves to create a G-bounded AVG from any G-bounded
history graph.
The inverse of a label/adjacency/lateral-adjacency detach-

ment is, respectively, a label/adjacency/lateral-adjacency
attachment.
The graph in Figure 23(A) has no valid label/adjacency

attachment operation that results in a G-bounded history
graph, yet it is not an AVG, because it has an unattached

junction side, x′
tail and any adjacency attachment of x′

tail
results in the creation of a G-reducible ping adjacency.
This motivates the need for the lateral-adjacency detach-
ment/attachment operation, that we use to avoid the
creation of G-reducible ping adjacencies. Notably, while
both label detachment and adjacency detachment opera-
tions define reductions, the result of a lateral-adjacency
detachment, though an extension of G, is not necessarily
a reduction of the starting graph, though it always has one
fewer adjacency.

Lemma 37. A G-bounded history graph G′ such that
u(G) > 0 has a label/adjacency/lateral-adjacency attach-
ment that results in a G-bounded history graph.

Proof. If G′ has a free-root x such that |L′
x| > 1, then

the labeling of the root of the branch-tree whose free-root

A

B

C

D

Figure 24 An illustration of an infinite set of G-minimal AVG extensions. (A) G. (B) G with an added single copy of the repeating unit in bold.
(C) G with the added terminal elements in bold. (D) A G-minimal AVG extension with 2 copies of the repeat subunit and the terminal elements that
attach w2 and y2. Vertices are identified by lowercase letters, with superscripts used to denote distinct copies of elements in the repeating subunit.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 30 of 31
http://www.biomedcentral.com/1471-2105/15/206

is x is a label attachment that results in a G-bounded
extension that contains an additional junction label (see
Figure 7(A-B) in the main text). Else, if G′ has substitution
ambiguity then there exists a labeled vertex with two or
more non-trivial lifted labels for which there exists a label
attachment that results in a G-bounded extension, which
contains an additional bridge label (see Figure 7(B-C) in
the main text). Else G′ has rearrangement ambiguity. If G′
has one or more unattached junction sides, let xα be such
a side. If the most ancestral attached descendants of xα are
not incident with hanging adjacencies then the creation
of an isolated vertex y and adjacency {xα , yα} is an adja-
cency attachment that results in a G-bounded extension
(see Figure 7(C-D) in the main text). Else there exists a
lateral-adjacency attachment that results in a G-bounded
history graph in which xα is incident with an adjacency
with no hanging endpoints (see Figure 7(D-E), the opera-
tion is also an adjacency attachment in this example). Else
G′ does not have an unattached junction side, and there
exists an attached junction side with two or more inci-
dent non-trivial lifted adjacencies for which there exists an
adjacency attachment that results in a G-bounded exten-
sion that contains an additional bridge adjacency (see
Figure 7(E-F) in the main text).

Given Theorem 3, the previous lemma implies that for
any G-bounded history graph there exists a sequence of
label/adjacency/lateral-adjacency attachment operations
that result in a G-bounded AVG.

Theorem 4. The G-bounded poset is finite, has a single
least element G, its set of maximal elements are AVGs, and
if and only if there exists a G-bounded reduction operation
to transform G′′ into G′ then G′ ≺ ·GG′′.

Proof. That G-bounded is finite follows from
Theorem 3. Lemma 36 implies it has a single least
element. As a corollary of Theorem 3 and Lemma 37 it fol-
lows that the set of maximal elements of the G-bounded
poset are AVGs.
It remains to prove G′ ≺ ·GG′′ if and only if there exists

a G-bounded reduction operation to transform G′′ into
G′. The only if follows by definition. If G′ ≺G G′′ but not
G′ ≺ ·GG′′ then there exists a G′′′ such that G′ ≺G
G′′′ ≺G G′′. If G′′ is transformed to G′ by a single G-
bounded reduction operation, to complete the proof it is
sufficient to show that no such G′′′ can exist, this is easily
verified.

Proof of Lemma 9
Lemma9. There exists a history graphGwith an infinite

number of G-minimal extensions.

