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Abstract

Background: Computational modeling transcription factor (TF) sequence specificity is an important research topic
in regulatory genomics. A systematic comparison of 26 algorithms to learn TF-DNA binding specificity in in vitro
protein-binding microarray (PBM) data was published recently, but the quality of those examined PBMs was not
evaluated completely.

Results: Here, new quality-control parameters such as principal component analysis (PCA) ellipse is proposed to assess
the data quality for either single or paired PBMs. Additionally, a biophysical model of TF-DNA interactions including
adjacent dinucleotide interdependence was implemented in a new program - BayesPI2, where sparse Bayesian learning
and relevance vector machine are used to predict unknown model parameters. Then, 66 mouse TFs from the DREAM5
challenge were classified into two groups (i.e. good vs. bad) based on the paired PBM quality-control parameters.
Subsequently, computational methods to model TF sequence specificity were evaluated between the two groups.

Conclusion: Results indicate that both the algorithm performance and the predicted TF-binding energy-level of a
motif are significantly influenced by PBM data quality, where poor PBM data quality is linked to specific protein
domains (e.g. C;H, DNA-binding domain). Especially, the new dinucleotide energy-dependent model (BayesPI2)
offers great improvement in testing prediction accuracy over the simple energy-independent model, for at least

21% of analyzed the TFs.

Background

Recently, a comprehensive evaluation of 26 algorithms,
for modeling transcription factor (TF) sequence specifi-
city in in vitro protein-binding microarray (PBM) data
[1], was published by DREAMS5 (the Dialogue for Re-
verse Engineering Assessments and Methods) consor-
tium. Many interesting results were revealed through
this work. For example, mononucleotide position weight
matrices (PWM) methods perform similarly to more ad-
vanced dinucleotide PWM algorithms for modeling TF
sequence specificity, and inferred binding energy-level of
a motif has little effect on overall prediction accuracy.
This study also briefly mentioned that PBM data quality
may have a strong influence on algorithm performance
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across 66 mouse TFs. However, the actual data quality of
the examined PBMs in the DREAMS5 challenge (i.e. 66
training PBMs and 66 testing PBMs for the mouse TFs)
is not investigated systematically. Generally, the micro-
array experiment is known for containing many kinds of
biases [2,3] such as nonlinearity, saturation, and dynamic
range problems for the signal intensity. In DREAMS5
challenge, for a pair of training and testing PBM experi-
ments, two different array designs were used for a
mouse TF. However, 8-mers that were used to compute
the 8-mer median intensities for every PBM are identi-
cal. This unique feature provides an opportunity to as-
sess the PBM data quality [4]. For instance, if both
training and testing PBM experiments in good data qual-
ity, then the observed 8-mer median intensities between
the training and testing PBMs will have good agreement.
On the contrary, if one of the PBMs yields poor data
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quality, then the 8-mer median intensities between two
PBMs will not match well. Consequently, the testing pre-
diction accuracy is not a true reflection of the algorithm
performance if paired PBMs have poor measurement
agreements. In other words, computational algorithms will
not predict a binding signal that only exists in the testing
PBM experiment but it does not appear in the training
PBM data, and vice versa. Thus, it is important to develop
PBM quality-control parameters that can evaluate the data
quality for either single or paired PBMs.

Free-energy-based biophysical modeling TF sequence
specificity, from detailed theoretical studies [5-7] to rapid
computational development in real applications [8-11],
have been investigated for many years and several com-
puter programs are publically available now [11-14]. Re-
cently, dependent energy correction such as dinucleotide
interdependence was also incorporated into TF-binding
energy by BEEML-PBM and FeatureREDUCE [1]. In the
DREAMS5 challenge, performance of the dinucleotide-
dependent model of the two new programs is not im-
proved greatly over the simple energy-independent model
(ie. <10% of examined TFs were benefited by the energy-
dependent model; increase in correlation coefficient > 0.05
[1]). However, in many earlier studies, sequence dependen-
cies in TF-binding sites were widely observed [15-18]. Par-
ticularly, energy-dependent model needs to fit a large
number of unknown model parameters, which often en-
counters the over-fitting data problem that impairs the al-
gorithm performance [19]. Additionally, if the input data is
large, then there is a memory issue to R and MATLAB
programs which suffer from extremely slow computation
(ie. BEEML-PBM and many other programs in the
DREAMS5 challenge [1]). Therefore, it is worthy to design a
novel algorithm which implements the dependent energy
correction in an efficient programming language. Then,
PBMs of 66 mouse TFs from the DREAMS5 challenge can
be reanalyzed by the new program. It may help revealing
whether the limitation of previous algorithms hampers the
discovery of motifs that contain nucleotide dependency in
the binding sites.

Motivated by the above-mentioned challenges, new
quality-control parameters for both single and paired
PBMs, and a novel C implementation of biophysical mod-
eling protein-DNA interactions including dinucleotide
interdependence (BayesPI2) are presented here. The new
methods and programs were applied on 66 mouse TFs in
in vitro PBM experiments from the DREAMS5 challenge.
Opverall, four major questions are investigated in this work:
1) the true data quality of paired PBM experiments for 66
mouse TFs; 2) the association between the PBM data qual-
ity and the algorithm performance; 3) whether the binding
energy-dependent model offers a great improvement over
the simple energy-independent model in testing predic-
tion accuracy; 4) whether the low binding energy-level of
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a motif is a real biological phenomenon or a bias due to
the data quality and the algorithm limitation.

Results

PBM data quality of two mouse TFs

The new PBM quality-control parameters were first tested
at TF_7 (Mix) and TF_63 (Zkscan5), since they are ex-
treme cases in the previous algorithm performance com-
parison [1]. For example, in Figure two of the original
publication, 66 mouse TFs were sorted in decreasing order
by the mean final algorithm performance scores, TF_7 and
TF_63 were ranked as the first and the last TF, respectively.
It suggests that the majority of evaluated algorithms per-
formed significantly better at TF_7 than at TF_63 in the
original study. In other words, the PBM data quality of
TF_7 may be much better than that of TF_63. Thus, a
quality analysis of the above-mentioned two TFs may tell
the usefulness of new PBM quality-control parameters.

Figures 1A and 1B show the MA plots [2] of single
PBM quality (training experiment) for TF_7 (Mix) and
TF_63 (Zkscan5), respectively. In the MA plots, the
higher the algorithm performance rank order of a TE,
the longer the length of the major axis of the PCA el-
lipse (ie. ~5.3 and ~3.6 for TF_7 and TF_63, respect-
ively). The major axis of the PCA ellipse is related to the
orthogonal regression line between the background sig-
nal and PBM binding signal, which indicates the dynam-
ical range of measured PBM signal intensities. If a PBM
experiment has larger dynamical range, then better sep-
aration between the noise background signal and the
true binding signal is achieved. Consequently, a higher
TF rank order will be obtained in algorithm performance
evaluation. The present results support assumption that
the longer the length of the major axis the better the
PBM data quality.

Figure 1C and 1D illustrate the quality of paired PBMs
for TF_7 and TF_63, by applying PCA ellipse on the scat-
ter plot of Z-score transformed and log normalized 8-mer
median intensities between the two PBMs. In the scatter
plots, the lengths of both the major and minor axes of the
PCA ellipse are quite different between TF_7 (i.e. 9.4 and
2.4; Figure 1C) and TF_63 (i.e. 8.3 and 5.0; Figure 1D).
This is consistent with the previous hypothesis in single
PBM experiment that the lengths of the major and minor
axes reflect the dynamical range of PBM signal intensities,
and the difference of 8-mer median intensities between
paired PBMs, respectively. Put differently, if a paired
PBMs has good data quality (i.e. TF_7), then a PCA ellipse
with long major axis but short minor axis will be ex-
pected. For paired PBMs, correlation coefficients of
normalized 8-mer median intensities are also quite dif-
ferent between the good-quality PBMs (i.e. 0.87; TF_7)
and the bad-quality ones (i.e. 0.46; TF_63). Neverthe-
less, it is not an indicator of measurement agreement
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Figure 1 PBM data quality for TF_7 (Mix) and TF_63 (Zkscan5). A and B are MA scatter plots of TF_7 and TF_63, respectively. C and D are
scatter plots of Z-score transformed 8-mer median intensities between a pair of training and testing PBM experiments for TF_7 and TF_63,
respectively. In the figure, the red ellipses are 99.73% limit of PCA quality-control ellipses, the two red smooth lines are the length of the major
and minor axes of the PCA ellipses, the black smooth lines are fitted linear regression lines, and the green data points are observations that may
be out of the quality control (i.e. data point outside of the PCA ellipse and one of the observations is below sample mean).
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between the two PBMs, because correlation coefficients
measure the strength of a relationship between the two
variables, and data with obvious poor agreement can pro-
duce high correlations [20]. Therefore, the new PBM
quality-control parameters not only provided a visual in-
spection of data quality for either single or paired PBMs,
but also suggested that TF rank order of algorithm per-
formance comparison [1] is associated with the data qual-
ity of both training and testing PBMs.

PBM data quality of 66 mouse TFs

Encouraged by the above observations, it is necessary to in-
vestigate all 66 TFs that have paired PBMs. First, scatter
plots of TF rank order vs. the single PBM (training data)
data quality are shown in Figure 2, where x-axis is the
sorted rank order of 66 TFs based on the algorithm per-
formance comparison in Figure 2 of original paper [1], and
y-axis is the single PBM quality parameter for 66 training
PBM experiments such as the length of the major and
minor axes of the PCA ellipse (Figure 2A and 2B),

correlation coefficient (Figure 2C), and regression coeffi-
cient (Figure 2D). A linear regression line was fitted to
every scatter plot, where P-values to regression coefficients
for the length of the major axis of the PCA ellipse, the cor-
relation coefficient, and the regression coefficient are P <
0.00014, P <0.00021, and P <0.063, respectively. The re-
sults suggest that the quality of training PBM experiments
is significantly correlated to the TF rank order of mean al-
gorithm performance comparison. Nevertheless, in a simi-
lar study by 66 testing PBM experiments, most of the single
PBM quality parameters are not linked to the TF rank order
Additional file 1: Figure S1, except for the correlation coef-
ficient between the signal intensities and the background
intensities (P < 0.0022). It indicates that the algorithms may
have been learning some background signals, since in gen-
eral they performed best on training or testing sets where
the signal and background intensities are highly correlated.
For that reason, algorithm performance comparison of the
original paper [1] was swayed by the quality of PBM train-
ing data (i.e. Figure 2A and 2C).
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Figure 2 Scatter plots of algorithm performance rank order versus PBM training data quality. A, B, C, and D show scatter plots of
algorithm performance rank order of 66 mouse TFs versus the length of the major axis of the PCA ellipse (i.e. 99.73% limit of PCA quality control
ellipse), the length of the minor axis of the PCA ellipse, correlation coefficient between signal intensities and background intensities, and

Figure 2 of the DREAMS challenge paper.

regression coefficients, respectively. Both PCA ellipse and regression coefficient are based on MA scatter plots for PBM training datasets. In the
figure, the black smooth lines are fitted linear regression lines to the scatter plots, and the P-values of the regression lines are indicated at the top
of each figure. The rank order of TFs (i.e. 66 TFs were sorted in decreasing order by mean final algorithm performance scores) is adopted from

Then, scatter plots of TF rank order versus the paired
PBM quality parameters are illustrated in Figure 3, where
a linear regression line was fitted to each plot. P-values to
the regression coefficients are P < 1.75 x 1073, P < 1.96 x
1073, P <145 x 107"3, and P < 1.45 x 107" for the length
of the major axis (Figure 3A), and minor axis (Figure 3B)
of the PCA ellipse, the correlation coefficients (Figure 3C),
and the regression coefficients (Figure 3D) of normalized
8-mer median intensities between training and testing
PBMs, respectively. The results are very interesting be-
cause all quality-control parameters of paired PBMs are
significantly correlated to the TF rank order according to
the mean algorithm performance comparison. It appears
that the deterioration of mean algorithm performance
across the 66 TFs (i.e. Figure 2 of the original publication
[1]) is largely due to the decrease in agreement between
the training and the testing PBMs. Specifically, computa-
tional methods for modeling TF sequence specificity are

extremely sensitive to the data quality of both training and
testing PBM experiments.

Classifying 66 mouse TFs into two groups based on PBM
data quality

So far, the results of analyzing 66 mouse TFs imply that
methods for modeling TF sequence specificity are strongly
affected by the PBM data quality. It is better to group 66
TFs into two clusters (i.e. good versus bad quality) by PBM
quality-control parameters, then to reevaluate the algorithm
performance (i.e. BayesPI2 energy-independent model ver-
sus the energy-dependent model including dinucleotide de-
pendence). As a consequence, 66 mouse TFs from the
DREAMS5 challenge were assigned to two clusters by apply-
ing unsupervised fuzzy neural gas methods on the single
PBM quality parameters (ie. training PBM experiment).
Comparing to the known TF rank order from original work
[1], the best classifications were achieved by two parameters

A P=17421e-13 B P=1.9559¢-13 C P=1.4412-13 D P=14412¢-13
10 6 1 1
2 2 0.9 09
E 8 £ x
e 2 5 08 g 08
£ g - 5
2o o g 07 g 07
3 5 § 5
< £ = 0.6 2 0.6
=] =2 ° ]
5 5 £ 05 505
@ ] o o
= £ 04 04
8 1
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Rank order of TFs Rank order of TFs Rank order of TFs Rank order of TFs