Proof. We will demonstrate there exists an infinite set
of G-minimal AVG extensions of the history graph G

shown in Figure 24(A). The extensions are composed of
the repeating subgraph shown in bold in Figure 24(B) and
the terminal elements shown in bold in Figure 24(C) that
attach the most ancestral copies of w and y.
Consider the AVG extension H0 with zero copies of the

repeating subunit and the terminal elements to attach w0

and y0, as in Figure 24(C). As a, b, c and d are labeled but
no other vertices are labeled, the adjacencies {ahead , bhead}
and {chead , dhead} are G-irreducible, because removal of
either in any reduction would create a graph that can
not then be an extension of G. Given this observation,
by definition w0 and y0 or any vertices produced by con-
tracting incident branches of w0 and y0 must be junctions
in any G-minimal reduction, and therefore be attached,
but by definition of the reduction relation, {w0

head ,w
′0
head}

and {y0head, y
′0
head} can not be removed and yet w0 and

y0 be attached in any G-minimal reduction. This there-
fore implies that the bridge adjacencies {x0head , x

′0
head} and

{z0head , z
′0
head} are also not removed in a G-minimal reduc-

tion, but this is all the adjacencies in H0, as all the vertices
in H0 are attached, therefore H0 is G-minimal.
Let Hi be an AVG with i such layers, where i > 0

(Figure 24(D) shows an example for i = 2). To prove that
Hi is a G-minimal AVG extension we proceed by induc-
tion. H0 is the base case. Assume the adjacencies incident
with wi−1 and yi−1 are not removed in any G-minimal
reduction. Using similar logic to the base case the adjacen-
cies incident wi, xi, yi and zi are similarly not removed in
a G-minimal reduction, again as this is all the added adja-
cencies and all vertices are attached, using the induction
therefore Hi is G-minimal.

Endnotes
aThe contraction of an edge e is the removal of e from

the graph and merger of the vertices x and y incident
with e to create new vertex z, such that edges incident
with z were incident either with x or y or both, in the
latter case becoming a loop edge on z.

bNote: whileH(G) is infinite we show in the sequel that
the infimum of this set of costs is always achieved by a
history, hence the infimum is the minimum.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BP, DZ, GH and DH developed the theory. BP and DZ implemented the theory
and performed the experiments. BP wrote the paper, which was edited by DZ,
GH and DH. All authors read and approved the final manuscript.

Acknowledgements
We would like to thank Dent Earl for his help with figures and the Howard
Hughes Medical Institute, Dr. and Mrs. Gordon Ringold, NIH grant 2U41
HG002371-13 and NHGRI/NIH grant 5U01HG004695 for providing funding.

Paten et al. BMC Bioinformatics 2014, 15:206 Page 31 of 31
http://www.biomedcentral.com/1471-2105/15/206

Author details
1University of California, Santa Cruz, 1156 High St, 95064 Santa Cruz, USA.
2European Bioinformatics Institute, Wellcome Trust Genome Campus, CB10
1SD Cambridge, UK. 3Howard Hughes Medical Institute, Bethesda, MD, USA.

Received: 12 December 2013 Accepted: 8 May 2014
Published: 19 June 2014

References
1. Elias I: Settling the intractability of multiple alignment. J Comput Biol

2006, 13(7):1323–1339.
2. Miller W, Rosenbloom K, Hardison RC, Hou M, Taylor J, Raney B, Burhans R,

King DC, Baertsch R, Blankenberg D, Kosakovsky Pond SL, Nekrutenko A,
Giardine B, Harris RS, Tyekucheva S, Diekhans M, Pringle TH, Murphy WJ,
Lesk S, Weinstock GM, Lindblad-Toh K, Gibbs RA, Lander ES, Siepel A,
Haussler D, Kent WJ: 28-way vertebrate alignment and conservation
track in the UCSC Genome browser. Genes Dev 2007, 17(12):1797–1808.

3. Darling AE, Mau B, Perna NT: Progressivemauve: multiple genome
alignment with gene gain, loss and rearrangement. PloS one 2010,
5(6):e11147.

4. Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D, Haussler D: Cactus:
algorithms for genomemultiple sequence alignment. Genome Res
2011, 21(9):1512–1528.

5. Felsenstein J: Inferring Phylogenies. Sinauer Associates: Sunderland; 2004.
6. Blanchette M, Green ED, Miller W, Haussler D: Reconstructing large

regions of an ancestral mammalian genome in silico. Genome Res
2004, 14(12):2412–2423.

7. Kim J, Sinha S: Indelign: a probabilistic framework for annotation of
insertions and deletions in a multiple alignment. Bioinformatics
(Oxford, England) 2007, 23(3):289–297.

8. Paten B, Herrero J, Fitzgerald S, Beal K, Flicek P, Holmes I, Birney E:
Genome-wide nucleotide-level mammalian ancestor
reconstruction. Genome Res 2008, 18(11):1829–1843.

9. Day W: Computational complexity of inferring phylogenies from
dissimilarity matrices. Bull Math Biol 1987, 49(4):461–467.

10. Chindelevitch L, Li Z, Blais E, Blanchette M: On the inference of
parsimonious indel evolutionary scenarios. J Bioinform Comput Biol
2006, 4(3):721–744.

11. Song YS, Hein J: Constructing minimal ancestral recombination
graphs. J Comput Biol 2005, 12(2):147–169.

12. Westesson O, Holmes I: Accurate detection of recombinant
breakpoints in whole-genome alignments. PLoS Comput Biol 2009,
5(3):e1000318.