Figure 3 Scatter plots of algorithm performance rank order versus agreement of paired PBMs. A, B, C, and D show scatter plots of
algorithm performance rank order versus the length of the major axis of the PCA ellipse (i.e. 99.73% limit of PCA quality-control ellipse), the length of the
minor axis of the PCA ellipse, correlation coefficient of normalized 8-mer median intensities between a pair of training and testing PBM experiments, and
regression coefficients, respectively. Both PCA ellipse and regression coefficient are based on scatter plots of Z-score transformed 8-mer median intensities
between a pair of training and testing PBM experiments. In the figure, the black smooth lines are fitted linear regression lines to the scatter plots, and the
P-values of the regression lines are indicated at the top of each figure. The rank order of TFs (i.e. 66 TFs were sorted in decreasing order by mean final
algorithm performance scores) is adopted from Figure 2 of the DREAMS5 challenge paper.
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(i.e. correlation coefficient between normalized signal
intensities and background intensities, and the length
of the major PCA axis). That is consistent with the earlier
observations in Figure 2A and 2C. The clustering result
is an average of ten times classifications based on the
above-mentioned two-quality parameters, where cluster
one contains more good-quality PBM experiments than
that in cluster two. For example, ~79% of 24 TF that
grouped in the first cluster belong to the top half of ranked
TFs (i.e. TF rank order from 1 to 33), and ~67% of 42 TF
that assigned to the second cluster are in the bottom half of
ranked TFs (i.e. TF rank order from 34 to 66). In summary,
the quality of training PBM experiments influences the al-
gorithm performance comparison. In other words, the algo-
rithm performance on testing data may be predicted by the
corresponding training data quality.

Then, the same 66 mouse TFs were classified into two
clusters based on paired PBM quality parameters (i.e. agree-
ment between training and testing PBMs). A combination
of different quality parameters (i.e. the length of the major
and minor axes of the PCA ellipse, regression coefficient,
and correlation coefficients of normalized 8-mer median in-
tensities between training and testing PBMs) were tested,
and the best classification was obtained by using the lengths
of both the major and minor axes of PCA ellipse, which
characterize the dynamical range of PBM signal intensities
and the difference of 8-mer median intensities between the
two PBMs, respectively. The average of ten times classifica-
tions of 66 TFs by the two parameters is shown in Table 1
and Additional file 1: Table S1 for good and bad PBMs, re-
spectively. In the tables, TFs were evenly assigned to two
clusters: 34 TF were grouped in cluster one (Table 1) where
~79% of them have algorithm performance rank order from
1 to 33; and 32 TF were grouped in cluster two (Additional
file 1: Table S1) where ~81% of them have algorithm per-
formance rank order between 34 and 66 [1]. The results
imply that the TFs of cluster one (Table 1) were mostly
measured by paired PBMs with good data quality, but the
TFs of cluster two (Additional file 1: Table S1) were fre-
quently observed under poor-quality PBM experiments.
Particularly, the classification based on the agreement of
paired PBMs is much better than that done by single PBM
data quality. It demonstrates that the quality of both train-
ing and testing PBMs plays a pivotal role in evaluating algo-
rithm performance for computational methods to model
TF sequence specificity. Thus, the new classification based
on the agreement of paired PBMs will be utilized in future
data analysis.

Verification of BayesPI2 energy-dependent model
including dinucleotide interaction energies

In this study, biophysical modeling of protein-DNA
interaction with dinucleotide interdependency is imple-
mented in C - BayesPI2, by using techniques similar to
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sparse Bayesian learning and relevance vector machine.
To test the new program, it was evaluated by two PBM
datasets (Egrl and Hnf4a), which are known to contain
nucleotide interdependent effects on the binding affin-
ities of TFs [17,21,22]. First, the protein-binding energy
matrices (PBEMs) of both Egrl and Hnf4a were esti-
mated, by applying BayesPI2 on Z-score transformed
and log-normalized probe intensities of one of the rep-
licate PBMs (i.e. motif length ranges from 7 to 12).
Then, the predicted PBEMs were used to estimate the
TE-binding intensities on the other replicate PBMs.
Binding energy matrices predicted by the BayesPI2
energy-independent model, which result in the highest
correlation coefficient between the predicted intensities
and the testing probe intensities, are shown in Figure 4A
and 4B for Egrl (correlation coefficient 0.74) and Hnf4a
(correlation coefficient 0.58), respectively. The best
PBEMs calculated by BayesPI2 dinucleotide energy-
dependent model are displayed in Figure 4C and 4D for
Egrl (correlation coefficient 0.77) and Hnf4a (correl-
ation coefficient 0.71), respectively. The corresponding
dinucleotide interaction energies are shown in the heat-
maps, Figure 4E and 4F. It is clear that BayesPI2 energy-
dependent model including dinucleotide interdependence
improves testing prediction accuracy for both TFs. Es-
pecially, for Hnf4a, the improvement is striking (i.e. the
difference of correlation coefficients between the energy-
dependent and the energy-independent model is greater
than 0.1), and the strongest dinucleotide interaction oc-
curs at positions 6 and 7 (Figure 4D and 4F), which is
consistent with a previous study [22] that applied
BEEML-PBM on the same data. It is worthy to note
that the dinucleotide interactions often appear at TF-
binding sites with low binding energy (or information
content), please refer to Figure 4C, D, E, and F. Taken
together, the new program - BayesPI2 by including di-
nucleotide energy-dependent model performs well to-
wards the real PBM data.

Applying BayesPI2 on 66 mouse TFs (good quality versus
bad quality)

Both BayesPI2 energy-independent model and dinucleo-
tide energy-dependent model were applied on Z-score
transformed and log-normalized probe intensities of 66
training PBMs [1]. The inferred TF-binding energy matri-
ces were then used to evaluate prediction accuracies at 66
testing PBMs from the same DREAMS5 challenge [1]. Re-
sults are shown in Table 1 and Additional file 1: Table S1
for TFs with good-quality PBMs and those with bad-
quality PBMs, respectively. The two groups were classified
earlier based on the paired PBMs quality parameters. For
BayesPI2 energy-independent model, the median correl-
ation coefficients between testing probe intensities and
BayesPI2 predicted intensities are 0.67 and 0.45 in Table 1
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Table 1 Prediction results of TFs with good PBM quality by using BayesPI2 energy-independent model and