13. Wang LL, Zhang KK, Zhang LL: Perfect phylogenetic networks with
recombination. J Comput Biol 2001, 8(1):69–78.

14. Bergeron A, Mixtacki J, Stoye J: A unifying view of genome
rearrangements. Lecture Notes in Bioinformatics, 4175:163–173.

15. Alekseyev M, Pevzner P:Multi-break rearrangements and
chromosomal evolution. Theor Comput Sci 2008, 395(2–3):193–202.

16. Hannenhalli S, Pevzner PA: Transforming cabbage into turnip:
polynomial algorithm for sorting signed permutations by reversals.
J ACM 1999, 46(1):1–27.

17. Bergeron A, Mixtacki J, Stoye J: On sorting by translocations. J Comput
Biol 2006, 13(2):567–578.

18. Yancopoulos S, Attie O, Friedberg R: Efficient sorting of genomic
permutations by translocation, inversion and block interchange.
Bioinformatics 2005, 21(16):3340–3346.

19. Caprara A: Formulations and hardness of multiple sorting by
reversals. Proc. 3rd Conf. Computational Molecular Biology RECOMB99
1999, 1:84–93.

20. Xu AW: A fast and exact algorithm for themedian of three problem: a
graph decomposition approach. J Comput Biol 2009, 16(10):1369–1381.

21. Bourque G, Pevzner PA: Genome-scale evolution: reconstructing gene
orders in the ancestral species. Genome Res 2002, 12(1):26–36.

22. Ma J, Ratan A, Raney BJ, Suh BB, Miller W, Haussler D: The infinite sites
model of genome evolution. Proc Natl Acad Sci USA 2008,
105(38):14254–14261.

23. El-Mabrouk N: Sorting signed permutations by reversals and
insertions/deletions of contiguous segments. J Discrete Algorithm
2000, 1(1):105–121.

24. Yancopoulos S, Friedberg R: DCJ path formulation for genome
transformations which include insertions, deletions, and
duplications. J Comput Biol 2009, 16(10):1311–1338.

25. Braga MD, Willing E, Stoye J: Double cut and join with insertions and
deletions. J Comput Biol 2011, 18(9):1167–1184.

26. El-Mabrouk N, Sankoff D: Analysis of gene order evolution beyond
single-copy genes.Methods Mol Biol 2012, 855:397–429.

27. Chauve C, El-Mabrouk N, Gueguen L, Semeria M, Tannier E:Models and
Algorithms for Genome Evolution. London: Springer-Verlag; 2013.

28. Bader M: Genome rearrangements with duplications. BMC
Bioinformatics 2010, 11(Suppl 1):S27–S27.

29. Shao M, Lin Y: Approximating the edit distance for genomes with
duplicate genes under DCJ, insertion and deletion. BMC
Bioinformatics 2012, 13(Suppl 19):S13.

30. Raphael B, Zhi D, Tang H, Pevzner P: A novel method for multiple
alignment of sequences with repeated and shuffled elements.
Genome Res 2004, 14(11):2336–2346.

31. Paten B, Diekhans M, Earl D, John JS, Ma J, Suh B, Haussler D: Cactus
graphs for genome comparisons. J Comput Biol 2011, 18(3):469–481.

32. Medvedev P, Brudno M:Maximum likelihood genome assembly.
J Comput Biol 2009, 16(8):1101–1116.

33. Edmonds J, Johnson EL:Matching: A Well-Solved Class of Integer
Linear Programs. 1970:27–30.

34. Tannier E, Zheng C, Sankoff D:Multichromosomal median and halving
problems under different genomic distances. BMC Bioinformatics
2009, 10:120.

35. Bienstock D, Langston MA: Algorithmic implications of the graph
minor theorem. Handbooks in Operations Research andManagement
Science 1994, 7:481–502.

doi:10.1186/1471-2105-15-206
Cite this article as: Paten et al.: A unifying model of genome evolution
under parsimony. BMC Bioinformatics 2014 15:206.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Results
	Sequence graphs and threads
	History graphs
	Simple histories
	Reduction
	History graph cost
	The lifted graph
	Ancestral variation graphs
	Bounds on cost
	G-optimal AVGs
	G-bounded history graphs
	The G-bounded poset
	A basic implementation

	Discussion
	Conclusion
	Methods
	Proof of Theorem 1
	The equivalence of LBSC to UBSC and LBRC to UBRC for AVGs
	A bounded transformation of a history graph into an AVG
	A bounded transformation of an AVG into a realisation
	LBSC and LBRC are lower bounds

	Proof of Theorem []2
	Proof of Theorem []3
	Proof of Theorem []4
	Proof of Lemma 9

	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