energy-dependent model including dinucleotide interactions

TF family Rank CorrCoef (Ind) Length (Ind) Number (Ind) CorrCoef (Dep) Length (Dep) Number (Dep)
TF_7 bHLH 1 0.78 13 1 0.786 10 1
TF_26 bHLH 2 0.66 10 1 0.67 13 1
TF_56 C2H2 Z F(4) 3 0.76 12 1 0.788 13 1
TF_55 AT hook 4 0.8 8 1 0.8 9 1
TF_17 NR 5 0.76 9 1 0.757 8 1
TF_1 NR 6 0.826 10 1 0.833 10 1
TF_16 Myb/SANT 7 0.808 10 1 0817 9 1
TF_31 C2H2 ZF (13) 8 0.585 12 1 0.59 1 1
TF_15 Pou + Homeo 9 0.62 11 1 0.655 11 1
TF_45 Myb/SANT 1 0.8 12 1 0.78 1 1
TF_42* Forkhead 12 0.75 12 1 0.805 13 1
TF_64 C2H2 ZF (3) 13 0.75 8 1 0.75 10 1
TF_52 NR 14 0.807 12 1 0.79 10 1
TF_3* Forkhead 16 0.67 10 1 0.724 1 1
TF_27* bZIP 17 0.526 9 1 0.635 11 1
TF_18 Sox 18 0638 8 1 0677 8 1
TF_22* T-box 19 0.675 9 1 0.746 12 1
TF_47 Homeo 21 0.726 12 1 0.767 11 1
TF_44 GATA 22 0633 12 1 0.68 10 1
TF_28 C2H2 ZF (8) 23 0.58 1 1 0.6 11 1
TF_13* Pou+Homeo 24 0.584 9 1 0.675 13 1
TF_5 C2H2 ZF (3) 25 0.59 10 1 0618 11 1
TF_43 Forkhead 27 0.577 10 1 0614 12 1
TF_19 Sox 29 0.559 8 1 0.59 11 1
TF_39 C2H2 ZF (3) 30 063 11 1 0.668 13 1
TF_51* Pou + Homeo 31 0.615 12 1 0.67 13 1
TF_23 T-box 33 0.64 12 1 0.66 13 1
TF_12* NR 35 0.55 13 1 0.606 13 1
TF_49 NR 34 0.675 10 1 0.676 1 1
TF_53* RFX 39 0.696 12 1 0.77 13 1
TF_14 Myb/SANT 40 0.6 8 1 062 9 1
TF_48 NR 43 0.755 12 1 0.78 12 1
TF_38 DM 45 0.67 9 1 0.689 8 1
TF_32 C2H2 ZF (6) 55 0.587 9 1 0.62 8 1

In the table, the 34 TFs were classified by applying fuzzy neuronal gas algorithm on the paired PBM quality-control parameters (i.e. the length of the major and minor axes of
the PCA ellipses), where a good agreement between training and testing PBMs indicates good PBM data quality; Rank means TFs are sorted in decreasing order of their final
performance score across all tested algorithms in Figure 2 of original publication [1]; CorrCoef , Length, and Number are Pearson correlation between predicted intensities
and testing probe intensities, the length of motif, the first or second motif, respectively; (Ind) and (Dep) represent BayesPI2 energy-independent model and
energy-dependent model including dinucleotide interaction, respectively; TFs marked by star and bold text indicate that the increase in Pearson correlation
coefficient is greater than 0.05 by using BayesPI2 energy-dependent model including dinucleotide interaction energies.

and Additional file 1: Table S1, respectively. A two-tailed
T-test of correlation coefficients between Table 1 and
Additional file 1: Table S1 gives P-value 6.0958 x 107*%,
which suggests that algorithm testing prediction accuracy
from Table 1 (i.e. 34 TFs with good agreement between
training and testing PBMs) is significantly better than that

from Additional file 1: Table S1 (i.e. 32 TFs with poor
agreement between the two PBMs). Similar T-tests were
carried out for algorithm performance scores (i.e. Pearson
correlation coefficient of probe intensities) of 26 algorithms
published by the DREAMS5 challenge [1], more than 85%
of algorithms show significant better performance at good
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Figure 4 Predicted binding energy matrices for Egr1 and Hnf4a. A and B are predicted PBEMs for Egr1 and Hnf4a, respectively, by BayesPI2
energy-independent model. C and D are predicted PBMEs for Egr1 and Hnf4a, respectively, by BayesPI2 energy-dependent model including

dinucleotide interdependence. Figure 4E and 4F are predicted energy-dependent matrices of dinucleotide interactions (i.e. exp (—Jf}b) where Jf'/b

is the dinucleotide-dependent energy correction) for Egr1 and Hnf4a, respectively, by BayesPI2 energy-dependent model. In E and F, the dark and
the light gray color represent the high and the low binding energy-level, respectively.

PBM quality group than that at poor PBM quality group
(ie. 22 and 23 algorithms with T-test P-value <0.01 in
Additional file 1: Tables S2 and S3, respectively). Never-
theless, four algorithms seem to have little effect by the
quality of PBMs, where k-mer sequence-specific model

plus feature selections were used (i.e. Team_k, Team_B,
Team_I, and Seed-and-Wobble).

Notable, in Table 1, 34 TFs are spread to almost 14
different DNA-binding domains such as bHLH (2 TFs)
and C,H, (7 Tfs). However, in Additional file 1: Table
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S1, 32 TFs just belong to 6 different DNA-binding do-
mains where almost half of them (15 TFs) are C,H,
DNA-binding domain (Zinc finger protein). It indi-
cates that the poor quality of some PBM experiments
(i.e. Additional file 1: Table S1) may be protein do-
main specific (i.e. Zinc finger protein in Additional file 1:
Table S1). Additionally, if we only consider protein do-
mains with more than two TFs from both Table 1 and
Additional file 1: Table S1, then there are three protein
domains (i.e. around 67%, 67%, and 60% of TFs from
Forkhead, Pou + Homeo, and bZIP, respectively) that
received a great boost in testing prediction accuracy
(i.e. increase in correlation coefficients > 0.05) after using
BayesPI2 binding energy-dependent model. In other
words, these three protein domains may more frequently
encounter base pair interdependency in the DNA-binding
sites than that in the other domains.

Results from both Table 1 and Additional file 1: Table S1
reveal that the testing prediction accuracy based on
energy-dependent model is very sensitive to the data qual-
ity, and the Bayesian method is robust against the data
noise. For example, by using the energy-dependent model
of BayesPI2 or BEEML-PBM [1], about 14 and 5 TFs show
great improvement (increase in Pearson correlation coeffi-
cient >0.05) in the testing prediction accuracy, respectively,
over that by the simple energy-independent model; for the
same test, no improvement was found by FeatureREDUCE.
Among the 5 TFs provided by BEEML-PBM, 3 belong to
the good-quality PBM group (ie. TF_27, TF 32, and
TF_53; Table 1) where 2 TFs (TF_27 and TF_53) were
identified by BayesPI2, and the remaining 2 TFs are in the
bad-quality PBM group (i.e. TF_21 and TF_60; Additional
file 1: Table S1) where only one TF (TF_21) was recovered
by BayesPI2. Thus, by applying various algorithms on the
PBMs, the overlap of predictions is poor for TFs with bad-
quality data but robust to TFs with good-quality ones. In
summary, the better the PBM data quality, the better the
testing prediction accuracy, and both the PBM data quality
and the TF-binding site interdependency may be protein
domain specific. Especially, the good-quality PBM experi-
ments generally benefit more from biophysical modeling of
protein-DNA interactions including dinucleotide interac-
tions, than the poor ones from the same computation.

Predicted TF-binding energy-level versus paired PBM data
quality

Encouraged by the above findings, it is interesting to in-
vestigate relationships between the predicted TF-binding
energy-level of a motif and the PBM data quality across
66 TFs. First, for each TF, the median of negative bind-
ing energies of the first predicted binding energy matrix
by BayesPI2 energy-independent model was computed.
Then, a log-transformed absolute median energy value
was used to summarize the binding energy-level of a
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motif, which is proportional to the information content
of the motif. Scatter plots of the log-transformed median
TF-binding energy-level against the sorted paired PBM
quality parameters such as the length of the major and
minor axes of the PCA ellipse, correlation coefficient
and regression coefficient between training and testing
PBMs, are displayed in Figure 5A, B, C, and D, respect-
ively. A linear regression line was fitted to every scatter
plot, P-value to the regression coefficient shows that
the median binding energy-level of a motif is posi-
tively correlated to the length of the major axis of the
PCA ellipse (P <0.003) and the correlation coefficients
(P <0.0024), but anti-correlated to the length of the
minor axis of the PCA ellipse (P <0.0015). Results by
applying BayesPI2 energy-independent and dinucleo-
tide energy-dependent model (i.e. using either normal-
ized 8-mer median intensities or probe intensities) are
available in the (i.e. Additional file 1: Figures S2, S3, S4
and S5), where almost all of them show significant posi-
tive correlation between the median binding energy-level
of a motif and the paired PBMs data quality, except for
few cases (i.e. different motif length) obtained by applying
BayesPI2 dinucleotide energy-dependent model on the
PBM probe intensities. Hence, the better the PBM data
quality, the higher the binding energy-level (or information
content) of a motif.

To verify the present finding, the same analysis was
performed again on a set of PWMs provided by the
DREAMS5 challenge [1], where the PWMs were pre-
dicted by various methods based on the same training
PBM experiments for 66 mouse TFs. Methods that were
used to obtain those PWMs include both biophysical
free-energy models (ie. BEEML-PBM [22], FeatureRE-
DUCE, and MatrixREDUCE [11]) and other model types
(i.e. PWM + HWMs from Team_E [1], and RankMotif
[23]). First, each PWM was converted to TF-binding en-
ergy matrix. Then, scatter plots of log-transformed me-
dian binding energy-level of a PWM versus sorted
paired PBM quality parameters were made (i.e. Figure 5E,
F, G, and H). P-values of regression coefficients to the
length of the major and minor axes of the PCA ellipse,
and the correlation coefficients are P <0.03, P <0.045,
and P < 0.03, respectively. It is clear that there is a strong
positive correlation between the predicted binding
energy-level of a motif and the PBM data quality. Over-
all, the results of published PWMs are consistent with
the previous findings by using the BayesPI2 predicted
binding energy matrices. It reinforces the hypothesis that
methods for modeling TF sequence specificity are ex-
tremely sensitive to the PBM data quality. Specifically,
the low energy-level (information content) of a predicted
binding energy matrix may be caused by the poor PBM
data quality (i.e. the poor agreement between training
and testing PBMs).
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Figure 5 Scatter plots of predicted binding energy-level in a motif versus sorted PBM quality parameters. A, B, C, and D are scatter plots
of the median binding energy-level (i.e. £ of a binding energy matrix where £ < 0) in a motif predicted by BayesPI2 versus sorted length of the
major axis of the PCA ellipse, sorted length of the minor axis of the PCA ellipse, sorted correlation coefficients of normalized 8-mer median intensities
between paired PBMs, and regression coefficients, respectively. E, F, G, and H are scatter plots of the median binding energy-level (ie. £ = —log (O—’;S)
where fis the probability in PWMs and £ < 0) in a motif provided by the DREAMS challenge versus sorted length of the major axis of the PCA ellipse,
sorted length of the minor axis of the PCA ellipse, sorted correlation coefficients of normalized 8-mer median intensities between paired PBMs,
and regression coefficients, respectively. Both PCA ellipse (i.e. 99.73% limit of PCA quality-control ellipses) and regression coefficients are based
on scatter plot of normalized 8-mer median intensities between a pair of training and testing PBM experiments. For 66 mouse TFs, the median
binding energy-level of a TF is the log-normalized median of the negative energies (i.e. log(—£)) in the binding energy matrix (i.e. £ was the
first predicted binding energy matrix by applying BayesPI2 energy-independent model on the probe intensities of PBM training experiments).
In the figures, the black smooth line is a fitted linear regression line to the scatter plot, P-value to the regression line is shown at the top of
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Algorithm performance comparison and verification of
predicted PBEM in ChIP-seq data

A comparison of algorithm performance between the
BayesPI2 and the other methods was carried out, where
the median Pearson correlation coefficients (i.e. correl-
ation between the predicted probe intensities and the ac-
tual intensities) of 66 mouse TFs were computed for
each algorithm (Additional file 1: Table S4). The correl-
ation coefficients based on bayesPI2 and 26 other algo-
rithms were obtained from this study (i.e. Table 1 and
Additional file 1: Table S1) and the earlier publication
[1] (i.e. Supplementary Table 3 of original paper), re-
spectively. A scatter plot of the sorted median Pearson
correlation coefficients for all algorithms is shown in
Additional file 1: Figure S6 where the performance of
BayesPI2 is close to the top 10 ranked algorithms from
the original paper. However, it should be noted that the
present comparison may not tell the true merit of each
algorithm because of the poor data quality in PBM ex-
periments (i.e. Additional file 2 versus supplementary

Figure 4 of original paper). For computational cost,
BayesPI2 takes ~7 min and ~30 min to predict one PBEM
(i.e. using ~40000 PBM probe sequences and ~600 MB
memory) at a Linux cluster machine by applying energy-
independent model and energy-dependent models, re-
spectively. However, for BEEML-PBM, the same computer
could not complete the prediction of one PBEM (i.e. using
the same input data) including dinucleotide interaction
energies after running for almost 14 days with ~12 GB
memory. Taken together, the new program BayesPI2 is an
efficient and robust tool to analyze large data sets such as
PBM.

Subsequently, PBEMs of five mouse TFs obtained by
BayesPI2 based on in vitro data were used to predict TF
occupancy data in the corresponding in vivo ChIP-seq
data [1]. Among the five mouse TFs, three (i.e. TF_31
Zfx; TF_44 Gatad; TF_23 Tbx20) were classified as good-
quality PBMs (Table 1) and the other two (i.e. TF_25 Tbx5;
TF_40 Esrrb) were defined as poor PBMs (Additional
file 1: Table S1) in this study. Results are shown in
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Table 2 (square root of R-square statistic) and Figure 6
(T values of t-statistic), where a linear regression model
was used to evaluate the significance of dependence be-
tween the inferred PBEM from in vitro data and the mea-
sured TF tag counts from ChIP-seq experiment. For
every in vivo data, the analysis was done at the top 500,
1000, 2000 ranked peaks (i.e. sorted by the number of
tags found at the peak, in descending order), and all
called peaks, respectively. In each selection of the top-
ranked peaks, the same amount of bottom-ranked peaks
was also considered by the regression analysis. The re-
sults tell that there are significant correlations between
the predicted TF-binding affinities and the measured tag
counts across different sizes of input peaks, by using in-
ferred PBEMs from two TFs with good PBM data quality
(i.e. TF_31 and TF_44). However, for the other two TFs
(TF_25 and TF_40) having poor PBM data quality,
the significance of such dependence is weak and differ-
ent among various sizes of input data. Especially, both
R-square statistic and T-values obtained from TFs with
bad-quality PBMs are much smaller than those pro-
vided by the good-quality ones. Thus, poor PBM data
quality may result in unreliable prediction of PBEM
(ie. algorithms may learn the background signals), which
hinders any subsequent genomic analysis. Consequently, it
leads to poor agreement between the estimated TF-binding
affinities based on the PBEM and the measured TF occu-
pancy data from the in vivo data.

Discussion

In this work, new quality-control parameters (i.e. PCA el-
lipse) were developed to assess the quality of PBM. Both
single and paired PBM data quality can be illustrated in a
scatter plot, where predefined control limit (i.e. T%,n.p) by
PCA quality-control ellipse gives a direct assessment of
measurement attribute. For example, the lengths of the
major and minor axes of the PCA ellipse represent the dy-
namical range of PBM signal intensities, and the overall
difference between paired PBMs, respectively. For single
PBM, algorithm performance at the testing data may be
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Figure 6 Heat map of t-values obtained from the linear
regression analysis of dependence between the inferred
TF-binding affinities and the measured TF tag counts in
ChlIP-seq experiment. For 5 mouse TFs with available in vivo ChIP-seq
data sets, the relationships between the predicted TF-binding affinities
by using PBEM from in vitro data and the measured TF occupancy data
from in vivo ChIP-seq experiments were investigated by the linear
regression model, respectively. In the figure, t-value represents the
significance of such correlations. The top 500, 1000, 2000, and all
called peaks were considered in the linear regression analysis,
respectively. Here, the top-ranked peaks were sorted in descending
order by the number of tags found at the peak.

predicted for ~70% of TFs based on the corresponding
training data quality. For paired PBMs, a visual inspection
of PCA quality-control ellipse on the scatter plot can not
only identify data outliers but also tell the robustness of
agreement between the two observations. On the contrary,
correlation coefficient is easily affected by the data outliers
(Additional file 1: Figure S7), which is not suited to meas-
ure agreement between paired observations [20]. Based on
the estimated PBM quality information for 66 mouse TFs
from the DREAMS5 challenge, several interesting findings
were revealed: for instance, both training data quality and

Table 2 Correlations between the estimated TF-binding affinities based on inferred PBEM from in vitro data and the

measured TF tag counts from in vivo ChilP-seq experiment

ChIP-Seq Called peaks Rank Paired PBMs agreement R (top 500) R (top 1000) R (top 2000) R (all peaks)
TF_31 (Zfx) 10338 8 Good 0.38978 0.35943 0.33566 0.25502
TF_44 (Gata4) 16979 22 Good 0.29675 0.28458 0.2645 0.15614
TF_23 (Tbx20) 4012 33 Good 0.077781 0.062428 0.043291 0.043338
TF_25 (Tbx5) 56352 41 Bad 0.062865 0.090766 0.073079 0.053016
TF_40 (Esrrb) 21647 59 Bad 0.16334 0.12283 0.10351 0.064026

In the table, the first column describes ID of mouse TFs in DREAMS5 challenges and the TF names to the ChiP-seq experiments; Called peaks are the number of called peaks
in the ChIP-seq data; Rank represents rank order of TFs that were sorted in decreasing order of the final performance score across all tested algorithms in Figure 2 of original
publication [1]; paired PBMs agreement indicates the agreement between training and testing PBMs; R is square root of R-square statistic from a linear regression model,
where the relationship between the predicted TF-binding affinities and the observed ChIP-seq tag counts is investigated.
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paired PBMs agreement (Figures 2 and 3) are significantly
correlated to the TF rank order according to Figure 2 of
original publication [1], where 66 TFs were sorted in de-
creasing order by the mean of final algorithm performance
scores. The results indicate that the decrease in algorithm
performances across 66 mouse TFs in the DREAMS5 chal-
lenge is mostly due to the gradual reduction of PBM data
quality, especially the poor agreement between training
and testing PBMs.

In addition to the new PBM quality-control parameters, a
biophysical model of protein-DNA interactions including
adjacent dinucleotide interdependence was newly imple-
mented in C — BayesPI2, where sparse Bayesian learning
approach was used to infer free-energy model parameters.
The new energy-dependent model is able to recover known
nucleotide interdependent effects on the binding affinities
for Egrl and Hnf4a, respectively. The results also reveal
that dinucleotide interdependence often occurs at low bind-
ing energy (or information content) sites (Figure 4), which
are significantly influenced by PBM data quality. Particu-
larly, the new BayesPI2 dinucleotide energy-dependent
model offers great improvement in testing prediction accur-
acy over the simple energy-independent model, for at least
21% of the analyzed mouse TFs (i.e. Table 1 and Additional
file 1: Table S1). The new improvement might have resulted
from more motif lengths searched by this study. Alter-
natively, the over-fitting data problem, which hampers
regression-based free-energy model [1,19] to estimate a
large number of unknown model parameters (i.e. BEEML-
PBM in R), is minimized by the Bayesian implementation
of nonlinear parameter fitting.

Equipped with both the new quality-control parameters
for paired PBMs and the new free-energy model including
dinucleotide interdependence, 66 mouse TFs from the
DREAMS5 challenge were first classified into two groups
(i.e. good-quality and bad-quality PBMs in Table 1 and
Additional file 1: Table S1, respectively) based on the
agreement between training and testing PBMs, then the
algorithm accuracy on the test sets and the improvement
by the energy-dependent model over the simple energy-
independent model were compared between the two
groups. Four new observations were revealed by this work:
1) the algorithm testing accuracy at good-quality PBMs is
significantly better (P >7 x 107'?) than that at the bad-
quality ones (Additional file 1: Tables S2 and S3); 2) the
poor PBM data quality is protein domain specific because
almost half of the bad-quality PBMs (Additional file 1:
Table S1) belong to C,H, DNA-binding domain (Zinc fin-
ger protein); 3) the improvement in algorithm testing pre-
diction accuracy by using the energy-dependent model
over that by the simple energy-independent model is not
only associated with the PBM data quality, but also linked
to the specific protein domains (i.e. Forkhead, Pou+
Homeo, and bZIP); 4) the predicted binding energy-level
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(or information content) of a motif is significantly corre-
lated to the quality of paired PBMs (i.e. the better paired
the PBM data quality, the higher the predicted binding
energy-level; Figure 5).

From these four new discoveries, two (i.e. the better the
PBM quality, the better the prediction accuracy; and the
better the PBM quality, the higher the binding energy-level
of a motif) were observed in both the BayesPI2 predictions
and the original results from the DREAMS5 challenge [1].
Particularly, the predicted PBEMs from the good-quality
PBMs (i.e. TF_31 and TF_44) performed significantly better
than those inferred by the poor PBMs (ie. TF_25 and
TF_40), on subsequent genomic analysis in in vivo data
such as ChIP-seq. Nevertheless, there is a poor correlation
between the inferred TF-binding affinities and measured
ChIP-seq signals for TF_23 (TBX20), a putative good-
quality PBM in Table 2 and Figure 6. This may be caused
by the limitation of in vivo experiment. For example, ChIP-
seq may not necessarily identify the direct TF-DNA inter-
actions [24]), and TBX20 is known to directly interact with
a number of proteins in regulation of gene expression [25].
The remaining two findings are supported by the literature
evidences: 1) for protein domain specific PBM data quality,
it is known [21] that binding of C,H, zinc finger proteins
are often not well measured in PBM experiments because
many C,H, proteins do not bind specific DNA sequences
in PBM experiments; 2) for protein domain specific di-
nucleotide interdependence, two of the protein do-
mains (i.e. Pou+ Homeo and bZIP) were known to
contain nucleotide dependence at the binding sites [21]
(i.e. the homeodomain recognition helix is associated to
base pair interdependency to DNA-binding, and many
bZIP factors frequently bind to two distinct half-sites
that may result in dinucleotide interaction). Therefore,
both PBM data quality and computational modeling of
protein-DNA interactions are influenced by the specific
protein domains, and certain protein domains may re-
quire a free-energy model including dinucleotide inter-
dependence to obtain precise binding energy matrix. It
is important to note that the associations of both the PBM
data quality and the dinucleotide energy-dependence with
the protein structure classes are only revealed by this
study, after applying the new PBM quality-control param-
eters and BayesPI2.

To minimize the effect of PBM data quality on down-
stream data analysis, DNA microarray experiment design
from the previous works [26] might be introduced. Espe-
cially, triplet PBM experiments may be better than paired
PBMs design to distinguish the experimental failure (i.e. a
poor PBM data quality) from the biological failure (i.e. the
TF does not bind to a DNA sequence). An alternative
computational solution, to the PBM data quality issue, is
to integrate k-mer sequence specific model plus feature
selections into the PWM energy model (i.e. the top-
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ranked algorithm — FeatureREDUCE in the original study
[1]). That is because k-mer sequence specific model
(i.e. Teams K, B, I, and Seed-and-Wobble; uses the
highest-affinity k-mer) does not consider the intensity
values of PBMs when learning the motif. It is robust
against the data noise that may provide a good initial
seed motif for regression-based free-energy model to
estimate a precise PBEM.

Conclusion

In conclusion, both the new PBM quality-control parame-
ters and the new biophysical modeling of TF-DNA inter-
actions including dinucleotide interdependence are
developed during this work. By applying both methods on
paired PBMs for 66 mouse TFs from the DREAMS5 chal-
lenge, we found that: Bayesian method is robust against
the data noise, and mononucleotide PWM methods do
not perform similarly to more advanced dinucleotide
PWM algorithms for modeling TF sequence specificity.
For instance, the BayesPI2 energy-dependent model offers
great improvement, for ~21% of the examined TFs, in the
testing prediction accuracy over that by the simple energy-
independent model. Especially, the PBM data quality not
only impacts the algorithm performance, but also influ-
ences the inferred binding energy-level of a motif (e.g. the
better the PBM data quality, the higher the inferred bind-
ing energy-level (information content)). This work may
help tremendously for future research in developing com-
putational methods and designing PBM experiments.

Methods

Principal component analysis - quality control ellipse

To check the agreement of two measurements by princi-
pal component analysis (PCA) [27], sample mean, sample
variance, and the covariance between two observations
are needed. Let X; and X, be two observations (i.e. the
normalized 8-mer median intensities of a mouse TF)
under experiments one (i.e. training PBM) and two
(ie. testing PBM), respectively. X = [X;, X,] are two n x 1
vectors where n is the number of observations in the exper-
iments. The vectors of sample mean are X = [X, X,] and
the sample covariance matrix is S = [Su Su} . By per-

Su S»
forming PCA on the covariance matrix S, principal com-
ponent coefficients are obtained: for example, L/SU =L
where U and L are the eigenvectors (characteristic vectors;
u= [Uu uu}) and eigenvalues (characteristic roots;
Uy Uxp
0 L

X (i.e. the vector of X; and X,) are transformed to n
uncorrelated principal components Z based on equation

L= {Ll 0 ]) of S, respectively. Then, the n variables

Z = U [X-X]. Subsequently, Z is scaled to y-score, Y = %
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with unit variance. Finally, T-score to a pair of observa-
tions can be computed by T? = Diag(Y'Y) where Diag is
the main diagonal of YY. It is an overall measurement of
the conformance of an observation to its mean. Thus, the
quantity 77 gives a direct assessment of similarity between
two measurements. Any observation vectors that produce
values of 77 greater than a predefined threshold T%,n.p
be out of control in a quality control (or PCA) ellipse. To
compute the quality-control limit T%_n"p , a probability

will

value p needs to be defined. For example, in this work, the
limit of quality-control ellipse is three times the standard
deviation (~99.73%) from sample mean, then the probabil-
ity value p is ~0.0027 and the T%,n‘p is computed from F
distribution [28] . To construct a unique quality-control
ellipse in the two-dimensional case, the length of the
major and minor axes, their orientation, and their inter-
action are needed. These information can be easily ob-

tained from the length of the semi-major (,/L;T> ) and

2,n.p

2
Ly T2,n,p

V,;) and minor (-V;,/V,;) axes where V= UL"? and the
major and minor axes of the ellipse intersect at the sample
mean X.

semi-minor ( ) axes, the slope of the major (V»,/

Quality control parameters for PBM

Two types of quality-control parameters are defined for
PBM: one is single PBM data quality and the other is
paired PBM data quality. For the former, correlation coef-
ficient between normalized signal intensities and normal-
ized background intensities, the length of the major and
minor axes of PCA ellipse, and regression coefficient are
considered. Both PCA ellipse and regression coefficient
were based on an M versus A scatter plot, where M =1
log2(Signal * Background), A = 10g2(*®" / 1 xerouna) . For
the second one, it includes the length of the major and
minor axes of PCA ellipse, correlation coefficient of nor-
malized 8-mer median intensities between a pair of
training and testing PBM experiments, and regression
coefficient. Here, both PCA ellipse and regression coef-
ficient are obtained from a scatter plot of normalized 8-
mer median intensities between a pair of PBMs. In the
scatter plot, the orientation and the length of the major
PCA ellipse axis is related to the first principal compo-
nent, which represents the dynamical range of PBM
signal intensities (i.e. with 99.73% limit of PCA quality
control ellipse, ~99.73% of measured signals are in-
cluded in the quality ellipse); the orientation and the
length of the minor PCA ellipse axis is the second prin-
cipal component, which shows disagreements between
the two observations. Generally, if there is good agree-
ment between two PBMs, then a narrow PCA ellipse is
obtained [4], which means that both PBMs are of good
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quality. If the PCA ellipse is wide, then the observations
of the two PBMs are in poor agreement, which indicates
that data quality of one of the PBMs is in question. Subse-
quently, the algorithm testing prediction accuracy may
not be reliable due to poor agreement between training
and testing PBM experiments. Taken together, the length
of the major axis of the PCA ellipse (i.e. the dynamical
range of PBM signal intensities) is an essential quality-
control parameter for both signal and paired PBMs.

Biophysical model of protein-DNA interaction including
dinucleotide interdependence

A biophysical free-energy model of TF-DNA interactions
[5,12] is adopted in this work, where a Fermi-Dirac form
of TF-binding probability P(S) is used to estimate TF-
binding energy E(S) to a short stretch of DNA sequence
S. For a detailed description of the biophysical model of
protein-DNA binding, please refer to previous papers
[12,29]. Here, the binding probability is defined by

1
P(s) = exp(E(S)-u) + 1
where E(S) is the TF-binding free energy, and u is the
chemical potential set by the TF concentration. Please
note that negative binding energy is often interpreted as
the information content used by information-based
weight matrix [30]. In the new BayesPI2 program,
sequence-specific interaction is included in the TF-
binding energy

4 L
ZEiﬂSi,a + Z Z ]Z}bsi,asj,b

a=1 ij=1a,b=1

E(S) =

L
i=1
where E;, is the interaction energy with nucleotide
ac (A,C,G,T) at position i =1, 2, ... L of the DNA se-
quence; S;, characterizes the sequence, S;,=1 if i-th
bases is a, otherwise S;, =0; ]f_]‘:b is a pair of dependent
energy correction (i.e. a at position i, b at position j, a,
be(A,C,G,T) ). In the calculation, only adjacent nu-
cleotide interactions are considered in ]Z}b, which re-
duces the number of pair-dependent energy corrections
from 16L% to 16(L - 1), L is the length of a motif. This
simplified version of TF-DNA interaction including di-
nucleotide interdependence was used by an earlier paper
[22] too.

Sparse Bayesian learning of model parameters

Based on the previous papers [12,29], a new Bayesian
neural network framework to infer free-energy model pa-
rameters is developed. For example, to minimize errors
between predicted TF-binding affinity and measured TE-
binding signals, the objective function is
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M(w) = B-Ep(D\w,A,I') + a-E,(wA,T)

n k
where Ep = %Z (T~Y;)* and E, = %Zw,z( are the
i—1 i—1
model error function and model regularization function,
respectively; T; is the ith measured TF-binding signal and
Y; is the predicted TF occupancy according to the protein-
binding probability P(S); a and B are the two unknown
hyperparameters that control the model parameters and
the data noise level, which are determined by the input
data; and w, A, I represent the model parameters, the input
data, and the hypothesis models (i.e. the protein-binding
probability and the regularization function), respectively.
After adding dinucleotide interdependence term into the
protein-binding probability P(S), far more model parame-
ters need to be trained by the input data than that of an in-
dependent free-energy model [12]. To avoid over-fitting
problem that may be caused by a large number of un-
known model parameters, an approach similar to Bayesian
sparse learning and the relevance vector machine [19] is
used. For instance, the term «a - E,, is divided into several
distinct groups

1 L 4
a-E, = 5 alw% + azb% + ag,uz + “42 ZEi,a
i=1 a=1
1 L 4 2
a,
by D @ ()
ij=lj-i=1  ab=1

where w; and b; are the output layer parameters of
neural networks, and g, E;,, and ]z}’-b represent the
chemical potential, the TF-binding energy matrix and
the dinucleotide-dependent energy correction, respect-
ively. If a; is large, then the model parameters are close
to zero, which are not important for the minimization
function. Conversely, if the a; is small, then the corre-
sponding model parameters are important for the data
fitting. In this way, sparse Bayesian learning of model pa-
rameters can be realized. Following the new Bayesian
parameter minimization framework, a set of new update
functions (i.e. back-propagation neural networks, Bayes-
ian evidence approximation with R-propagation algo-
rithm) [12] were derived and implemented in BayesPI2,
a new C program for inferring protein-DNA binding en-
ergy matrix.

Unsupervised classification of 66 mouse TFs by PBM
quality-control parameters

An in-house made fuzzy neural gas algorithm, a combin-
ation of fuzzy logic and neural gas algorithm, was used to
classify 66 TFs into two classes based on PBM quality-
control parameters. The neural gas algorithm uses a similar
“soft-max” adaptation rule as maximum-entropy clustering
and self-organizing maps (SOMs) to summarize high-
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dimensional input space (i.e. TFs) to low-dimensional ref-
erence vector space (ie. class prototype). Then, the TF is
assigned to the nearest class prototype and the fuzzy mem-
bership estimates the confidence level of the classification.
Though many other machine-learning methods can be uti-
lized to perform the same task, the Fuzzy neural gas algo-
rithm is capable of performing unsupervised learning and
capturing nonlinear relationships between the features
(i.e. quality-control parameters) and sample classes [31].

PBM experiments

PBM of mouse TFs Egrl and Hnf4a were downloaded
from UniProbe database [32]. For both TFs, one of the rep-
licate PBM experiments was used as training set and the
other was used as test set to verify the newly developed
BayesPI2 including dinucleotide interdependence. Both
training and testing PBM experiments of 66 mouse TFs
were obtained from the DREAMS5 challenge [1], where
normalized raw probe intensities were used to evaluate al-
gorithm testing performance and single PBM data quality,
and normalized 8-mer median intensities were used to
evaluate paired PBM data quality. For all calculations, the
normalization of PBM data is based on Z-score transform-
ation of log-normalized signal intensities.

ChIP-seq data

To evaluate the predicated PBEM on in vivo data, ChIP-
seq data sets of five mouse TFs were obtained: Esrrb
(TF_40; GEO accession GSM288355), Zfx (TF_31; GEO
accession GSM288352), Tbx20 (TF_23; GEO accession
GSM734426), Tbx5 (TF_25; GEO accession GSM558908),
and Gata4 (TF_44; GEO accession GSM558904). For each
in vivo data set, the predicted PBEM by BayesPI2 from
in vitro PBM experiment was used to scan DNA se-
quences of all called peaks, where the TF-binding affinities
were computed based on the middle 200 bases of each
peak. The affinity-based analysis of DNA sequences is
similar to MatrixXREDUCE [33] but Fermi-Dirac form of
TE-binding probability is used by BayesPI2. Then, a linear
regression model is applied to test the dependence be-
tween the estimated TF-binding affinity by using in vitro
PBEM and the observed TF tag counts from in vivo data.
For example, the ChIP-seq tag counts represent response
variables and the estimated TF-binding affinities are ex-
planatory variables in a linear regression model. Finally,
the T values and the correlation coefficients from the lin-
ear regression analysis are used to evaluate the signifi-
cance of correlations between the estimated TF-binding
affinities and the actual TF occupancy data.

Computer programs
Inferred PBEMs from PBM experiments for 66 mouse TFs
by using BayesPI2, C version of BayesPI2 program, and
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MATLAB program of PCA quality control ellipse are pub-
lically available http://folk.uio.no/junbaiw/CBayesPI2
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